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Abstract

We describe GTApprox — a new tool for medium-scale surrogate modeling
in industrial design. Compared to existing software, GTApprox brings sev-
eral innovations: a few novel approximation algorithms, several advanced
methods of automated model selection, novel options in the form of hints.
We demonstrate the efficiency of GTApprox on a large collection of test
problems. In addition, we describe several applications of GTApprox to real
engineering problems.

Keywords: approximation, surrogate model, surrogate-based optimization

1. Introduction

Approximation problems (also known as regression problems) arise quite
often in industrial design, and solutions of such problems are conventionally
referred to as surrogate models [1]. The most common application of surro-
gate modeling in engineering is in connection to engineering optimization [2].
Indeed, on the one hand, design optimization plays a central role in the indus-
trial design process; on the other hand, a single optimization step typically
requires the optimizer to create or refresh a model of the response function
whose optimum is sought, to be able to come up with a reasonable next de-
sign candidate. The surrogate models used in optimization range from simple
local linear regression employed in the basic gradient-based optimization [3]
to complex global models employed in the so-called Surrogate-Based Opti-
mization (SBO) [4]. Aside from optimization, surrogate modeling is used in
dimension reduction [5, 6], sensitivity analysis [7–10], and for visualization
of response functions.
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Mathematically, the approximation problem can generally be described as
follows. We assume that we are given a finite sample of pairs (xn,yn)Nn=1 (the
“training data”), where xn ∈ Rdin ,yn ∈ Rdout . These pairs represent sampled
inputs and outputs of an unknown response function y = f(x). Our goal is

to construct a function (a surrogate model) f̂ : Rdin → Rdout which should be
as close as possible to the true function f .

A great variety of surrogate modeling methods exist, with different as-
sumptions on the underlying response functions, data sets, and model struc-
ture [11]. Bundled implementations of diverse surrogate modeling methods
can be found in many software tools, for example in the excellent open-
source general purpose statistical project R [12] and machine-learning Python
library scikit-learn [13], as well as in several engineering-oriented frame-
works [14–16]. Theoretically, any of these tools offers an engineer the neces-
sary means to construct and use surrogate models covering a wide range of
approximation scenarios. In practice, however, existing tools are often not
very convenient to an engineer, for two main reasons.

1. Excessively technical user interface and its inconsistency
across different surrogate modeling techniques. Predictive mod-
eling tools containing a variety of different modeling algorithms often pro-
vide a common top-level interface for loading training data and constructing
and applying surrogate models. However, the algorithms themselves usu-
ally remain isolated; in particular, they typically have widely different sets
of user options and tunable parameters. This is not surprising, as there is
a substantial conceptual difference in the logic of different modeling meth-
ods. For example, standard linear regression uses a small number of fixed
basis functions and only linear operations; kriging uses a large number of
basis functions specifically adjusted to the training data and involves non-
linear parameters; artificial neural networks may use a variable set of basis
functions and some elements of user-controlled self-validation; etc.

Such isolation of algorithms requires the user to learn their properties in
order to pick the right algorithm and to correctly set its options, and en-
gineers rarely have time for that. An experienced researcher would know,
for example, that artificial neural networks can produce quite accurate ap-
proximations for high-dimensional data, but when applied in 1D, the plotted
results would almost invariably look very unconvincing (compared to, say,
splines); kriging is a popular choice for moderately sized training sets, but
will likely exhaust the on-board RAM if the training set has more than a few
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thousand elements; accurate approximations by neural networks may take
several days to train; etc. In existing tools such expert knowledge is usually
scattered in documentation, and users quite often resort to trial-and-error
when choosing the algorithm.

2. Lack of attention to special features of engineering prob-
lems. The bias of the engineering domain is already seen in the very fact
that regression problems in industrial design are much more common than
classification problems (i.e., those where one predicts a discrete label rather
than a continuous value y ∈ Rdout), whereas quite the opposite seems to hold
in the more general context of all commercial and scientific applications of
predictive modeling1. Moreover, the response function f(x) considered in
an engineering problem usually represents some physical quantity and is ex-
pected to vary smoothly or at least continuously with x. At the same time,
widely popular decision-tree-based methods such as random forests [19] and
gradient boosting [20] produce discontinuous piece-wise constant surrogate
models, completely inappropriate for, say, gradient-based optimization. This
example is rather obvious and the issue can be solved by simply ignoring
decision-tree-based methods, but, based on our experience of surrogate mod-
eling at industrial enterprises [21–25], we can identify several more subtle
elements of this engineering bias that require significant changes in the soft-
ware architecture, in particular:

