
This is a repository copy of An Optimally Efficient Technique for the Solution of Systems of
Nonlinear Parabolic Partial Differential Equations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100595/

Version: Accepted Version

Article:

Yang, FW, Goodyer, CE, Hubbard, ME et al. (1 more author) (2017) An Optimally Efficient
Technique for the Solution of Systems of Nonlinear Parabolic Partial Differential Equations.
Advances in Engineering Software, 103. pp. 65-84. ISSN 0965-9978

https://doi.org/10.1016/j.advengsoft.2016.06.003

© 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

An Optimally Efficient Technique for the

Solution of Systems of Nonlinear Parabolic

Partial Differential Equations

F.W. Yang∗1, C.E. Goodyer2, M.E. Hubbard3 and P.K. Jimack4

1
Department of Mathematics, University of Sussex, Brighton, United Kingdom

2ARM, York House, Manchester, United Kingdom
3School of Mathematical Sciences, University of Nottingham, United Kingdom

4School of Computing, University of Leeds, United Kingdom

June 5, 2016

Abstract

This paper describes a new software tool that has been developed for the efficient

solution of systems of linear and nonlinear partial differential equations (PDEs) of

parabolic type. Specifically, the software is designed to provide optimal compu-

tational performance for multiscale problems, which require highly stable, implicit,

time-stepping schemes combined with a parallel implementation of adaptivity in both

space and time. By combining these implicit, adaptive discretizations with an opti-

mally efficient nonlinear multigrid solver it is possible to obtain computational solu-

tions to a very high resolution with relatively modest computational resources. The

first half of the paper describes the numerical methods that lie behind the software,

along with details of their implementation, whilst the second half of the paper illus-

trates the flexibility and robustness of the tool by applying it to two very different

example problems. These represent models of a thin film flow of a spreading vis-

cous droplet and a multi-phase-field model of tumour growth. We conclude with a

discussion of the challenges of obtaining highly scalable parallel performance for a

software tool that combines both local mesh adaptivity, requiring efficient dynamic

load-balancing, and a multigrid solver, requiring careful implementation of coarse

grid operations and inter-grid transfer operations in parallel.

Keywords: parallel, adaptive mesh refinement, finite difference, implicit, multigrid,

thin film flow, tumour growth.

∗Main correspondent: F.W.Yang@sussex.ac.uk

1

1 Introduction

Many problems in computational engineering and science are based upon the use of

complex mathematical models and their numerical approximations. These models of-

ten consist of highly nonlinear, time-dependent and coupled PDEs. Accurate, efficient

and reliable numerical algorithms (and, frequently, great computational power) are

necessary in order to obtain robust computational solutions. This paper describes a

new Engineering Software tool that we have developed to exploit advanced numeri-

cal methods for the efficient solution of nonlinear time-dependent systems of PDEs.

Specifically, the focus of this software is nonlinear, and potentially stiff, parabolic

systems. This type of system may be used to represent a plethora of different ap-

plications, ranging from solidification [4] and computational fluid dynamics [2, 5] to

tumour growth [3].

The multigrid method is commonly accepted as being one of the fastest numerical

methods for solving algebraic equations arising from mesh-based discretizations of

PDEs. Brandt in his 1977 paper [6] systematically describes the first multigrid meth-

ods, and some of their applications. Subsequent publications, e.g. [15, 8], suggest

further combinations of multigrid methods with spatial adaptivity and adaptive time-

stepping, for applications in which physical effects occur at multiple length and time

scales. In recent years a number of general-purpose software packages have been de-

veloped to provide adaptive multigrid solvers for broad classes of PDEs. Noteworthy

examples include DEAL.II [9] and DUNE [10]. The software that we introduce in

this paper is intended to complement such general-purpose packages by providing a

tool that we have developed specifically for the solution of multiscale parabolic PDE

systems using fully-implicit time stepping. Typically these problems are highly stiff,

thus requiring strongly stable temporal discretization, which leads to large systems of

(generally nonlinear) algebraic equations to be solved at each time step. Our solver

is written specifically with such systems in mind, and exploits nonlinear geometric

multigrid methods in order to advance in time with optimal efficiency.

The particular nonlinear multigrid scheme that we use is based upon a combina-

tion of the multilevel adaptive technique (MLAT) and the full approximation scheme

(FAS), first introduced in [15] and [6] respectively. These are implemented in a par-

allel setting based upon distributed memory parallelism using the MPI library, and

this paper describes our new software framework for the first time. In addition to this

overview of the software, we also include a thorough evaluation of our implementation

and the effectiveness of our chosen computational techniques. This is acheived using

two example applications which are based upon (i) the thin film flow of a spreading

droplet [2], for which we demonstrate the temporal and spatial adaptivity in detail; and

(ii) a multi-phase-field model of tumour growth, which was also discussed in [11].

In Section 2, we introduce our software framework in detail, whilst in Section 3

we we present detailed results from the two selected applications that are provided for

validation purposes. We conclude this paper in Section 4 with suggestions for possible

future work.

2

2 Software Framework

In this section, we provide an introduction to our software with its key features. This

is followed by a high level overview of the programme flow and then enhanced details

of the the main components of our software tool. Afterwards, various implementation

issues are explained, and the section ends with a description of the user’s control of

the software.

2.1 Introduction

The purpose of this paper is to describe a new software tool, Campfire, which we

have developed in order to efficiently obtain solutions to general systems of nonlinear

parabolic PDEs. The core of the software is the use of nonlinear multigrid methods to

solve the algebraic systems arising from implicit temporal discretization schemes. The

user is free to select their own spatial discretization scheme based upon cell-centred

quadrilateral or hexahedral elements (i.e. the degrees of freedom are stored at the cell

centres). Finite difference, low order discontinuous Galerkin and finite volume meth-

ods are typical examples that may provide such cell-centred discretizations, though

we make use only of the former in all of the examples presented in this paper.

Distinctively, our nonlinear multigrid solver has optimal, linear, computational

complexity for general systems of parabolic PDEs (illustrated in Section 3). The

software is able to include spatial and temporal adaptivity, and parallel computing

is implemented through geometric domain decomposition. This combination of tech-

niques gives a huge boost to the efficiency, thus allowing complex, time-dependent

systems to be solved in 3-D within reasonable and practical time.

Campfire is designed to be flexible and efficient. It only requires the user to sup-

ply the fully-discretized system (in the form of a residual function), the initial and

boundary conditions of the model and prescribed parameter values. Most of the func-

tionalities within this software can be easily adjusted by altering these parameters,

though robust default values for general cases are also provided.

For clarity, we summarise the key features of our software:

• it is able to carry out the computation in a parallel environment where the par-

allelization comes from mesh partitions via domain decomposition;

• it is able to generate a distributed mesh hierarchy using an open source library

(i.e. PARAMESH [1]), with appropriately modified mesh data structures and

dynamic load-balancing procedures, tuned for enhanced parallel multigrid per-

formance;

• it is able to dynamically adapt the spatial mesh in a hierarchical manner based

upon flexible error control criteria;

• it is able to apply highly stable, fully-implicit, time stepping with step-size se-

lection based upon flexible error control criteria (and not generally dependent

3

upon numerical stability constraints);

• it is able to solve the nonlinear algebraic systems arising from the adaptive spa-

tial and temporal discretizations using nonlinear multigrid methods, [6, 15];

• it is able to store checkpoint files for possible restarts in parallel environments

via HDF5;

• it is able to output solutions into standard formats (e.g. CSV and VTK) for

common visualization tools such as Paraview [12].

This paper is the first description of the software tool itself, however, earlier versions

of the multigrid solver, that are now part of the software, have been used in [4, 13] to

solve specified problems in the solidification of metallic alloys.

2.2 Overview

In Campfire the user is able to define their own spatial discretization based upon cell-

centre values in the hexahedral mesh (in the 3-D case). Combining this with an im-

plicit temporal discretization leads to a system of algebraic equations for which there

are unknown values at the centre of each hexahedron (one unknown for each depen-

dent variable) at the end of each time step. Throughout this section we represent this

system of equations as either

F(u) = 0 or A(u) = f . (1)

Here u stores all of the unknown values to be determined at the end of the time step,

whilst F and A are nonlinear functions related by F(u) = A(u)− f for some known

vector f .

In order to commence a new simulation in Campfire it is necessary to provide a

set of parameters that define the problem and control the mesh adaptivity (see sub-

section 2.4.2), and a set of initial conditions for each dependent variable (see subsec-

tion 2.4.1). These are used to initialise the software (including memory allocation), to

allocate an initial spatial mesh (with the support of the PARAMESH library) and to

assign the initial state of the necessary variables (see subsection 2.4.1). This initializa-

tion process is indicated by the “New job” branch in Figure 1. Further details of the

mesh data structure and the key parameters, as well as how to define the discrete PDE

system, are provided in the next section: the purpose of Figure 1 is to describe how

Campfire operates at a high level, and how the key components are linked together.

Note that it is also possible to re-start a previous run from a checkpoint file, as indi-

cated by the “Restart” branch in the same figure. The HDF5 checkpoint file allows

all previous mesh and solver parameters to be picked up and the previous run to be

continued from that point in time onwards.

As noted in Figure 1, the key loop within Campfire occurs at each implicit time step.

Within each such step there are three main components: adaptive mesh refinement

4

New job

Receive

user inputs

Implement initial and boundary

conditions, assign parameters

as defined in user inputs

Generate the required

mesh hierarchy

Start time stepping

Restart

Receive checkpoint file

from the user

Take the stored solutions,

parameters and conditions,

adjust mesh hierarchy if needed

Adaptive mesh refinement?

Mark elements for potential

coarsening or refinement

based upon weighted

gradient of solution

Adapt meshes
Nonlinear multigrid solver

 (Algorithm 1)

Another time step?
Adaptive

time-stepping?
Update time step size

 (Algorithm 2)

Store solutions and

output results if required

Terminate Campfire

Initialize Campfire

no

no

yes

yes

no

yes

Figure 1: This flow chart illustrates how Campfire operates and how each operation is

connected.

5

(AMR) based upon the latest solution values; the use of the nonlinear multigrid solver

for the nonlinear algebraic system of equations, of the form (1), that arises at the

current time step; and the selection of the step size for the next time step (adaptive

time-stepping). We now describe these three components in further detail.

The AMR algorithm is fairly standard and is described in full in [1]. As explained

in Section 2.3.1, it is based upon hierarchical refinement through the use of a quad-tree

or an oct-tree (in two or three dimensions respectively) data structure. Each node of

the tree is a block of uniform mesh (e.g. 16 × 16 × 16 hexahedral elements) which

may be refined into four or eight child blocks (in two or three dimensions). The al-

gorithm is divided into two phases: the first decides which blocks should be refined

or coarsened (based upon either a default error indicator or a user-supplied error in-

dicator, along with some constraints on the mesh topology (e.g. neighbouring blocks

cannot differ by more than one level of refinement)); whilst the second phase actually

implements the refinement. For this second phase, not only is the tree data structure

updated to reflect blocks which are refined or coarsened (for coarsening, it is effec-

tively the inverse of a refinement operation so, in three dimensions, eight child blocks

would be removed from the tree and the memory freed), but a dynamic load-balancing

routine is then invoked so as to ensure that the mesh tree is equally partitioned across

the available processes. In the default version of PARAMESH the tree is partitioned

based upon the partition of a depth-first ordering (referred to as Morton ordering),

however this is very unsuitable for multigrid solvers since the finest mesh level (where

most computational work takes place (see below)) will not generally be split equally

amongst the processes. Hence we use a dynamic load-balancing strategy which parti-

tions all of the blocks that lie at the same depth of the tree independently: each of these

partitions aims to provide an equal number of blocks per process, and neighbouring

blocks allocated to the same process where possible (so as to minimize inter-process

communication).

As already noted above, the algebraic solver required at each time step uses a non-

linear multigrid method based upon MLAT and FAS, [15, 6]. A single iteration of

this scheme is described in detail in Algorithm 1. Note that the nonlinear multigrid

approach differs fundamentally from linear multigrid since the coarse grid correction

phase is not based upon the approximate solution of an error equation, as in the linear

case [7, 8]. Instead, the coarse grid correction in nonlinear multigrid is obtained by

solving an approximation to the original system on a coarser grid, but with a modi-

fied right-hand side (RHS) term which comes from adding the difference between the

residual of the restricted solution and the restriction of the fine grid residual, [7, 8, 6],

as shown in steps 5 and 6 of the algorithm. Otherwise the nonlinear algorithm follows

a similar pattern to standard multigrid: a typical V-cycle (as shown in Algorithm 1)

requires a small number of sweeps of an iterative smoother (step 1), a residual calcu-

lation (step 2), a restriction to the coarser grid (step 3), a coarse grid correction (steps

4 to 10) and further sweeps of the smoother (step 10). Indeed, when this algorithm

is applied to a linear problem it may be shown to be equivalent to a standard linear

multigrid V-cycle. In order to establish convergence (or otherwise) of the multigrid

iterations the norm of the residual is monitored after each V-cycle: once it is reduced

6

below a prescribed absolute value or a prescribed relative reduction from the initial

residual, convergence is assumed (and if neither criterion is met after a maximum

number of iterations the time step is repeated with a smaller step size). Further details

of the smoother, the grid transfer operators (I2hh and Ih2h) and the default parameters

used for each V-cycle are given in the following sections.

Algorithm 1 V-cycle MLAT nonlinear FAS multigrid method

The superscripts h and 2h denote fine and coarse grid (Ωh and Ω2h) values respec-

tively.

Function:Function:Function: uh = V-cycleMLATMG(h, uh, u2h, fh, f 2h, Ah(uh), A2h(u2h))
1.1.1. Apply p1 iterations of the pre-smoother on Ah(uh) = fh

uh = PRE-SMOOTH(p1, u
h, Ah(uh), fh)

2.2.2. Compute the residual rh on Ωh

rh = fh − Ah(uh)
3.3.3. Restrict the residual rh from Ωh to Ω2h ∩ Ωh to obtain r2h

r2h = I2hh rh

4.4.4. Restrict the fine grid approximate solution uh from Ωh to Ω2h to obtain w2h

w2h =

{

I2hh uh on Ω2h ∩ Ωh

u2h on the remaining part of Ω2h

5.5.5. Compute the modified RHS

f 2h =

{

r2h + A2h(w2h) on Ω2h ∩ Ωh

f 2h on the remaining part of Ω2h

6.6.6. ififif Ω2h = coarsest grid thenthenthen

Perform an “exact” coarsest grid solve on A2h(u2h) = f 2h

elseelseelse

u2h = V-cycleMLATMG(2h, w2h, u4h, f 2h, f 4h, A2h(u2h), A4h(u4h))
end ifend ifend if

7.7.7. Compute the error approximation e2h on Ω2h ∩ Ωh

e2h = u2h − w2h

8.8.8. Update solution on the remaining part of Ω2h

u2h = u2h latest

9.9.9. Interpolate the error approximation e2h from Ω2h to Ωh to obtain eh

eh = Ih2he
2h

10.10.10. Perform correction

uh = uh + eh

11.11.11. Apply p2 iterations of the post-smoother on Ah(uh) = fh

uh = POST-SMOOTH(p2, u
h, Ah(uh), fh)

Finally, we describe the adaptive time-stepping procedure. There are two main

options for controlling the adaptive time-step selection in Campfire: either selecting

δt based upon the rate of convergence of the multigrid solver at the previous time step;

or selecting δt based upon an estimate of the local error per unit step for the BDF2

scheme [17] over the previous time step (as in [18] for example). We illustrate the

7

former in Algorithm 2 since this is the default setting in Campfire, and is independent

of the time-stepping scheme being used. As may be seen from Algorithm 2, when a

converged solution is obtained at the previous time step in a low number of multigrid

V-cycles the time step size will be increased (subject to a maximum value which can

be set by the user). Otherwise, if convergence is not achieved at the previous time step

in a prescribed maximum number of V-cycles then the step size is reduced by 25%
and the previous step is retaken. Alternatively, if convergence was achieved at the

previous time step, but at a slower rate than targeted (i.e. a high number of V-cycles

were taken), then the step size is reduced by 10% for the next time step. After the

algebraic system is solved or the maximum number of V-cycles is reached (i.e. slow

convergence or non-convergence respectively), the number of V-cycles and the norm

of the residual can be assessed. If none of the above occurred then convergence was

neither too slow nor excessively fast and so δt is left unchanged for the next step. All

of the parameter values for measurements in the if-statements, as well as the different

ratios of changes to δt, may be altered by the user. Note we use the superscripts τ + 1
and τ to indicate the next time step size and the current step size, respectively.

Algorithm 2 Adaptive time stepping in Campfire

1.1.1. Input: No.V-cycles – the number of V-cycles that are used by the multigrid solver

at this time step

2.2.2. Input : r – residual

3.3.3. ififif No.V-cycles is low andandand r is acceptable thenthenthen

4.4.4. δtτ+1 = 10
9
δtτ

5.5.5. ififif δtτ+1 ≥ max-δt-allowed thenthenthen

6.6.6. δtτ+1 = max-δt-allowed

7.7.7. end ifend ifend if

8.8.8. else ifelse ifelse if No.V-cycles reaches the maximum number ororor r is not acceptable thenthenthen

9.9.9. Recompute the current time step τ with δtτ = 3
4
δtτ

10.10.10. else ifelse ifelse if No.V-cycles is high thenthenthen

11.11.11. δtτ+1 = 9
10
δtτ

12.12.12. end ifend ifend if

The above descriptions summarise the general computational flow within Campfire

as well as its essential components. In the next section, we provide details of some of

the key implementation issues.

2.3 Key Algorithmic Details

In the previous section we provided a brief introduction to AMR and associated pro-

cedures, such as dynamic load-balancing, and to FAS nonlinear multigrid, with its

associated components. In this section, we focus on two key algorithmic details. The

first is the fundamental mesh structure used in Campfire which is described in Subsec-

tion 2.3.1. The other concerns the key components of the nonlinear multigrid solver,

and we illustrate these in Subsection 2.3.2.

8

2.3.1 Parallel Adaptive Mesh Refinement

One of the fundamental building blocks in Campfire is its mesh structure, which is

inherited from the open source software library PARAMESH [1]. This structure is

based upon a dynamic tree of Cartesian mesh blocks of a fixed size (a quad-tree in

2-D or an oct-tree in 3-D). To illustrate, we use an simple 2-D adaptive grid with a

coarse block size as an example. This example is shown in Figure 2 (a), with a user-

defined block size of 2 × 2 (note this size choice is for the purpose of demonstration:

in practice, sizes like 8 × 8 or 16 × 16 (or 16 × 16 × 16 in 3-D) are usually used).

As shown in this figure, despite different refinement levels, all mesh blocks have this

selected size of 2 × 2. We include a "telescope" view of the example adaptive grid

in Figure 2 (e) where we use solid dots to represent the cell-centred grid points. In

(a) and (e), the heavy lines indicate the boundaries of each block, and the lighter lines

indicate individual cells.

Parallelism is achieved through distributing mesh blocks to multiple MPI pro-

cesses, and using MPI to communicate between individual MPI processes to exchange

data. An important concept is that of guard cells. Each mesh block is surrounded by

a layer of guard cells, which may be expanded to multiple layers for schemes with

larger stencils. We illustrate this concept using the four mesh blocks on the finest

level of our example. This is shown in Figure 2 (d), where the guard cells are marked

using dashed lines and the guard cell centres are indicated by ◦. The guard cells at

the actual domain boundary contain information which allows the specified boundary

conditions to be implemented, and others are used to store values of corresponding

grid points on the neighbouring blocks (the linked curves show the corresponding grid

points between neighbours). Thus the parallel communication is used to update the

data held by these guard cells.

The quad-tree structure corresponding to the mesh illustrated in (a) and (e) is shown

in Figure 2 (b). We use four shapes (i.e. N, ◦, � and •) to indicate a possible partition

across four MPI processes in a parallel environment. Note this is not the original, so-

called Morton ordering used in PARAMESH, but the modified version from Campfire.

For completeness, the Morton ordering (if applied to this example) is shown in Figure

2 (c). From a multigrid point of view, the parallel distribution in (a) is superior since

the work is partitioned equally at each level, most importantly the finest level.

2.3.2 Nonlinear Multigrid

There are two key components to the nonlinear multigrid solver described in the pre-

vious section: steps 1 and 11 of Algorithm 1 require an iterative smoother, whilst data

transfer operators are needed to perform the restriction and the interpolation in steps

3, 4 and 9.

First of all, we describe our choice of the multigrid smoother. From our experience,

for systems that have multiple dependent variables, it is better to update all these

dependent variables simultaneously at each visited grid point. We refer to this as a

point-wise, nonlinear block Jacobi method [16].

9

1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

(a) (b)

1

2 3 4 5

6

7 8 9 10 11 12 13

14 15 16 17

(c)

1

2

3

4 5 6 7

8 9 10

11 12

13

14 15 16 17

level 1

level 2

level 3

level 4

level 1

level 2

level 3

level 4

(d)

1

2 3

4 5

6

7

8

10

11

12 1314 15

16 17

9

(e)

boundary

Figure 2: (a) A 2-D adaptive Cartesian mesh. (b) The corresponding quad-tree data

structure of the mesh in (a). (c) For comparison, the parallel distribution based upon

a depth-first ordering. (d) An illustration of the role of guard cells. (e) A “telescope”

view of the mesh hierarchy.