Data anisotropy. Training data can be very anisotropic with respect to
different groups of variables. For example, a common source of data
are experiments performed under different settings of parameters with
some sort of detectors that have fixed positions (e.g., air pressure mea-
sured on a wing under different settings of Mach and angle of attack),
and the surrogate model needs to predict the outcome of the experi-
ment for a new setting of parameters and at a new detector position.
It can easily be that the detectors are abundant and regularly dis-
tributed, while the number of experiments is scarce and their param-
eters are high-dimensional and irregularly scattered in the parameter
space. If we only needed a surrogate model with respect to one of these
two groups of input variables, we could easily point out an appropri-

1Note, for example, that classification problems form the majority of the 200+ Kaggle
data mining contests [17] and the 300+ UCI machine learning repository data sets [18],
well reflecting current trends in this area.
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ate standard method (say, splines for detector position and regularized
linear regression for the experiment parameters), but how to combine
them into a single model? Such anisotropic scenarios, with different
expected dependency properties, seem to be quite typical in the engi-
neering domain [26].

Model smoothness and availability of gradients.
As mentioned above, surrogate models in engineering are (more often
than in other domains) used for optimization and sensitivity analysis,
and are usually expected to reasonably smoothly depend on the input
variables. Moreover, there is some trade-off between model smoothness
and accuracy, so it is helpful to be able to directly control the amount
of smoothness in the model. If a gradient-based optimization is to be
applied to the model, it is beneficial to have the exact analytic gra-
dient of the model, thus avoiding its expensive and often inaccurate
numerical approximation.

Local accuracy estimates. Surrogate-based optimization requires, in ad-
dition to the approximation of the response function, a model estimat-
ing local accuracy of this approximation [4, 27]. This model of local
accuracy is very rarely provided in existing software, and is usually re-
stricted to the method known in engineering literature as kriging [28],
which has been recently paid much attention in machine learning com-
munity under the name of Gaussian process regression [29].

Handling multidimensional output. In the literature, main attention is
focused on modeling functions with a single scalar output [1]. However,
in engineering practice the output is very often multidimensional, i.e.
the problem in question requires modeling several physical quantities
as functions of input parameters. Especially challenging are situations
when the outputs are highly correlated. An example is the modeling
of pressure distribution along the airfoil as a function of airfoil shape.
In such cases one expects the output components of a surrogate model
to be accordingly correlated with each other.

In this note we describe a surrogate modeling tool GTApprox (Generic
Tool for Approximation) designed with the goal of overcoming the above
shortcomings of existing software. First, the tool contains multiple novel
“meta-algorithms” providing the user with accessible means of controlling
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the process of modeling in terms of easily understood options, in addition
to conventional method-specific parameters. Second, the tool has additional
modes and features addressing the specific engineering needs pointed out
above.

Some algorithmic novelties of the tool have already been described earlier
[30–37]; in the present paper we describe the tool as a whole, in particular fo-
cusing on the overall decision process and performance comparison that have
not been published before. The tool is a part of the MACROS library [38]. It
can be used as a standalone Python module or with a GUI within the pSeven
platform [39]. The trial version of the tool is available at [40]. A very de-
tailed exposition of the tool’s functionality can be found in its Sphinx-based
documentation [41].

The remainder of the paper is organized as follows. In Sections 2 and
3 we describe the tool’s structure and main algorithms. In particular, in
Section 2 we review individual approximation algorithms of the tool (such as
splines, RSM, etc.), with the emphasis on novel elements and special features.
In Section 3 we describe how the tool automatically chooses the appropriate
individual algorithm for a given problem. Next, in section 4 we report results
of comparison of the tool with alternative state-of-the-art surrogate modeling
methods on a collection of test problems. Finally, in section 5 we describe a
few industrial applications of the tool.

2. Approximation algorithms and special features

2.1. Approximation algorithms

GTApprox is aimed at solving a wide range of approximation problems.
There is no universal approximation algorithm which can efficiently solve all
types of problems, so GTApprox contains many individual algorithms, that
we hereafter refer to as techniques, each providing the best approximation
quality in a particular domain. Some of these techniques are more or less
standard, while others are new or at least contain features rarely found in
other software. We will briefly overview main individual techniques, focusing
on their novelties useful for engineering design.

Response Surface Models (RSM). This is a generalized linear regression in-
cluding several approaches to estimation of regression coefficients. RSM can
be either linear or quadratic with respect to input variables. Also, RSM
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supports categorical input variables. There are a number of ways to es-
timate unknown coefficients of RSM, among which GTApprox implements
ridge regression[42], stepwise regression [43] and the elastic net [44].

Splines With Tension (SPLT). This is one-dimensional spline-based tech-
nique intended to combine the robustness of linear splines with the smooth-
ness of cubic splines. A non-linear algorithm [45] is used for an adaptive
selection of the optimal weights on each interval between neighboring points
of DoE (Design of Experiment, i.e. the set of input vectors of the training
set).

Gaussian Processes (GP) and Sparse Gaussian Process (SGP). These are
flexible nonlinear techniques based on modeling training data as a realization
of an infinite-dimensional Gaussian distribution defined by a mean function
and a covariance function [29, 46]. GP allows us to construct approximations
that exactly agree with the provided training data. Also, this technique pro-
vides local accuracy estimates based on the a posteriori covariance of the con-
sidered Gaussian process. Thanks to this important property we can use GP
in surrogate-based optimization [27] and adaptive design of experiments [34].
In GTApprox, parameters of GP are optimized by a novel optimization algo-
rithm with adaptive regularization [36], improving the generalization ability
of the approximation (see also results on theoretical properties of parame-
ters estimates [47–49]). GP memory requirements scale quadratically with
the size of the training set, so this technique is not applicable to very large
training sets. SGP is a version of GP that lifts this limitation by using only a
suitably selected subset of training data and approximating the correspond-
ing covariance matrices [35].

High Dimensional Approximation (HDA) and High Dimensional Approxi-
mation combined with Gaussian Processes (HDAGP). HDA is a nonlinear,
adaptive technique using decomposition over linear and nonlinear base func-
tions from a functional dictionary. This technique is related to artificial
neural networks and, more specifically, to the two-layer perceptron with a
nonlinear activation function [50]. However, neural networks are notorious
for overfitting [51] and for the need to adjust their parameters by trial-and-
error. HDA contains many tweaks and novel structural elements intended to
automate training and reduce overfitting while increasing the scope of the ap-
proach: Gaussian base functions in addition to standard sigmoids, adaptive
selection of the type and number of base functions [52], a new algorithm of
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initialization of base functions’ parameters [37], adaptive regularization [52],
boosting used to construct ensembles for additional improvement of accuracy
and stability [33], post-processing of the results to remove redundant features.
HDAGP [36] extends GP by adding to it HDA-based non-stationary covari-
ance functions with the goal of improving GP’s ability to deal with spatially
inhomogeneous dependencies.

Tensor Products of Approximations (TA), incomplete Tensored Approxima-
tions (iTA), and Tensored Gaussian Processes (TGP)

TA [31] is not a single approximation method, but rather a general and
very flexible construction addressing the issue of anisotropy mentioned in the
introduction. In a nutshell, TA is about forming spatial products of different
approximation techniques, with each technique associated with its own subset
of input variables. The key condition under which TA is applicable is the
factorizability of the DoE: the DoE must be a Cartesian product of some
sets with respect to some partition of the whole collection of input variables
into sub-collections, see a two-factor example in Figure 1. If TA is enabled,
GTApprox automatically finds the most detailed factorization for the DoE
of the given training set. Once a factorization is found, to each factor one
can assign a suitable approximation technique, and then form the whole
approximation using a “product” of these techniques. This essentially means
that the overall approximation’s dictionary of basis functions is formed as
the product of the factors’ dictionaries. The coefficients of the expansion
over this dictionary can be found very efficiently [31, 53].

GTApprox offers a number of possible techniques that can be assigned
to a factor, including Linear Regression (LR), B-splines (BSPL), GP and
HDA, see example in Figure 2. It is natural, for example, to assign BSPL
to one-dimensional factors and LR, GP or HDA to multi-dimensional ones.
If not assigned by the user, GTApprox automatically assigns a technique to
each factor by a heuristic akin to the decision tree described later in section
3.

Factorizability of the DoE is not uncommon in engineering practice. Note,
in particular, that the usual full-factorial DoE is a special case of factorizable
DoE with one-dimensional factors. Also, factorization often occurs in various
scenarios where some input variables describe spatial or temporal location of
measurements within one experiment while other variables describe external
conditions or parameters of the experiment – in this case the two groups
of variables are typically varied independently. Moreover, there is often a
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Figure 1: Example of factorization of a three-dimensional DoE consisting of
35 points: the DoE is a Cartesian product of its two-dimensional projection
to the x2x3-plane (of size 7) with its one-dimensional projection to the x1-
axis (of size 5). The dotted lines connect points with the same projection to
the x2x3-plane.