10

Let us consider a cell-centred finite difference discretization at each implicit time

step: F(u) = 0, where u is a vector containing all unknown values at the end of the

step. Let ui,k be the approximate solution on grid point i for unknown variable k,

where we assume K unknowns at each grid point. The system F(u) = 0 is made up

of N × K coupled nonlinear algebraic equations (where N is the number of internal,

cell-centred grid points), each of the form

Fi,k(u) = 0, (2)

where i = 1, . . . , N and k = 1, . . . ,K. To clarify the notation ui,k is the kth compo-

nent of ui ∈ R
K and Fi,k is the kth component of Fi ∈ R

K. On one grid point i, all K
variables may be updated simultaneously as

uℓ+1
i = uℓ

i − C−1
i Fi(u

ℓ), (3)

where ℓ is the iteration index and C−1
i is the inverse of the K×K local Jacobian matrix

Ci, which is given as

Ci =













∂Fi,1

∂ui,1

∂Fi,1

∂ui,2
. . .

∂Fi,1

∂ui,K

∂Fi,2

∂ui,1

∂Fi,2

∂ui,2
. . .

∂Fi,2

∂ui,K

...
...

. . .
...

∂Fi,K

∂ui,1

∂Fi,K

∂ui,2
. . .

∂Fi,K

∂ui,K













. (4)

This iterative method is also used as the iterative solver on the coarsest grid (i.e. at

step 6 of Algorithm 1), by sweeping through the grid multiple times.

The other key multigrid component introduced in the previous section is the grid

transfer operators, used to move data between grid levels. Considering we are us-

ing cell-centred grids, a cell-averaging restriction and a bilinear interpolation are em-

ployed [8]. We illustrate these two operators on a simple 2-D cell-centred grid in

Figure 3. A 2-D version of the restriction can be written as

I2hh uh(x, y) =

1

4

[

uh

(

x−
h

2
, y −

h

2

)

+ uh

(

x−
h

2
, y +

h

2

)

uh

(

x+
h

2
, y −

h

2

)

+ uh

(

x+
h

2
, y +

h

2

)

]

,

(5)

11

(a) (b)

h

1/4

Figure 3: (a) The cell-averaging restriction operator in Equation (5): arrows indicate

an example of this process from points (marked as •) on the fine mesh level to a point

(marked as ◦) on the coarse mesh level. (b) The bilinear interpolation operator in

Equation (6): arrows indicate an example of this process from points (marked as ◦) on

the coarse mesh level to a point (marked as •) on the fine mesh level.

and a 2-D version of the interpolation is given as

Ih2hu2h(x, y) =















































































1
16

[

9u2h

(

x− h
2
, y − h

2

)

+ 3u2h

(

x− h
2
, y + 3h

2

)

+3u2h

(

x+ 3h
2
, y − h

2

)

+ u2h

(

x+ 3h
2
, y + 3h

2

)

]

for •;

1
16

[

3u2h

(

x− 3h
2
, y − h

2

)

+ u2h

(

x− 3h
2
, y + 3h

2

)

+9u2h

(

x+ h
2
, y − h

2

)

+ 3u2h

(

x+ h
2
, y + 3h

2

)

]

for �;

1
16

[

3u2h

(

x− h
2
, y − 3h

2

)

+ 9u2h

(

x− h
2
, y + h

2

)

+u2h

(

x+ 3h
2
, y − 3h

2

)

+ 3u2h

(

x+ 3h
2
, y + h

2

)

]

for ⋄;

1
16

[

u2h

(

x− 3h
2
, y − 3h

2

)

+ 3u2h

(

x− 3h
2
, y + h

2

)

+3u2h

(

x+ h
2
, y − 3h

2

)

+ 9u2h

(

x+ h
2
, y + h

2

)

]

for △,

(6)

where the array u stores values at the grid points, (x, y) are the Cartesian coordinates,

h, 2h are the grid spacings on fine and coarse grids respectively and the geometric

symbols are indicated in Figure 3 (b). The 3-D versions of these two operators (i.e.

3-D cell averaging and trilinear interpolation) are straightforward extensions.

12

2.4 User Experience

In this section, we provide an overview of how a user of the software can define the

problem being solved and control the way in which the solver progresses. As indi-

cated above, the key user-defined functions are the residual function, which allows the

discretized PDE system to be defined (see Equation (2)), and the local Jacobian ma-

trix which contains the derivative terms shown in Equation (4). In the first subsection

below we describe the key data structure that must be used in order to define these. In

the second subsection, we then provide an overview of the key parameters that may be

selected or defined by the user in order to control the model, the domain, the multigrid

solver, etc.

2.4.1 User-Defined Functions

Following the approach of PARAMESH [1], within Campfire the key data structure is

the so-called “unk” array. This is a multi-dimensional data structure that is synchro-

nised to the mesh blocks, making it highly parallelizable. This data structure is also

suitable for multiple dependent variables. It is given by

unk(var, i, j, k, lb), (7)

where var is described below, i, j, k represent each grid point (i.e. cell) in the current

mesh block and lb denotes the mesh block. If it is in 2-D, k stays as 1.

In Campfire’s default option, there are five arrays associated with each dependent

variable. For example, the first variable has the following data structure:

unk(1, i, j, k, lb), stores the latest solution (or the initial condition);

unk(2, i, j, k, lb), stores the modified RHS (or is zero on the finest grid);

unk(3, i, j, k, lb), stores the computed residual value (shown in Equation (2));

unk(4, i, j, k, lb), stores the solution from the previous time step;

unk(5, i, j, k, lb), stores the solution from the one before previous time step.

For a system of PDEs, the second dependent variable then starts with unk(6, i, j, k, lb)
through to unk(10, i, j, k, lb). For example, the thin film model presented in Sec-

tion 3.1 has two dependent variables, thus 10 “unk” arrays. Furthermore, the tumour

growth model presented in Section 3.2 has five dependent variables, hence 25 “unk”

arrays are employed. It is worth noting that the i, j, k indices also include the guard

cells on the current mesh block. Note that unk(5, ., ., ., .) is only used when a multi-

step discretization is employed in time, such as the adaptive BDF2 scheme [17].

For each variable, the corresponding 3rd array of the “unk” arrays is assigned by

a user-supplied subroutine which is used to define the residual of the discrete system.

Specification of this subroutine is the main programming task that must be undertaken

once the user has selected their spatial and temporal discretizations. This subroutine

is used by the smoother, as well as to compute the residual required in step 2 of Algo-

rithm 1.

13

Another user-defined term is the initial condition, which must be assigned to the

corresponding 1st array of the “unk” arrays initially. Later on the data in these arrays

will be replaced by the most recent solutions for each variable in the system.

The final user-defined subroutine is required to compute the local Jacobian matrix

which contains the derivative terms (see Equation (4)). This matrix is stored in an

N × N array where N is the number of coupled equations. Each entity specified in

Equation (4) must be assigned by the user and, at each grid-point visit in the smoother,

this local matrix is re-computed using the corresponding information related to the

current grid point.

2.4.2 Software Parameters

In total there are seven categories of user-controlled parameters. In the following

paragraphs we provide a high level summary of the key ones, with descriptions and

some default values.

1. Mesh setup: first of all, to set up the mesh hierarchy, a mesh block size is to be

defined: nxb, nyb and nzb specify the number of cell-centred grid points in

each axis direction. It is worth noting there is a trade-off, since a smaller size

will create too many guard cells relative to the block size, hence burdening

the memory and parallel communication, however a larger size will deteriorate

the flexibility of the dynamic load balancing and the adaptive mesh refinement.

Referring back to the example used in Figure 2, for clarity, we illustrated using

a 2 × 2 block size. However, by default, Campfire suggests a size of 8 × 8
for simulations which would have up to 4 million grid points at the finest level

if we were to measure the grid as uniform (i.e. up to 2048 × 2048). For larger

simulations, especially in 3-D, we suggest to use 16×16 in 2-D and 16×16×16
in 3-D as the block size.

Related parameters include: nguard which defines the number of layers (de-

pends on the choice of discretization stencils) of guard cells and is initially set

to be 1; maxblocks, which is the maximum mesh blocks allowed for each MPI

process; nBx, nBy and nBz which set the number of mesh blocks on the coarsest

level for each axis direction, and generally are set to be 1; lrefine_max governs

the maximum number of levels in the mesh hierarchy.

2. Problem setup: we begin with defining the domain size by adjusting grid_min

and grid_max. For example, grid_min = 0 and grid_max = 1 defines a square

domain with size [0, 1]× [0, 1], or a cube domain with size [0, 1]× [0, 1]× [0, 1].
It is possible to define domains that each axis has a different size. In addition,

total_vars is the number of dependent variables, dt is the initial time step size

and simulation_time is the ending time T .

3. Multigrid setup: p1 and p2 are the number of iterations of the smoother (see Al-

gorithm 1) to be carried out on each grid and they generally take values from the

14

range of 1 to 4; solve_count_max is the maximum number of iterations of the

smoother to be carried out as a solver on the coarsest grid; max_v_cycle_count

is the maximum number of V-cycles allowed in each time step (see step 8 in

Algorithm 2); mg_min_lvl is the coarsest level for the multigrid solver, in case

the root level is not desired. Furthermore, lrefine_max defines the finest grid

of the solver, absolute_tol is the absolute tolerance for the stopping criterion

and relative_tol is the relative tolerance for the stopping criterion. If the infinity

norm of the residual (||r||∞) drops by this amount (comparing against the norm

from the first V-cycle of this time step), or it falls below the absolute tolerance,

then we consider the solution to be converged at that time step.

4. Output setup: there are two parameters for output, verbose takes an integer value

between 1 and 4 for the amount of terminal output, where 4 is the most de-

tailed output and is for debugging; output_rate defines the number of time steps

between generation of checkpoint files.

5. Model-specific: model-specific parameters can be included in a file to allow all of

the model-related components to be grouped together. Tables 1 and 7, in Section

3, show the parameters required by the thin film model and the tumour growth

model, respectively.

6. AMR setup: local_adaptation, which takes 0 or 1 as the switch for this function-

ality; and ctore and ctode which are the thresholds for mesh refinement and

coarsening, respectively.

7. Adaptive time-stepping setup: parameters described here control the adaptive time-

stepping, adaptive_TS is the 0 or 1 switch (i.e. a fixed time step size is used

when adaptive_TS = 0); low_vcycle_count (see step 3 in Algorithm 2) and

high_vcycle_count (see step 10 in Algorithm 2) are two integer values used

to indicate whether we should increase dt for efficiency or reduce it for accu-

racy/stability, based upon the rate of convergence of multigrid at the end of each

time step.

Having provided a brief overview of the software that we have developed, in the

following section we validate this software by demonstrating its successful application

to two very different examples, for which we are able to contrast our results with others

published elsewhere, [2, 3].

3 Applications

In this section, two illustrative applications are solved using our software framework.