(a) (b)

Figure 2: Two TA approximations for the same training set with two one-
dimensional factors: (a) the default approximation using splines in both
factors; (b) an approximation with splines in the first factor and Linear Re-
gression in the second factor. Note that approximation (b) depends linearly
on x1.
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significant anisotropy of the DoE with respect to this partition: each exper-
iment can be expensive, but once the experiment is performed the values of
the monitored quantity can be read off of multiple locations relatively easily,
so the DoE factor associated with locations is much larger than the factor
associated with experiment’s parameters. The advantage of TA is that it
can overcome this anisotropy by assigning to each DoE factor a separate
technique, most appropriate for this particular factor.

Nevertheless, exact factorizability is, of course, a relatively restrictive
assumption. The incomplete Tensored Approximation (iTA) technique of
GTApprox relaxes this assumption: this technique is applicable if the DoE
is only a subset of a full-factorial DoE and all factors are one-dimensional.
This covers a number of important use cases: a full-factorial DoE where some
experiments are not finished or the solver failed to converge, or a union of
several full-factorial DoEs resulting from different series of experiments, or
a Latin Hypercube on a grid. Despite the lack of Cartesian structure, con-
struction of the approximation in this case reduces to a convex quadratic
programming problem leading to a fast and accurate solution [53]. An ex-
ample of iTA’s application to a pressure distribution on a wing is shown in
Figure 3. Also, see Section 5.3 for an industrial example.

Tensored Gaussian Processes (TGP) [30, 32] is yet another incarnation of
tensored approximations. TGP is fast and intended for factorized DoE like
the TA technique, but is equipped with local accuracy estimates like GP.

Mixture of Approximations (MoA). If the response function is very inhomo-
geneous, a single surrogate model may not efficiently cover the whole design
space (see [21] and Section 5.1 for an engineering example with critical buck-
ling modes in composite panels). One natural approach to overcome this
issue is to perform a preliminary space partitioning and then build a sepa-
rate model for each part. This is exactly what Mixture of Approximations
does. This technique falls into the family of Hierarchical Mixture Models
[54, 55]. A Gaussian mixture model is used to do the partitioning, and after
that other techniques are used to build local models. MoA is implemented
to automatically estimate the number of parts; it supports possibly overlap-
ping parts and preservation of model continuity across different parts [21].
A comparison of MoA with a standard technique (GP) is shown in Figure 4.

Gradient Boosted Regression Trees (GBRT). This is a well-known technique
that uses decision trees as weak estimators and combines several weak esti-
mators into a single model, in a stage-wise fashion [20]. GBRT is suitable
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(a) (b)

(c)

Figure 3: Application of iTA to reconstruction of a pressure distribution on
a wing. The distribution was obtained by an aerodynamic simulation. (a)
The 200 × 29 grid on which the pressure distribution is defined. (b) iTA is
applied to a training set of pressure values at 290 randomly chosen points.
(c) The resulting approximation is compared with the true distribution.
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(a)

(b)

Figure 4: Application of MoA to a spatially inhomogeneous response func-
tion. (a) The true response function. (b) Approximations by MoA and GP.
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for problems with large data sets and in cases when smooth approximation
is not required.

Piece-wise Linear Approximation (PLA). This technique is based on the De-
launay triangulation of the training sample. It connects neighboring points
of the given training set into triangles (or tetrahedrons) and builds a linear
model in each triangle. PLA is a simple and reliable interpolation technique.
It is suitable for low-dimensional problems (mostly 1D, 2D and 3D) where
the approximation is not required to be smooth. In higher dimensions the
construction becomes computationally intractable.

2.2. User options and additional features

GTApprox implements a number of user options and additional features
that directly address the issues raised in the Section 1. The options are not
linked to specific approximation techniques described in the previous subsec-
tion; rather, the tool selects and tunes a technique according to the options
(see Section 3). The formulations of options and features avoid references to
algorithms’ details; rather, they are described by their overall effect on the
surrogate model. Below we list a few of these options and features.

Accelerator. Some techniques contain parameters significantly affecting the
training time of the surrogate model (e.g., the number of basic approximators
in HDA or the number of decision trees in GBRT). By default, GTApprox
favors accuracy over training time. The Accelerator option defines a number
of “levels”; each level assigns to each technique a set of parameters ensuring
that the training time with this technique is increasingly reduced as the level
is increased.

Gradient/Jacobian matrix. To serve optimization needs, each approximation
produced by GTApprox (except non-smooth models, i.e. GBRT and PLA)
is constructed simultaneously with its gradient (or Jacobian matrix in the
context of multi-component approximations).

Accuracy Evaluation (AE). Some GTAppox’ techniques of Bayesian nature
(mostly GP-based, i.e. GP, SGP, HDAGP, TGP) construct surrogate models
along with point-wise estimates of deviations of these models from true re-
sponse values [29]. These estimates can be used in SBO, to define an objective
function taking into account local uncertainty of the current approximation
(see an example in Section 3.2).
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Smoothing. Each approximation constructed by GTApprox can be addition-
ally smoothed. The smoothing is done by additional regularization of the
model; the exact algorithms depends on the particular technique. Smooth-
ing affects the gradient of the model as well as the model itself. Smoothing
may be useful in tasks for which smooth derivatives are important, e.g., in
surrogate-based optimization.

Componentwise vs. joint approximation. If the response function has sev-
eral scalar components, approximation of all components one-by-one can be
lengthy and does not take into account relations that may connect different
components. Most of the GTApprox’ techniques have a special “joint” mode
where the most computationally intensive steps like iterative optimization of
the basis functions in HDA or kernel optimization in GP is performed only
once, simultaneously for all output components, and only the last step of
linear expansion over basis functions is performed separately for each out-
put [36]. This approach can significantly speed up training. For example,
training of a GP model with m outputs with a training set of N points re-
quires O(mN3) arithmetic operations in the componentwise mode, while in
the joint mode it is just O(N3 + mN2). Furthermore, because of the partly
shared approximation workflow, the joint mode better preserves similarities
between different components of the response function (whenever they exist).

Exact Fit. Some GTApprox’ techniques (like GP and splines) allow to con-
struct approximations that pass exactly through the points of the training
set. Note, however, that this requirement may sometimes lead to overfitting
and is certainly not appropriate if the training set is noisy.

3. Automated choice of the technique

GTApprox implements two meta-algorithms automating the choice of the
approximation technique for the given problem: a simpler one, based on
hand-crafted rules and hereafter referred to as the “Decision Tree”, and a
more complex one, including problem-specific adaptation and branded as
“Smart Selection”. We outline these two meta-algorithms below.

3.1. “Decision tree”

The “decision tree” approach selects an appropriate technique using pre-
determined rules that involve size and dimensions of the data sets along with
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user-specified features (requirements of model linearity, Exact Fit or Accu-
racy Evaluation, enabled Tensor Approximations), see Figure 5. The rules
are partly based on the factual capabilities and limitations of different tech-
niques and partly on extensive preliminary testing and practical experience.
The rules do not guarantee the optimal choice of a technique, but rather
select the most reasonable candidate.

3.2. “Smart selection”

The main drawbacks of the “decision tree” approach are that it only
takes into account the crudest properties of the data set (size, dimensions)
and cannot adjust parameters of the technique, which is often important.

To address both issues, “Smart selection” performs, for each training set,
a numerical optimization of the technique as well as its parameters [56, 57],
by minimizing the cross-validation error.

This is a quite complex optimization problem: the search space is tree-
structured, parameters can be continuous or categorical, the objective func-
tion is noisy and expensive to evaluate.

We first describe how we optimize the vector of parameters for a given
technique. To this end we use Surrogate Based Optimization (SBO) [27, 58].
Recall that SBO is an iterative algorithm that can be written as follows:

1. Pick somehow an initial candidate λ1 for the optimal vector of param-
eters.

2. Given the current candidate λk for the optimal vector of parameters,
find the value ck of the objective function (cross-validation error) on it.

3. Using all currently available pairs R = (λi, ci)
k
i=1, construct an acqui-

sition function a(λ;R) reflecting our preference for λ to be the next
candidate vector.

4. Choose the new candidate vector of parameters λk+1 by numerically
optimizing the acquisition function and return to step 2.

The acquisition function used in step 3 must be a reasonably lightweight
function involving not only the current estimate of the objective function
c(λ), but also the uncertainty of this estimate, in order to make incentive
for the algorithm to explore new regions of the parameter space. A standard
choice for the acquisition function that we use is the Expected Improvement
function

aEI(λ;R) = E((c′ − c(λ))+),
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Figure 5: The “decision tree” technique selection in GTApprox. Rectangles
show individual techniques. Rhombuses show choices depending on proper-
ties of the training data and user options. Pentagons show exceptional cases
with conflicting or unfeasible requirements.
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where c′ = min1≤i≤k ci is the currently known minimum and (c′ − c(λ))+ =
max(0, c′− c(λ)) is the objective function’s improvement resulting from con-
sidering a new vector λ. The expectation here can be approximately written,
under assumption of a univariate normal distribution of error, in terms of the
expected value ĉ(λ) of c(λ) and the expected value σ̂(λ) of the deviation of
c(λ) from ĉ(λ). The function ĉ(λ) is found as a GTApprox surrogate model
constructed from the data set R, and the accompanying uncertainty estimate
σ̂(λ) is found using the Accuracy Evaluation feature.