The first is a thin film flow model of droplet spreading from [2], whilst the second is

a multi-phase-field model of tumour growth from [3]. Note that we have chosen to

follow notation which is consistent with the papers [2] and [3] from which our models

15

are taken. Hence, there are some minor notational differences, however we clearly

state every variable and notation within each subsection. For example, h is generally

used as the distance between two adjacent grid points, but in Section 3.1, it means the

height of the thin film, and dx is employed instead to represent the distance between

grid points in the simulations.

The thin film model, described in Section 3.1, is used to validate the software

against existing numerical results, to demonstrate optimal convergence of the non-

linear multigrid interation and second order convergence of the numerical results in

space and time, and to show the improvements in efficiency obtained by applying

adaptivity in space and time. In Section 3.2, a tumour growth model is used to provide

further evidence that optimal multigrid convergence and second order convergence of

the numerical results are retained when adaptivity mesh refinement is applied, then

it is used to highlight parallel performance issues for a larger, three-dimensional, test

case. For simplicity, in each of our simulations we consider a domain which, in each

coordinate direction, is the same length and divided into the same number of cells (N),

so dx is the same in each direction.

Note all the computations were carried out on the HPC service provided at the Uni-

versity of Leeds. Each compute node consists of two 8-core Intel E5-2670 2.6GHz

processors with 16GB of shared memory per processor (i.e. 2GB per core). The com-

putational nodes are connected with “Infiniband” interconnects.

3.1 A Thin Film Flow Model of Droplet Spreading

The physical phenomenon of a liquid droplet spreading on a substrate has been stud-

ied in many scientific fields. In each case, a common demand is to obtain a relatively

accurate numerical model for which the solution represents a good approximation to

real-world experiments [19]. Many such models are suggested in the review paper

[20]. The model presented here is very close to the work of Schwartz, Bertozzi and

their co-workers in [21, 22, 23, 24], and is derived from the Navier-Stokes equations

through the use of the lubrication approximation. The precise model, based upon a

precursor film, has been previously described by Gaskell et al. in [2] using a vertex-

centred finite difference approximation, and solving the resulting system using the

FAS nonlinear multigrid with uniform grids. Here we present solutions that are gen-

erated by using our parallel, adaptive multigrid solver in two space dimensions (but

representing a 3-dimensional flow of a thin film) and compare them with the results in

[2].

Following the lubrication approximation, the resulting non-dimensional model con-

sists of two dependent variables: h(x, y, t) and p(x, y, t). The former measures the

droplet thickness, and the latter represents the pressure field of the droplet. The

Reynolds equation for droplet spreading is given as

∂h

∂t
=

∂

∂x

[

h3

3

(

∂p

∂x
−

Bo

ǫ
sinα

)]

+
∂

∂y

[

h3

3

(

∂p

∂y

)]

, (8)

16

h*

Vx(z) g

Moving contact line

Figure 4: Sketch of precursor film model on an inclined substrate at angle α to the hor-

izontal and the parabolic velocity vx(z) in the droplet liquid. Note that h∗ represents

a true thin film ahead of droplet, and the velocity is zero at the substrate.

where Bo is the non-dimensional Bond number, measuring the relative importance of

gravitational force relative to surface tension [22], ǫ is the ratio between the character-

istic droplet thickness and the extent its footprint on the substrate, and is assumed to

be small by the lubrication theory. The main computational challenge is to accurately

capture the moving contact line between the thin film liquid and the solid substrate

(see Figure 4). Equation (8) is based on the assumption of a no-slip condition at

the substrate, however a non-zero velocity is required at the moving contact line (the

interface between the air, the drop and the substrate) in order to permit spreading.

Figure 4 shows how this “paradox” may be resolved, illustrating a cross-section of

the droplet on a substrate inclined at an angle α to the horizontal, as well as a precur-

sor film of thickness h∗ to overcome the no-slip condition at the moving contact line.

The physical phenomenon of a thin precursor film has been detected in the real-world

experiments presented in [25, 26].

The pressure field p(x, y, t) appears in Equation (8) but also needs to be determined.

In this model the associated pressure equation is as follows:

p = −△(h+ s)− Π(h) +Bo(h+ s− z) cosα, (9)

where possible substrate topographies may be included through s(x, y) (though not

considered here for simplicity), and Π(h) is a disjoining pressure term which is defined

in [22, 23]. This term is used to alleviate the singularity at the moving contact line,

17

and is given by

Π(h) =
(n− 1)(m− 1)(1− cosΘe)

h∗(n−m)ǫ2

[(

h∗

h

)n

−

(

h∗

h

)m]

, (10)

where n and m are the exponents of interaction potential and Θe is the equilibrium

contact angle. The space derivatives in Equations (8) and (9) are both approximated

using standard, second order, centred differences.

The computational domain Ω is chosen to be rectangular with non-dimensional

Cartesian coordinates (x, y) ∈ Ω = (0, 1) × (0, 1). It is further assumed that the

droplet is far away from the boundary. Therefore zero Neumann boundary conditions

are applied for both h and p:

∂h

∂ν
=

∂p

∂ν
= 0 on ∂Ω, (11)

where ν denotes the outward-pointing normal to the boundary ∂Ω.

For the purpose of validation, we compare results from using our software to se-

lected results presented in [2]. First of all, the values of parameters that are used in

the droplet spreading model (Equations (8) to (10)) are presented in Table 1. These

values were used by Gaskell et al. in [2].

Parameters Values Parameters Values

Bo 0 ǫ 0.005
Θe 1.53◦ h∗ 0.04
n 3 m 2
α 0◦

Table 1: The parameters of the droplet spreading model that were used by Gaskell et

al. in [2].

The initial condition for the variable of droplet thickness h(x, y, t = 0) is given as

ht=0(r) = max

(

5

(

1−
320

9
r2
)

, h∗

)

, (12)

where r2 = x2 + y2. Having obtained h(x, y, t = 0), the initial condition for pressure

p on all internal grid points i, j (i, j = 1, . . . , n) may be defined as

pt=0
i,j =

1

dx2

{

ht=0
i+1,j + ht=0

i−1,j + ht=0
i,j+1 + ht=0

i,j−1 − 4ht=0
i,j

}

+
(n− 1)(m− 1)(1− cosΘe)

h∗(n−m)ǫ2

[(

h∗

ht=0
i,j

)n

−

(

h∗

ht=0
i,j

)m]

− Boh
t=0
i,j cosα,

(13)

18

in which it is assumed that s = z = 0.

We choose Figure 5(b) from [2] to validate against. This figure shows the evolution

of the maximum height of the droplet during simulations. All grids are uniform and

the non-dimensional time duration is [0, 10−5]. In Figure 5, the left-hand side shows a

copy of Figure 5(b) from [2]. The right-hand side figure shows the results using our

multigrid solver. The maximum height of the droplet is initially 5.0, as implied by the

initial condition in Equation (12). Figure 5 shows a good agreement with the results

from grid hierarchies 1 162 − 5122 and 162 − 10242. For the coarser grid hierarchies

(i.e. 162 − 642, 162 − 1282 and 162 − 2562), our results appear to be more accurate

than the ones from [2]. This may be caused by the use of adaptive time stepping in

[2], in which the size of the time step is based upon local error estimation, as opposed

to our choice of a fixed time step size, systematically reduced in proportion to dx on

the finest grid.

Figure 5: The evolution of the maximum height of the droplet during simulations, on

the left-hand side is Figure 5(b) from [2] and on the right-hand side, we show results

from our multigrid solver. Parameters used to generate these results are shown in

Table 1. Legends in these figures indicate the finest resolutions of grids that are used

for each simulation. Note that in the left-hand figure the grid resolution is indicated

by numbers of nodes, while in the right-hand figure it is indicated by numbers of cell.

In order to generate these results, we use a 162 grid as the coarsest grid (also as

the block size). There are in total 4 smoothing iterations on each grid level, i.e. p1 =
p2 = 2 in Algorithm 1, and 60 iterations of the smoother are used for the coarsest grid

solver. The time step size for grid hierarchy 162 − 322 is δt = 3.2 × 10−7. Each time

the finest grid is refined, the time step size is halved.

At each time-step, convergence of the multigrid iteration is checked after each V-

cycle and the iteration is stopped if either ||r||∞ < 10−6 or ||r||∞/||r1||∞ < 10−5, in

1The notation we use here which identifies the grid hierarchy is showing the coarsest and the finest

grid resolutions. For example, 162 − 512
2 indicates that there are 6 grids: 162, 322, 642, 1282, 2562

and 512
2.

19

which r is the residual (for h or p) and r1 is the residual after the first V-cycle of the

current time-step.

Since the solver from [2] also performs a nonlinear multigrid iteration with FAS,

we validate the performance of our multigrid solver against the one used by Gaskell et

al. More specifically, we validate the convergence rate of each multigrid V-cycle for a

typical time step, based upon the infinity norm of residuals. This is shown in Figure

4(b) from [2]. In Figure 6, the left-hand side shows the performance of the solver used

in [2]. On the right-hand side is the performance of our multigrid solver. For both

solvers, a total number of 10 V-cycles within this particular time step are performed.

From this figure, the results suggest that both solvers perform similarly. It is worth

noting there is one significant difference. In the results from [2], the convergence rate

deteriorates significantly from the 9th V-cycle to the 10th V-cycle. However, the results

from using our multigrid solver remain robust in this situation. This may be due to the

use of a different spatial discretization in [2] to the cell-centred scheme used in this

work. Overall these tests provide excellent validation.

Figure 6: Convergence rate of a typical multigrid V-cycle for a single time step. On

the left-hand side is Figure 4(b) from [2] and on the right-hand side are the results of

our multigrid solver. Four different finest grid resolutions are used, as shown in the

legends. Parameters that are used to generate these results are shown in Table 1.

From the right-hand side of Figure 6, we also see that all the curves are nearly

parallel, which implies the reduction in the residual is independent from the sizes

of the grids. This optimal convergence rate is the goal of multigrid methods, and

indicates that the complexity of our multigrid solver is linear. We summarise the CPU

time costs from five simulations in Figure 7, with finest grid sizes of 1282, 2562, 5122,
10242 and 20482, respectively. As we quadruple the number of points on the finest

grid, we also halve the time-step size, and all simulations finish at the same end time

T = 1 × 10−5. We use a log-log plot to illustrate the relation between the number

of grid points and the average CPU time per time step from these five simulations in

Figure 7. We conclude that our multigrid solver does indeed have a linear complexity.

20

10
4

10
5

10
6

10
7

10
0

10
1

10
2

No. grid points on the finest grid.

A
ve

ra
ge

 C
P

U
 ti

m
e

pe
r

tim
e

st
ep

 (
se

co
nd

s)
.

CPU time required for four test cases
Line with slope of 1

Figure 7: A log-log plot of the CPU time per time step against the total number of grid

points from the finest grid. For comparison, a line with slope of 1 is also shown in the

figure.