The described procedure allows us to choose optimal parameters for a
particular technique. In order to choose the technique we perform SBO for
each technique from some predefined set, and then select the technique with
the minimal error.

The set of techniques is formed according to hints specified by the user.
The hints are a generalization of options towards less technical and more
intuitive description of data or of the required properties of the surrogate
model. In general, hints may be imprecise, e.g. “IsNoisy” or “Clustered-
Data”. Hints may play the role of tags or keywords helping the users to
express their domain-specific knowledge and serving to limit the range of
techniques considered in the optimization.

The “smart selection” approach is time consuming, since each SBO it-
eration involves constructing a new auxiliary surrogate model. The process
can be sped up by a few hints. The “Accelerator” hint adjusts parameters
of the SBO procedure, making it faster but less accurate. The “Acceptable-
QualityLevel” hint allows the user to specify an acceptable level of model
accuracy for an early stopping of SBO.

There exist general-purpose Python frameworks for optimizing parame-
ters of approximation techniques, e.g. hyperopt [59]. We have considered us-
ing hyperopt (via HPOlib, [60]) with GTApprox as an alternative to “smart
selection”, but found the results to be worse than with “smart selection”.
First, being a general framework, HPOlib/hyperopt does not take into ac-
count special properties of particular techniques. For example, GP-based
techniques have high computational complexity and cannot be applied in the
case of large training sets, but HPOlib/hyperopt would attempt to build a GP
model anyway. Second, the only termination criterion in HPOlib/hyperopt
is the maximum number of constructed models – a criterion not very flexible
given that different models can have very different training times. Finally,
we have observed HPOlib/hyperopt in some cases to repeatedly construct
models with the same parameters, which is again inefficient since training
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times for some of our models are quite large.

4. Comparison with alternative algorithms on test problems

We perform a comparison of accuracy between GTApprox and some of the
most popular, state-of-the-art predictive modeling Python libraries: scikit-
learn [13], XGBoost [61], and GPy [62].2 We emphasize that there are a
few caveats to this comparison. First, these libraries are aimed at a tech-
nically advanced audience of data analysts who are expected to themselves
select appropriate algorithms and tune their parameters. In particular, scikit-
learn does not provide a single entry point wrapping multiple techniques like
GTApprox does, as described in Section 3. We therefore compare GTApprox,
as a single algorithm, to multiple algorithms of scikit-learn. We also select a
couple of different modes in both XGBoost and GPy. Second, the scope of
scikit-learn and XGBoost is somewhat different from that of GTApprox: the
former are not focused on regression problems and their engineering appli-
cations and, in particular, their most powerful nonlinear regression methods
seem to be ensembles of trees (Random Forests and Gradient Boosted Trees)
that produce piece-wise constant approximations presumably not fully suit-
able for modeling continuous response functions. Keeping these points in
mind, our comparison should be otherwise reasonably fair and informative.

We describe now the specific techniques considered in the benchmark. All
techniques are used with default settings.

We consider a diverse set of scikit-learn methods for regression, both
linear and nonlinear: Ridge Regression with cross-validation (denoted by
SL RidgeCV in our tests), Support Vector Regression (SL SVR), Gaussian
Processes (SL GP), Kernel Ridge (SL KR), and Random Forest Regression
(SL RFR). Our preliminary experiments included more methods, in particular
common Linear Regression, LassoCV and Gradient Boosting, but we have
found their results to be very close to results of other linear or tree-based
methods.

We consider two modes of XGBoost: with the gbtree booster (default,
XGB) and with the gblinear booster (XGB lin).

2The code and data for this benchmark are available at https://github.com/

yarotsky/gtapprox_benchmark. The versions of the libraries used in the benchmark
were GTApprox 6.8, scikit-learn 0.17.1, XGBoost 0.4, and GPy 1.0.9.

17

https://github.com/yarotsky/gtapprox_benchmark
https://github.com/yarotsky/gtapprox_benchmark


We consider two modes of GPy: the GPRegression model (GPy) and,
since some of our test sets are relatively large, the SparseGPRegression

model (GPy sparse).
Finally, we consider two versions of GTApprox corresponding to the

two meta-algorithms described in Section 2: the basic tree-based algorithm
(gtapprox) and the “smart selection” algorithm (gta smart).