So far the tests presented have only used uniform grids and fixed time step sizes.

In order to investigate the effectiveness of our adaptivity techniques, we first consider

the use of adaptive time-stepping. As mentioned previously, this is achieved through

using the adaptive BDF2 method [17]. Here we present results from two different grid

hierarchies, for which the finest grids have 5122 and 10242 grid points respectively.

The equivalent simulations using fixed time step sizes are already presented in the

right-hand side of Figure 5. For the adaptive time stepping we use the same initial

step size as in the non-adaptive cases: initial time step sizes for these two cases are

2 × 10−8 and 1 × 10−8 respectively. It is now possible to contrast adaptive time step

selection against the equivalent simulations (from the right-hand side of Figure 5) that

are undertaken using fixed time step sizes. For the 5122 case, 500 fixed time steps are

required with a step size of 2 × 10−8. For 10242 case, 1000 time steps are required

with a step size of 1×10−8. Since the very small time steps are only actually required

at very early times, the use of our adaptive time stepping approach reduces the number

of time steps required to 39 and 45, respectively.

The detailed comparison between the use of fixed time step size and adaptive time

stepping is presented in Table 2. In the 5122 case, adaptive time stepping takes just

9.6% of the time taken when fixed time steps are used. This percentage becomes 5.2%
for the simulation in the 10242 case. This is despite the increased average number of

21

V-cycles required per time step in the adaptive case. Note however that the number of

V-cycles needed is still independent of the grid size.

Case No. TSs Avg. V-cycle CPU time No. TSs Avg. V-cycle CPU time

fixed δt per TS (seconds) ATS per TS (seconds)

5122 500 5.0 2095.3 39 5.9 201.5
10242 1000 5.0 16721.3 45 5.8 874.4

Table 2: Comparisons between the use of fixed time step size and the adaptive time

stepping for two test cases. The total number of time steps, the average V-cycles

required per time step and the CPU time are used for the comparisons. Due to the

limit of space, abbreviations are used, where TS means “time step”, Avg. means

average and ATS is short for adaptive time stepping.

For completeness, two questions are worth asking. Firstly, are our choices of the

time step size too small for the fixed time step approach? In other words, could the

fixed time step approach take a larger step size and be more competitive? Additional

tests show that for the 5122 case, increasing the initial time step size by a factor of 5
causes the multigrid solver to converge more slowly as, within each time step, about

three more V-cycles are needed. The computation fails to converge if the initial time

step size is increased by a factor of 10. Thus, the adaptive time-stepping outperforms

the fixed time-stepping by a large margin for this specific problem.

The second question is: when using the adaptive time stepping, how accurate are

these solutions? Since the exact solution to this problem is not known we choose to

base our assessment of the accuracy upon a comparison of the height of the simulated

droplets at the centre of the domain (the maximum height of the droplet) as a function

of time, as shown in Figure 5. From this figure, it can be seen that by using adaptive

time-stepping, the overall evolutions of the height of the droplet are very close to the

ones using the original approach with fixed time step sizes. To give a further indication

of how accurate the solutions are at the end of simulation, a zoom-in is shown in the

right-hand side of Figure 8. The results shown indicate that our adaptive time stepping

approach deteriorates the accuracy by only a very small amount. More specifically,

for the 5122 case, the values of the maximum heights of the droplet at T = 10−5 are

3.406 from the use of fixed time step size, and 3.403 from the use of adaptive time

stepping. For the 10242 case, the value is 3.423 from the use of fixed time step, and is

3.419 from the use of adaptive time stepping.

This droplet spreading test case is one which is likely to benefit from employing

AMR, since the problem features a distinct radial moving contact line which must be

accurately resolved, while elsewhere the solution is relatively smooth. To illustrate

our AMR strategy, we choose three test cases for the purpose of demonstration. Their

finest grids, if refined everywhere, would have resolutions of 2562, 5122 and 10242.

Previously in Section 2, we note that the quality of the AMR is controlled by

problem-specific refinement and coarsening criteria. For this droplet spreading model,

22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
�5

3

3.5

4

4.5

5

Time

h
(t
)

256x256

512x512

1024x1024

adaptive time�stepping 512x512

adaptive time�stepping 1024x1024

9.4 9.5 9.6 9.7 9.8 9.9 10

x 10
�6

3.36

3.38

3.4

3.42

3.44

3.46

3.48

Time

h
(t
)

256x256
512x512
1024x1024
adaptive time�stepping 512x512
adaptive time�stepping 1024x1024

Figure 8: The left-hand side figure shows the evolution of the maximum height of the

droplet in selected cases. Results with the finest grids 2562, 5122 and 10242 have been

previously presented in Figure 5, where they are obtained using the fixed time step

size. The right-hand side figure shows a zoom-in for the end of the graphs that are

presented in the left-hand side figure.

our adaptive refinement strategy is based upon a discrete approximation to the second

derivative of the droplet thickness h (i.e. |∇2h|). Within each mesh block, at every

grid point, (i, j), the adaptive assessment is computed via:

adaptive assessmenti,j = |hi+1,j+hi−1,j+hi,j+1+hi,j−1−4hi,j| ≈ dx2|∇2h|i,j. (14)

Each block is then flagged for refinement or coarsening based on the maximum value

of adaptive assessment within the block. In this work:

• if adaptive assessment is greater than the threshold: > ctore = 0.01, mark the

block for refinement.

• if adaptive assessment is less than the threshold: < ctode = 0.001, mark the

block for coarsening.

This choice of thresholds is quite aggressive, so most of the computation is around the

moving contact line.

Here we evaluate the AMR on its own, i.e. without using adaptive time-stepping.

In Table 3, details of the three different test cases are presented. They are AMR 2562,
AMR 5122 and AMR 10242. For comparison, we also include the CPU times for these

test cases when uniform grids and fixed time step size are employed. From this table,

the efficiency gained from using AMR is demonstrated. For instance, in AMR 10242

case, the CPU time is only 19.3% of the corresponding time using uniform grids, and

the average number of V-cycles per time step increases by only half a cycle.

23

Cases δt Time steps Avg. V-cycles CPU time CPU time (seconds)

per time step (seconds) from uniform grids

AMR 2562 4× 10−8 250 5.0 175.1 303.2
AMR 5122 2× 10−8 500 5.0 645.6 2345.7

AMR 10242 1× 10−8 1000 5.5 3578.9 18521.1

Table 3: Details of three test cases using aggressive AMR with fixed time steps. CPU

times when only using uniform grids are also included for comparison.

Having presented the CPU time, we further compare the number of grid points on

the finest grids used in the uniform cases to the number of leaf grid points that are used

in the adaptive cases. The leaf grid points are those grid points that are on the finest

refinement level present in their local region. Since refining and coarsening are carried

out dynamically, these numbers of leaf points are the maximum numbers that occurred

throughout each of the simulations. In Table 4, this comparison is summarised. From

this table, the computational workload saved by using the AMR compared to the use

of uniform grids is seen to be substantial. For example, in the AMR 10242 case, the

number of leaf points is less than 1.0% of the number of points on the finest uniform

grid.

Cases Maximum No. leaf Total No. grid points Ratio between

grid points from uniform grids AMR and uniform grids

AMR 2562 2, 048 65, 536 0.0313
AMR 5122 6, 400 262, 144 0.0244

AMR 10242 10, 240 1, 048, 576 0.0098

Table 4: Comparison of the maximum number of leaf grid points used in adaptive test

cases and the total number of grid points in uniform test cases. A ratio between the

number of leaf points with AMR and the number of grid points with uniform grids is

also presented.

We have demonstrated that the use of AMR significantly improves the efficiency

of the computation. However, it can be seen from Tables 3 and 4 that the CPU costs

do not reduce with the same rate as the number of grid points. This is because, even

when the grid points are significantly decreased by using AMR, the number of grid

visits is still the same in our multigrid solver. Additionally, overheads occur when we

dynamically maintain the parent-children relations between coarsening and refining.

Furthermore, since this software is written with parallelization in mind, other extra

overheads also exist in the implementation to deal with issues arising from parallel

situations, and those overheads also affect the performance when only one CPU is

employed, e.g. keeping a well parallelizable ordering of all mesh blocks dynamically

during the simulation.

Having addressed the effectiveness of our AMR, it leads to the inevitable question:

24

how accurate are the solutions from using the AMR? Once again we use the dis-

crepency in the maximum height of the droplet between different simulated solutions

as a proxy for the error, comparing AMR results against those obtained using uniform

grids. In the left-hand side of Figure 9, the evolutions of the maximum height of the

droplet from the three test cases (i.e. AMR 2562, AMR 5122 and AMR 10242) with

the use of AMR are presented. Results from using uniform grids (previously shown

in Figure 5) are also presented for comparison. From this figure, we see that the use

of the AMR produces almost identical results to the ones from using uniform grids.

Furthermore, to assess this in more detail, a zoom-in is shown on the right-hand

side of Figure 9 which focusses on the solution at the end of the simulation, and

height values are given in Table 5. Using adaptive grids generally compromises the

accuracy, as expected given the enormous reduction in degrees of freedom, and these

results demonstrate this. It is important to note however that the accuracy of the 10242

solution with AMR is much better than the one from the 5122 case with uniform grid

(i.e. the maximum height of the droplet is much closer to that computed from the

10242 case with a uniform grid). It may also be seen that the solution of the AMR

2562 is almost identical to the one from the 2562 case with uniform grid.

Cases Maximum height Cases Maximum height

AMR 2562 3.35971 2562 3.35974

AMR 5122 3.405 5122 3.406

AMR 10242 3.418 10242 3.423

Table 5: Comparison of maximum droplet height values at t = 1 × 10−5 for adapted

and uniform meshes.

9.4 9.5 9.6 9.7 9.8 9.9 10

x 10
−6

3.36

3.38

3.4

3.42

3.44

3.46

3.48

Time

h
(t
)

AMR 256x256

AMR 512x512

AMR 1024x1024

256x256

512x512

1024x1024

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−5

3

3.5

4

4.5

5

Time

h
(t
)

AMR 256x256

AMR 512x512

AMR 1024x1024

256x256

512x512

1024x1024

Figure 9: In the left-hand side figure, the evolution of the maximum height of the

droplet is plotted from using both AMR and uniform grids. On the right-hand side, a

zoom-in is included to assess the accuracy near the final time.

The AMR implemented in Campfire aims to dynamically adapt the mesh according

25

to the evolution of the solution. Here we present snapshots of the evolution of the mesh

refinement during typical simulations. These are shown in Figure 10, where different

colours are used to identify different levels of mesh refinement. Results shown in this

figure demonstrate the dynamic evolution of AMR during a typical simulation.

Figure 10: Snapshots of the evolution of AMR during a typical simulation. Left-hand

side is the AMR at t = 0 and right-hand side shows the AMR at t = 1 × 10−5. Mesh

refinement levels: 1282 (dark blue); 2562 (light blue); 5122 (yellow); 10242 (red).

The spatial and the temporal discretization schemes that are used in this work are

both second-order accurate. Therefore, we expect the overall convergence rate to

be second order, i.e. the error behaves as O(δt2, dx2) as the mesh is refined. This

means that halving the time step size and doubling the number of grid points in each

direction should reduce the error by a factor of four. Although we do not have an

exact solution to compare with, we can still look at differences between solutions at

successive levels of refinement: if these also reduce by a factor of four each time δt
and dx are halved then this indicates second order convergence to a solution. In order

to illustrate this, we conduct our convergence tests based upon solution restriction.

For example, consider three grid hierarchies using 2-D grids: 82 − 162, 82 − 322 and

82−642. Each grid is associated with a δt: δt(162), δt(322) =
δt(162)

2
and δt(642) =

δt(322)
2

,

respectively. Solutions are obtained by solving the same problem on these three finest

grids separately, with their corresponding δt, and with the assumption that the ending

time T is exactly the same for all runs. To make a comparison between two solutions

we restrict the fine grid solution to the coarse grid by using a restriction operator (e.g.

four-point averaging shown in Equation (5)). Thus, the solution which is restricted

from grid hierarchy 82 − 322 can be compared to the solution from grid hierarchy

82 − 162. Similarly, the restricted solution from hierarchy 82 − 642 can be compared

to the original solution from hierarchy 82 − 322.

The norms of the differences between the coarser grid solution and the restriction

of the finer (possibly adapted) solution restricted to the coarser grid which we consider

26

are

||e||∞ := max(|urestricted
i,j −ui,j|), ||e||2 :=

√

∑N

i=1

∑N

j=1(u
restricted
i,j − ui,j)2

N ×N
, (15)

where urestricted is the restricted solution from the finer grid hierarchy, u is the solution

from the coarser grid hierarchy, i, j = 1, . . . , N and N is the number of internal grid

points in each axis direction on the finest level of the coarser grid hierarchy. When

adaptive grids are used, at the final stage t = T , we transfer the solutions to the

uniform meshes that are needed in order to carry out these comparisons.

In Table 6, we present convergence results that are generated using adaptive time-

stepping, AMR and parallel computing from four different simulations. Their highest

levels of mesh refinement are equivalent to uniform grid resolutions of 5122, 10242,
20482 and 40962 respectively. A 162 coarsest grid is used for all cases. The end

time is chosen to be T = 2.0 × 10−2, which is longer than the previous ones, and

constitutes a “full” simulation. Results shown in this table clearly demonstrate second

order convergence for both variables h and p.

For variable h
Cases Starting δt Time steps Infinity norm Ratio Two norm Ratio

AMR 5122 1× 10−8 1418 - - - -

AMR 10242 5× 10−9 2011 2.480× 10−5 - 1.117× 10−5 -

AMR 20482 2.5× 10−9 25184 6.174× 10−6 4.02 2.737× 10−6 4.08
AMR 40962 1.25× 10−9 472368 1.544× 10−6 3.99 6.864× 10−7 3.99

For variable p
AMR 5122 1× 10−8 1418 - - - -

AMR 10242 5× 10−9 2011 5.321× 10−2 - 2.007× 10−2 -

AMR 20482 2.5× 10−9 25184 1.324× 10−2 4.02 4.873× 10−3 4.12
AMR 40962 1.25× 10−9 472368 3.309× 10−3 3.99 1.208× 10−3 4.04

Table 6: Results show the differences in consecutive solutions measured in the stated

norm, followed by the ratio of consecutive differences from the droplet spreading

model with the initial condition given in Equation (12). These results are generated

with solutions at T = 2.0× 10−2 using spatial and temporal adaptivity.

3.2 A Multi-Phase-Field Model of Tumour Growth

In the previous section we illustrated the performance of our software for a 2-dimensional

mathematical model of thin film flow. In this section we consider an even more com-

plex test problem, with a greater number of nonlinear PDEs and in both two and three

space dimensions.

To study the complex procedures of tumour growth and its interactions with the

host, a continuum modelling technique which consists of a set of PDEs can be used to

27

model the morphology of tumours. The review papers [27, 28, 29] describe a number

of examples of how such models can be derived. In the work presented here, a multi-

phase-field model of tumour growth is considered, from Wise et al. [3]

There are, in total, four independent phase-field variables in this model, namely

φW , φH, φV and φD, which represent volume fractions of extracellular fluid, healthy

cells, viable tumour cells and dead tumour cells, respectively. In addition, there are

three assumptions applied to these volume fractions.

1. The extracellular fluid volume fraction is everywhere constant, i.e. φW (x, y, z, t) =
φW,0 = constant.

2. Cells are assumed to be close-packed, so φH + φV + φD = 1, and the range of

values of these phase-field variables is from 0 to 1.

3. Inside the tumour there are only two types of cells: viable and dead. This indi-

cates the total tumour cell volume fraction is φT = φV + φD.

Based upon these three assumptions, there are only two phase-field variables that are

required to be solved, and they are φT and φD. Once these two variables are obtained,

other variables may be derived from the assumptions made.

The component φT is assumed to obey the following Cahn-Hilliard-type advection-

reaction-diffusion equations:

∂φT

∂t
= M∇ · (φT∇µ) + ST −∇ · (uSφT), (16)

µ = f ′(φT)− ǫ2∇2φT , (17)

where M > 0 is the mobility constant, f(φT) = φ2
T (1− φT)

2/4 is the quartic double-

well potential, uS is the tissue velocity (which is substituted for using Equation (23)),

and ǫ > 0 is an interface thickness parameter between healthy and tumour tissue. ST

is the net source of tumour cells, and is given as

ST = nG(φT)φV − λLφD, (18)

where n is the concentration of nutrient, which is specified in Equation (26), φV =
φT − φD, and λL ≥ 0 is the rate of tumour cell proliferation. G(φT) is a continuous

cut-off function defined as

G(φT) =







1 if 3ǫ
2
≤ φT

φT

ǫ
− 1

2
if ǫ

2
≤ φT < 3ǫ

2

0 if φT < ǫ
2
.

(19)

A similar dynamical equation for predicting the volume fraction of dead tumour

cells φD is used:

∂φD

∂t
= M∇ · (φD∇µ) + SD −∇ · (uSφD), (20)

28

where SD is the net source of dead tumour cells, defined as

SD = (λA + λNH (nN − n))φV − λLφD, (21)

where λA is the death rate of tumour cells from apoptosis, λN is the death rate of

tumour cells from necrosis, nN is the necrotic limit (necrosis only occurs when the

nutrient value is below this limit), and H is a Heaviside function. This Heaviside

function is discontinuous and thus could prevent us from obtaining a higher order

convergence rate, so we instead use the smoother approximation given by

H(nN − n) =







1 if nN − n ≥ ǫs

− 1
4(ǫs)3

(nN − n)3 + 3
4ǫs

(nN − n) + 1
2

if − ǫs ≤ nN − n ≤ ǫs

0 if nN − n < −ǫs,
(22)

where ǫs controls the steepness of the smooth transition between 0 and 1.

The tissue velocity uS is assumed to obey Darcy’s law, and is defined as

uS = −κ(φT , φD)(∇p−
γ

ǫ
µ∇φT), (23)

where κ(φT , φD) > 0 is the tissue motility function and γ ≥ 0 is a measure of the

excess adhesion. An additional assumption made by Wise et al. [3] is that there is no

proliferation or death of the host tissue, thus the velocity is constrained to satisfy

∇ · uS = ST . (24)

Instead of solving for the tissue velocity, Equations (23) and (24) are combined to-

gether, and a Poisson-like equation for the cell pressure p can be constructed:

−∇ · (κ(φT , φD)∇p) = ST −∇ · (κ(φT , φD)
γ

ǫ
µ∇φT). (25)

A quasi-steady equation is given for the nutrient concentration through diffusion:

0 = ∇ · (D(φT)∇n) + Tc(φT , n)− n(φT − φD), (26)

where

D(φT) = DH(1−Q(φT)) +Q(φT) (27)

is the diffusion coefficient, DH is the nutrient diffusivity in the healthy tissue, Q(φT)
is an interpolation function, given by

Q(φT) =







1 if 1 ≤ φT

3φ2
T − 2φ3

T if 0 < φT < 1
0 if φT ≤ 0.

(28)

and

Tc(φT , n) = (vHP (1−Q(φT)) + vTPQ(φT))(nC − n) (29)

29

is the nutrient capillary source term. Furthermore, vHP ≥ 0 and vTP ≥ 0 are con-

stants specifying the degree of pre-existing uniform vascularization, and nC ≥ 0 is

the nutrient level in capillaries.

To sum up, this multi-phase-field model of tumour growth consists of a coupled

system made up of Equations (16), (17), (20), (25) and (26). There are five dependent

variables in total in this system: two phase-field variables, φT and φD; and three

supplementary variables, µ, p and n. These PDEs are valid throughout a domain Ω,

and there are no internal boundary conditions for the solid tumour, the necrotic core

or other variables. Therefore, only one set of outer boundary conditions is required

(provided the tumour is in the domain’s interior) and this set is the following mixture

of Neumann and Dirichlet boundary conditions:

µ = p = 0, n = 1,
∂φT

∂ν
=

∂φD

∂ν
= 0 on ∂Ω, (30)

where ν denotes the outward-pointing normal direction to the boundary ∂Ω.

We discretise all of the derivatives (including those of odd order) in this model

using second order centred differences. This approximation may introduce spurious

numerical oscillations in the vicinity of steep fronts which could lead to unphysical

values for the phase volume fractions. In order to retain the expected second order

convergence rate while forcing the phase volume fractions to lie between 0 and 1 (or

very close to that interval) additional penalty terms are added to Equations (16) and

(20), which take the form

1

δ
min (φT , 0) and

1

δ
max (φT − 1, 0) (31)

for φT , with a corresponding term added to the φD equation. These terms have no

impact when 0 ≤ φ ≤ 1, but create a large correction to the system whenever φ tries

to take a value outside of this interval. The smaller the choice of the penalty parameter

δ (i.e. the larger 1/δ) the larger this correction becomes, forcing the values of φ to be

close to this range but at the expense of adding to the nonlinearity of the resulting

system. The default value of δ used in this work is 10−4. This is a slightly more

relaxed constraint on the range of values that can be taken by φD and φT than that

imposed by Wise et al. [3], who enforced φ ∈ [0, 1] in a non-smooth manner.