Our test suite contains 31 small- and medium-scale problems, of which
23 are given by explicit formulas and the remaining 8 represent real-world
data sets or results of complex simulations. The problems defined by formu-
las include a number of functions often used for testing optimization algo-
rithms [63], such as Ackley function, Rosenbrock function, etc. Additionally,
they include a number of non-smooth and noisy functions. The real-world
data sets and data of complex simulations are borrowed from the UCI repos-
itory [18] and the GdR Mascot-Num benchmark [64]. Detailed descriptions
or references for the test problems can be found in the GTApprox documen-
tation ([41, MACROS User Manual, section “Benchmarks and Tests”]).

Each problem gives rise to several tests by varying the size of the training
set and the way the training set is generated: for problems defined by explicit
functions we create the training set by evaluating the response function on
a random DoE or on a Latin Hypercube DoE of the given size; for problems
with already provided data sets we randomly choose a subset of the given
size. As a result, the size of the training set in our experiments ranges from
5 to 30000. Testing is performed on a holdout set. Some of the problems
have multi-dimensional outputs; in such cases each scalar output is handled
independently and is counted as a separate test. The total number of tests
obtained in this way is 430. Input dimensionality of the problems ranges
from 1 to 20.

In each test we compute the relative root-mean-squared prediction error
as

RRMS =

(∑M
n=1

(
f(xn)− f̂(xn)

)2∑M
n=1

(
f(xn)− f

)2
)1/2

,

where
(
xn, f(xn)

)M
n=1

is the test set with true values of the response function,

f̂(xn) is the predicted value, and f is the mean value of f on the test set.

Note that RRMS essentially compares surrogate models f̂ with the trivial
constant prediction f , up to the fact that f is computed on the test set rather
than the training set.
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Figure 6: Accuracy profiles of different approximation algorithms

Each test is run in a separate OS process with available virtual memory
restricted to 6GB. Some of the techniques raise exceptions when training on
certain problems (e.g., out-of-memory errors). In such cases we set RRMS =
+∞.

For each surrogate modeling algorithm we construct its accuracy profile
as the function showing for any RRMS threshold the ratio of tests where the
RRMS error was below this threshold.

The resulting profiles are shown in Figure 6. We find that, on the whole,
the default GTApprox is much more accurate than default implementations
of methods from other libraries, with the exception of highly noisy problems
where RRMS > 1: here gtapprox performs just a little worse than linear and
tree-based methods. As expected, gta smart yields even better results than
gtapprox.

We should, however, point out that this advantage in accuracy is achieved
at the cost of longer training. Possibly in contrast to other tools, GTApprox
favors accuracy over training time, assuming the user of the default algorithm
delegates to it the experiments needed to obtain an accurate model. In
Figure 7 we show profiles for training time. Whereas training of scikit-learn
and XGBoost algorithms with default settings typically takes a fraction of
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Figure 7: Training time profiles of different approximation algorithms

second, GTApprox may need a few minutes, especially the “smart selection”
version. Of course, if desired, training time can be reduced (possibly at the
cost of accuracy) by tuning various options of GTApprox.

5. Applications

We briefly describe several industrial applications of GTApprox [21–24]
to illustrate how special features of GTApprox can help in solving real world
problems.

5.1. Surrogate models for reserve factors of composite stiffened panels

Aeronautical structures are mostly made of stiffened panels that consist of
thin shells (or skins) enforced with stiffeners in two orthogonal directions (see
Figure 8). The stiffened panels are subject to highly nonlinear phenomena
such as buckling or collapse. Most strength conditions for the structure’s
reliability can be formulated using so-called reserve factors (RFs). In the
simplest case, a reserve factor is the ratio between an allowable stress (for
example, material strength) and the applied stress. The whole structure is
validated if all RFs of all the panels it consists of are greater than 1. RF
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Figure 8: A stiffened panel.

values are usually found using computationally expensive Finite Element
(FE) methods.

During the sizing process, i.e. optimizing geometry of the structure with
respect to certain criteria (usually minimization of the weight of the struc-
ture), RF values are taken as optimization constraints that allow to conclude
if the considered geometry would be reliable. So for all basic structures the
RFs and their gradients have to be recomputed on every optimization step,
which becomes a very expensive operation in terms of time.

The goal of this application was to create a surrogate model that works
orders of magnitude faster than the FE method and at the same time has a
good accuracy: error should be less than 5% for at least 95% of points with
RF values close to 1, and the model should reliably tell if the RF is greater
or less than 1 for a particular design.

The complexity of the problem was exacerbated by several issues. First,
the RF values depend on 20 parameters (geometry and loads), all of which
significantly affect the output values. Second, some RFs depend on the
parameters discontinuously. Third, points with RFs close to 1 are scattered
across the input domain.