In order to define the initial conditions for the 2-D simulations, firstly the 2-D

domain Ω is given by (x, y) ∈ Ω = [0, 40] × [0, 40]. An initial condition for φT is

defined to be

φT (x, y) =1 if
(x− 20)2

1.1
+ (y − 20)2 ≤ 22,

=0 otherwise.
(32)

This initial condition is discontinuous, so we employed a simple Jacobi iteration with

5 sweeps to smooth the initial conditions, both to allow second order accuracy to be

seen and to avoid unnecessarily restrictive time steps at the start of the simulation. A

30

2-D version of this iteration is

φℓ+1,t=0
T i,j =

1

4

(

φℓ,t=0
T i+1,j + φℓ,t=0

T i−1,j + φℓ,t=0
T i,j+1 + φℓ,t=0

T i,j−1

)

. (33)

In addition, φD(t = 0) = 0 is assumed so that there are initially no dead tumour cells.

µ(t = 0) is straightforward to calculate since µ is a function of φT , as shown in Equa-

tion (17). The initial values for the pressure p and nutrient n require the application

of a solver. Due to the increased computational cost in 3-D, an additional multigrid

solver is implemented to solve first for the steady state solution of n(t = 0) (since, in

Equation (26), n is not dependent upon p), then for p(t = 0), using Equation (25). Two

stopping criteria are used, the absolute criterion is dependent upon the infinity norm

of the residuals of n and p, respectively, and it terminates when ||r||∞ ≤ 1 × 10−9;

the relative criterion is dependent upon the reduction of the infinity norms, and each

of them terminates when the reduction is more than 1× 10−10.

The values of the parameters that are used in this paper for the multi-phase-field

model of tumour growth are presented in Table 7.

Parameters Values Parameters Values

M 10.0 ǫ 0.1
λL 1.0 λA 0.0
λN 3.0 γ 0.0
nN 0.4 DH 1.0
vHP 0.5 vTP 0.0
δ 0.0001 ǫs 0.2
nC 1.0

Table 7: The parameters of the multi-phase-field model of tumour growth. These were

used by Wise et al. in [3], except for ǫs and δ, which are new parameters introduced

in our implementation.

We briefly present some two-dimensional results before moving on to three-dimensional

simulations. Note for this model, adaptive time-stepping is not used, because the

phase-field (and other) variables do not demand smaller or larger time step sizes as

the model evolves in time. In contrast, the droplet spreading in Section 3.1 clearly

diffuses into a smoother form as it evolves in time. At each time step the multigrid

stopping criterion used is very similar to the droplet spreading model, except that here

the infinity norm of the residual from all five variables is considered.

We present the solution for φT in Figure 11, with a starting time step size of δt1 =
1×10−3. The results in this figure show a similar tumour evolution to [3] (for a detailed

discussion on validation, see [14]). Our choice for the AMR strategy is very similar

to Equation (14), but now takes into account the scaled second derivative of multiple

variables: φT , φD, p and n. Specifically, these 4 variables are individually assessed

by Equation (14): if any one of them requires refinement then the block is marked for

31

refining; however only if all of them are marked for coarsening is the region marked

to be (potentially) coarsened. This is a conservative measure we introduced to ensure

accuracy.

As in Section 3.1, we define the refining threshold (ctore) to be 0.01 and the coars-

ening threshold (ctode) to be 0.001. In this case however, since the profile of p does

not exhibit the sharp fronts of the other variables and varies significantly over a larger

subset of the domain, the highest level of mesh refinement at t = 0 covers a much

larger area than the initial seed of φT (see Figure 12). Some examples of typical adap-

tive meshes arising from this AMR strategy in two dimensions are illustrated in Figure

12.

Within a typical time step in the 2-D simulation, we illustrate our optimal multi-

grid convergence rate with five different grid hierarchies in Figure 13. The maximum

of the infinity norm of residuals from four variables (i.e. φT , µ, φD and n) is used to

demonstrate the multigrid convergence rate. These results suggest that the reduction

in the residuals (at least for these four variables) is independent of grid size. The pres-

sure p is not included here because, as has been identified and discussed in [14], the

pressure residual decreases more slowly than the residuals from the other governing

equations but the lack of such strict convergence in p does not significantly affect the

numerical results.

By employing second-order discretization schemes, we expect the overall conver-

gence rate to be second order for this tumour model. We use the convergence measures

defined in Equation (15) to evaluate this. The infinity norm and the two norm are com-

puted separately for all five variables using 5 different grid hierarchies. The finest grid

used, if refined everywhere, has a grid resolution equivalent to 20482. The results for

convergence tests are presented in Table 8. The evidence for having obtained second

order convergence is compelling, due to the ratio of approximately 4 between consec-

utive errors for all variables, each time dx and δt are halved.

For 3-D simulations, the imposed initial condition for φT is defined by three ellip-

soids as

φT (x, y, z) = 1 if
(x− 19)2

1.1
+ (y − 19)2 + (z − 19)2 ≤ 22,

or (x− 20)2 +
(y − 20)2

1.1
+ (z − 20)2 ≤ 22,

or (x− 21)2 + (y − 19)2 +
(z − 19)2

1.1
≤ 22,

= 0 otherwise,

(34)

and, as in 2-D, this is smoothed in the manner of Equation (33) with 5 iterations.

This model of tumour growth is solved in 3-D with the parameters stated in Table 7

and the initial condition given by Equation (34) in a domain Ω which is defined by

(x, y, z) ∈ Ω = [0, 40] × [0, 40] × [0, 40]. The finest grid resolution used, if refined

everywhere, is 2563. The grid points at which φT has values in the range of 0.5 to 1.0
are illustrated in Figures 14 and 15.

32

t=0 t=50

t=100 t=150

t=200

Figure 11: 2-D simulation, showing the evolution of φT . These results are generated

from a grid hierarchy which has 82 as the coarsest grid and, if refined everywhere,

20482 as the finest grid.

33

t=50 t=100

t=150 t=200

Figure 12: The adaptive meshes from the 2-D simulation shown in Figure 11. Mesh

refinement levels: 2562 (dark blue); 5122 (light blue); 10242 (pink); 20482 (red). Note

the adaptive meshes are the same at t = 0 and t = 50, thus only meshes at t = 50 are

shown here.

34

1 2 3 4 5 6
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

No. multigrid V−cycles

In
fin

ity
 n

or
m

 o
f t

he
 r

es
id

ua
l f

ro
m

 fo
ur

 v
ar

ia
bl

es

128x128
256x256
512x512
1024x1024
2048x2048

Figure 13: The optimal multigrid convergence rate within a typical time step. There

are five different grid hierarchies and the same coarsest grid (82) is used, but the num-

ber of grid points on the finest grid quadruples each time the number of grid levels

increases. The infinity norm of residual is max(|r(φT)|, |r(µ)|, |r(φD)|, |r(n)|).

35

For variable φT

Finest levels δt Time steps Infinity norm Ratio Two norm Ratio

5 (82 − 1282) 8× 10−3 1250 - - - -

6 (82 − 2562) 4× 10−3 2500 0.719× 100 - 4.969× 10−2 -

7 (82 − 5122) 2× 10−3 5000 6.228× 10−2 11.5 4.876× 10−3 10.2
8 (82 − 10242) 1× 10−3 10000 1.249× 10−2 4.99 1.142× 10−3 4.27
9 (82 − 20482) 5× 10−4 20000 3.054× 10−3 4.09 2.806× 10−4 4.07

For variable µ
5 (82 − 1282) 8× 10−3 1250 - - - -

6 (82 − 2562) 4× 10−3 2500 1.367× 10−2 - 1.279× 10−3 -

7 (82 − 5122) 2× 10−3 5000 1.205× 10−3 11.3 1.103× 10−4 11.6
8 (82 − 10242) 1× 10−3 10000 3.241× 10−4 3.72 2.888× 10−5 3.82
9 (82 − 20482) 5× 10−4 20000 8.226× 10−5 3.94 7.275× 10−6 3.97

For variable φD

5 (82 − 1282) 8× 10−3 1250 - - - -

6 (82 − 2562) 4× 10−3 2500 0.245× 100 - 1.923× 10−2 -

7 (82 − 5122) 2× 10−3 5000 1.663× 10−2 14.7 1.976× 10−3 14.7
8 (82 − 10242) 1× 10−3 10000 4.303× 10−3 3.86 4.837× 10−4 4.08
9 (82 − 20482) 5× 10−4 20000 1.076× 10−3 4.00 1.206× 10−4 4.01

For variable p
5 (82 − 1282) 8× 10−3 1250 - - - -

6 (82 − 2562) 4× 10−3 2500 4.918× 10−2 - 1.203× 10−2 -

7 (82 − 5122) 2× 10−3 5000 5.940× 10−3 8.28 1.726× 10−3 6.97
8 (82 − 10242) 1× 10−3 10000 1.469× 10−3 4.04 4.487× 10−4 3.85
9 (82 − 20482) 5× 10−4 20000 3.673× 10−4 4.00 1.127× 10−4 3.98

For variable n
5 (82 − 1282) 8× 10−3 1250 - - - -

6 (82 − 2562) 4× 10−3 2500 0.102× 10−0 - 1.012× 10−2 -

7 (82 − 5122) 2× 10−3 5000 7.385× 10−3 13.8 1.003× 10−3 10.1
8 (82 − 10242) 1× 10−3 10000 1.508× 10−3 4.90 2.365× 10−4 4.24
9 (82 − 20482) 5× 10−4 20000 3.696× 10−4 4.08 5.913× 10−5 4.00

Table 8: Results show the differences in consecutive solutions, at T = 10.0, measured

in the stated norm, followed by the ratio of consecutive differences.

36

t=50 t=100

t=150 t=200

Figure 14: 3-D solutions of variable φT at t = 50, 100, 150 and 200. Images in this

figure display the grid points at which φT takes values in the interval [0.5, 1.0].

37

t=500
Cutting through

x plane

Cutting through

y plane

Cutting through

z plane

Figure 15: Images of three cross-sections, one through the middle of the computa-

tional domain parallel to each coordinate plane, for the solution of φT at all grid points

which have values in the interval [0.5, 1.0] at t = 200.

38

With the capability to run our solver in a parallel environment, here we present

results from parallel efficiency tests up to 64 cores. The choice of mesh block size

is 163, and within this simulation, the coarsest grid is 323, the finest grid, if refined

everywhere, is 2563. We run the simulation of tumour growth for 10 time steps start-

ing from t = 150, and the resulting parallel efficiency is illustrated on the left-hand

side of Figure 16. We denote this test as AMR 323 − 2563 in the figure. In this case,

the deterioration in parallel efficiency from 16 to 64 cores is caused, in part, by the

fact that there is not enough workload on the coarsest grid (which only has 8 mesh

blocks). Finding a robust solution to this issue is non-trivial, and there are a number

of trade-offs that need to be considered. First of all, one may suggest to reduce the

block size, in order to have more mesh blocks at the coarsest grid level. However, as

discussed in Section 2.4.2, this results in the use of many more guard cells, thus caus-

ing a heavier burden on the memory, as well as the parallel communication. Another

logical suggestion would be using a finer coarsest grid (i.e. 643 in this case). However,

nonlinear multigrid with FAS requires an “exact” solution of the nonlinear problem on

the coarsest level which may require many more iterations of the coarsest grid solver,

which also deteriorates the overall performance of our solver.

In order to verify the latter, we conducted an additional test, using the 643 grid as

our coarsest grid with a mesh block size of 83. This test is identified as AMR 643 −
2563, and its parallel efficiency is shown on the left-hand side of Figure 16. Clearly

AMR 643 − 2563 has much better parallel efficiency compared to AMR 323 − 2563.
However, although the parallel efficiency may have improved, the actual computa-

tional time is seen to be higher. This is due in part to communications, but primarily

it is due to increased number of iterations of the coarsest grid solver. This is because

solving the coarsest grid problem “exactly” on a finer grid is much more costly. We

plot the averaged computational time costs for one V-cycle on the right-hand side

graph in Figure 16. With 64 cores, the AMR 643 − 2563 test case costs more than

double the amount of time needed by the AMR 323 − 2563 case.

4 Conclusion

We have introduced a new engineering software tool, Campfire, which is designed

specifically for the solution of parabolic systems of PDEs which involve multiple

length and time scales. An essential feature is our built-in nonlinear, optimal multigrid

solver which permits stable implicit time-stepping to be utilized. In addition, this is

coupled with dynamic AMR, adaptive time-stepping and parallelism through domain

decomposition and parallel communication through MPI. We have briefly described

the nonlinear multigrid method with FAS, its variation with MLAT and its grid trans-

fer operators. For coupled nonlinear systems, we have proposed a general weighted

nonlinear block Jacobi method as the multigrid smoother.

The effectiveness and robustness of this software framework is demonstrated for

two applications, one based upon a thin film flow model of droplet spreading [2] and

the other a multi-phase-field model of tumour growth [3]. We have validated our re-

39

0 20 40 60 80
0

50

100

150

200

250

300

350

400

450

500

Number of cores

T
h

e
 c

o
m

p
u

ta
ti
o

n
a

l
ti
m

e
 (

s
e

c
o

n
d

s
)

AMR 32x32x32 − 256x256x256

AMR 64x64x64 − 256x256x256

1 4 16 64
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of cores

P
a

ra
lle

l
e

ff
ic

ie
n

c
y

AMR 32x32x32 − 256x256x256

AMR 64x64x64 − 256x256x256

Figure 16: On the left-hand side, parallel efficiency tested up to 64 cores for 10 time

steps with a partially developed tumour. On the right-hand side, the average computa-

tional time for one V-cycle in seconds is summarised.

sults and evaluated the effectiveness of our adaptive techniques using the thin film

flow model. We have also illustrated our dynamic evolving meshes, as well as the op-

timal multigrid convergence. For the tumour growth model, through the use of penalty

terms and a smoothed Heaviside function, we are able to obtain, for the first time, an

overall second order convergence rate (only first order solutions were obtained in [3]).

This model is also solved in a computationally demanding 3-D context. We present

selected computational solutions, as well as results from a typical parallel efficiency

test. Although our parallel scaling is not optimal, the efficiency may be increased as

the amount of computational work on the finest grid level is increased. The reasons

for the challenges associated with obtaining high parallel efficiency are multiple and

have been discussed. In particular, the way in which the coarse grid problem is solved

is of great importance.

This observation provides one area of focus for our future research. For exam-

ple, it may be possible to improve overall parallel efficiency through the use of only

some of the cores at the coarsest levels. This technique, namely agglomeration, has

been discussed in [8]. Future research will also consider whether the dynamic load-

balancing algorithm that we use could also be improved: currently we focus only on

the efficiency of the parallel smoothing, but this results in relatively inefficient grid

transfer operators (in terms of data movement). Other planned enhancements include

simplifying the user experience though providing an automated routine that delivers

the desired derivatives (see Equation (4)) based upon numerical differentiation, once

the discrete system is specified by the user. Finally, one may consider a change in the

multigrid algorithm, for example, using a Newton multigrid approach (see [30, 14] for

detail), which may allow a much finer coarsest grid (with its linear problem) and this

may improve the parallel scaling further.

40

Acknowledgements

During the writing up stages of this article, Yang was supported by the Leverhulme

Trust Research Project Grant (RPG-2014-149).

References

[1] K. Olson, P. MacNeice, “An Overview of the PARAMESH AMR Software and

Some of Its Applications”, Adaptive Mesh Refinement-Theory and Applications,

Lecture Notes in Computational Science and Engineering 41, eds. T. Plewa, T.

Linde, G. Weirs (Springer), 2005.

[2] P.H. Gaskell, P.K. Jimack, M.Sellier, H.M. Thompson, “Efficient and Accurate

Time Adaptive Multigrid Simulations of Droplet Spreading”, International Jour-

nal for Numerical Methods in Fluids, 45, 1161-1186, 2004.

[3] S.M. Wise, J.S. Lowengrub, V. Cristini, “An Adaptive Multigrid Algorithm for

Simulating Solid Tumor Growth Using Mixture Models”, Mathematical and

Computer Modelling, 53, 1-20, 2011.

[4] P. Bollada, C. Goodyer, P. Jimack, A. Mullis, F. Yang, “Three Dimensional

Thermal-Solute Phase Field Simulation of Binary Alloy Solidification”, Journal

of Computational Physics, 287, 130-150, 2015.

[5] P.H. Gaskell, P.K. Jimack, M. Sellier, H.M. Thompson, M.C.T. Wilson,

“Gravity-Driven Flow of Continuous Thin Liquid Films on Non-Porous Sub-

strates with Topography”, Journal of Fluid Mechanics, 509, 253-280, 2004.

[6] A. Brandt, “Multi-Level Adaptive Solutions to Boundary-Value Problems”,

Mathematics of Computation, 31, 333-390, 1977.

[7] W.L. Briggs, V.E. Henson, S.F. McCormick, “A Multigrid Tutorial”, Society for

Industrial and Applied Mathematics, 2000.

[8] U. Trottenberg, C.Oosterlee, A.Schuller, “Multigrid”, Academic Press, 2001.

[9] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,

B. Turcksin, T.D. Young, “The Deal.II Library, Version 8.1”, arXiv preprint at

http://arxiv.org.abs.1312.2266v4, 2013.

[10] A. Burri, A. Dedner, R. Klöfkorn, M. Ohlberger, “An Efficient Implementation

of An Adaptive and Parallel Grid in DUNE”, in proceedings of the 2nd Russian-

German Advanced Research Workshop on Computational Science and High Per-

formance Computing, 2005.

[11] F.W. Yang, C.E. Goodyer, M.E. Hubbard, P.K. Jimack “Parallel Implementation

of an Adaptive, Multigrid Solver for the Implicit Solution of Nonlinear Parabolic

Systems, with Application to a Multi-Phase-Field Model for Tumour Growth”,

in Proceedings of the Fourth International Conference on Parallel, Distributed,

Grid and Cloud Computing for Engineering, Iványi, P. and Topping, B. H. V.

(Editors), Paper 39, Civil-Comp Press, Stirlingshire, Scotland, United Kingdom,

2015, doi:10.4203/ccp.107.39.

41

[12] U. Ayachit “The ParaView Guide: A Parallel Visualization Application”, Kit-

ware, 2015.

[13] C.E. Goodyer, P.K. Jimack, A.M. Mullis, H.B. Dong, Y. Xie, “On the Fully

Implicit Solution of a Phase-Field Model for Binary Alloy Solidification in Three

Dimensions”, Advances in Applied Mathematics and Mechanics, 4, 665-684,

2012.

[14] F.W. Yang, “Multigrid Solution Methods for Nonlinear, Time-Dependent Sys-

tems”, PhD Thesis, Thesis Collection, School of Computing, University of

Leeds, 2014.

[15] A. Brandt, “Multi-Level Adaptive Technique (MLAT) for Fast Numerical Solu-

tion to Boundary Value Problems”, Lecture Notes in Physics, 18, 82-89, 1973.

[16] J.M. Ortega, W.C. Rheinbolt, “Iterative Solution of Non-linear Equations in Sev-

eral Variables”, Academic Press, 1970.

[17] E. Emmerich, “Stability and Error of the Variable Two-Step BDF for Semilinear

Parabolic Problems”, Journal of Applied Mathematics and Computing, 19, 33-

55, 2005.

[18] C.E. Goodyer, M. Berzins, “Adaptive Timestepping for Elastohydrodynamic Lu-

brication Solvers”, SIAM Journal on Scientific Computing, 28, 626-650, 2006.

[19] M.D. Lelah, A. Marmur “Spreading kinetics of drops on glass”, Journal of Col-

loid and Interface Science, 82, 518-525, 1981.

[20] A. Oron, S.H. Davis, S.G. Bankoff “Long-scale evolution of thin liquid films”,

Reviews of Modern Physics, 69, 931-980, 1997.

[21] A. Bertozzi “The mathematics of moving contact lines in thin liquid films”, No-

tices of the AMS, 45, 689-697, 1998.

[22] L.W. Schwartz, R.R. Eley “Simulation of droplet motion on low-energy and het-

erogeneous surfaces”, Journal of Colloid and Interface Science, 202, 173-188,

1998.

[23] L.W. Schwartz “Hysteretic effects in droplet motion on heterogeneous sub-

strates: direct numerical simulation”, Langmuir, 14, 3440-3453, 1998.

[24] J.A. Diez, L. Kondic, A. Bertozzi “Global models for moving contact lines”,

Physical Review E, 63, 011208:1-011208:13, 2000.

[25] P.G. de Gennes “Wetting: statics and dynamics”, Reviews of Modern Physics,

57, 827-863, 1985.

[26] W.D. Bascom, R.L. Cottington, C.R. Singleterry “Dynamic surface phenomena

in the spontaneous spreading of oils on solids”, Advances in Chemistry, 43, 355-

379, 1964.

[27] R.P. Araujo, D.L.S. McElwain, “A History of the Study of Solid Tumour Growth:

The Contribution of Mathematical Modelling”, Bulletin of Mathematical Biol-

ogy, 66, 1039-1091, 2004.

[28] H.M. Byrne, T. Alarcon, M.R. Owen, S.D. Webb, P.K. Maini, “Modelling As-

pects of Cancer Dynamics: A Review”, Philosophical Transactions of the Royal

Society A, 364, 1563-1578, 2006.

[29] J.S. Lowengrub, H.B. Frieboes, F. Jin, Y-L. Chuang, X. Li, P. Macklin, S.M.

Wise, V. Cristini, “Nonlinear Modelling of Cancer: Bridging the Gap Between

42

Cells and Tumours”, Nonlinearity, 23, R1-R91, 2010.

[30] K.J. Brabazon, M.E. Hubbard, P.K. Jimack, “Nonlinear Multigrid Methods

for Second Order Differential Operators with Nonlinear Diffusion Coefficient”,

Computers and Mathematics with Applications, 68, 1619-1634, 2014.

43