The Mixture of Approximation (MoA) technique of GTApprox was used
to create a surrogate model based on the train dataset of 200000 points
that met the accuracy requirements and worked significantly faster than the
reference PS3 tool implementing the FE computation. The optimization
was further facilitated by the availability of the gradients of the GT Approx
model. The optimization results obtained by GTApprox and the PS3 tool are
shown in Figure 9. Details on the work can be found in [21, 22]. The obtained
GTApprox surrogate model was embedded into the pre-sizing optimization
process of Airbus A350XWB composite boxes.
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Figure 9: RF values at the optimum. Comparison of the optimal result found
using the GTApprox surrogate model with that of PS3.

5.2. Surrogate models for helicopter loads estimation

In this work GTApprox was used to create surrogate models for maximum
loads acting on various structural elements of the helicopter. Knowledge of
maximum loads during the flight allows one to estimate fatigue and thus see
when repair is needed. Such data can only be collected in the flight tests
as one needs to install additional sensors to a helicopter to measure loads,
which are too expensive to be installed on every machine.

So the goal of the project was to take data already measured during flight
tests and create surrogate models that would allow to estimate loads on every
flight as a function of flight parameters and external conditions. The chal-
lenge of the project was that models for lots of different load types and flight
conditions (e.g. maneuver types) needed to be created. In total one needed
to build 4152 surrogate models. Such problem scale made it impossible to
tune each model “manually”. And at the same time different combinations
of loads and flight condition could demonstrate very different behavior and
depend on different set of input parameters. The input dimension varied in
the range from 8 to 10 and the sample size was from 1 to 108 points.

GTApprox’ capabilities on automatic technique selection and quality as-
sessment were used to create all 4152 models with the required accuracy
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Figure 10: Design of Experiments in the aerodynamic test case.

without manually tweaking their parameters in each case. In total, 2877
constant models, 777 RSM models, 440 GP models and 58 HDA models
were constructed. Only a few most complex cases had to be specifically ad-
dressed in an individual manner. More details on the work can be found
in [24].

5.3. Surrogate models for aerodynamic problems

In this application GTApprox was used to obtain surrogate models for
aerodynamic response functions of 3-dimensional flight configurations [23].
The training data were obtained either by Euler/RANS CFD simulations or
by wind tunnel tests; in either case experiments were costly and/or time-
consuming, so a surrogate model was required to cover the whole domain of
interest.

The training set’s DoE, shown in Figure 10, had two important peculiar-
ities. First, the DoE was a union of several (irregular) grids resulting from
different experiments. Second, the grids were highly anisotropic: variables
x1, x3 were sampled with much lower resolutions than variable x2.

As explained in Section 2, this complex structure is exactly what the iTA
technique is aimed at. The whole DoE can be considered as an incomplete
grid, so iTA is directly applicable to the whole training set without the need
to construct and then merge separate approximations for different parts of
the design space.
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(a) iTA (b) GP

Figure 11: iTA and GP approximations in the aerodynamic problem.

In Figure 11 we compare, on a 2D slice of the region of main interest, the
iTA surrogate model with a model obtained using the scikit-learn Gaussian
Process technique [13], which may be considered as a conventional approach
for this problem (since the full DoE is not factorizable). We observe phys-
ically unnatural “valleys” in the GP model. This degeneracy results from
the GP’s assumptions of uniformity and homogeneity of data [29] that do
not hold in this problem due to gaps in the DoE and large gradient of the
response function in a part of the design space. Clearly, the iTA model does
not have these drawbacks. In addition, iTA is much faster to train on this
2026-point set: it took 10 seconds for the iTA model and 1800 seconds for
the GP model3.

3The experiments were conducted on a PC with Intel(R) Core(TM) i7-2600 CPU @
3.40GHz and 8GB RAM.
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6. Conclusion

We have described GTApprox — a new tool for medium-scale surrogate
modeling in industrial design – and its novel features that make it convenient
for surrogate modeling, especially for applications in engineering and for
use by non-experts in data analysis. The tool contains some entirely new
approximation algorithms (e.g., Tensor Approximation with arbitrary factors
and incomplete Tensor Approximation) as well as novel model selection meta-
algorithms. In addition, GTApprox supports multiple novel “non-technical”
options and features allowing the user to more easily express the desired
properties of the model or some domain-specific properties of a data.

When compared to scikit-learn algorithms in the default mode on a collec-
tion of test problems, GTApprox shows a superior accuracy. This is achieved
at the cost of longer training times that, nevertheless, remain moderate for
medium-scale problems.

We have also briefly described a few applications of GTApprox to real
engineering problems where a crucial role was played by the tool’s distinctive
elements (the new algorithms MoA and iTA, automated model selection,
built-in availability of gradients).
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