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Abstract 

This paper is devoted to numerical simulation of elasto-plastic large deformation in 

three-dimensional (3-D) solids using isogeometric analysis (IGA) based on Bézier extraction of 

NURBS (non-uniform rational B-splines), due to some inherently desirable features. The Bézier 

extraction operation decomposes the NURBS basis functions into a set of linear combination of 

Bernstein polynomials, and a set of C0-continuity Bézier elements are thus obtained. The data structure 

is thus similar to traditional finite element method (FEM). Consequently, the IGA based on Bézier 

extraction of NURBS can be embedded in existing FEM codes, and more importantly, as have been 

shown in literature that higher accuracy over traditional FEM can be gained. The main features 

distinguish between the IGA and FEM are the exact geometry description with fewer control points, 

high-order continuity, high accuracy, especially the NURBS basis functions are capable of describing 

both geometry and solution fields where the FEM does not. The present kinematic is based on the Total 

Lagrange description due to the elasto-plastic large deformation with deformation history. The results 

for the distributions of displacements, von Mises stress, yielded zones, and force-displacement curves 

are computed and analyzed. For convenience in verification of numerical results, the same numerical 

examples have additionally been computed with the FEM using ABAQUS. It is found that most 

numerical results obtained by the developed IGA are acceptable and in good agreement with FEM 

solutions.  
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1. Introduction 

The main problem addressed in this manuscript is the prediction of mechanical behaviors of 

three-dimensional (3-D) elasto-plastic solids under large deformations and statically applied load using 

an effective numerical approach. The elasto-plastic large deformation behavior is very common in the 

process of engineering design and analysis. In real engineering applications, large deformations of 

elasto-plastic materials are often encountered in, for instance, sheet metal forming or structural 

crashworthiness [1, 2]. The existence of material nonlinearity and geometric nonlinearity usually 

causes the modeling and simulations difficultly. The calculation accuracy is not always satisfactory, and 

still remains a challenging task. The accurate prediction of mechanical behaviors of elasto-plastic large 

deformation is absolutely indispensable for any steps of proper design of structural and mechanical 

components [3, 4]. Basically, the geometric nonlinearity is caused by the large displacement of the 

structural deformation. The strain term is a nonlinear matrix containing higher order trace, and the 

deformation process can not be described on the basis of the initial state. Consequently, the equilibrium 

position is unknown. In such circumstance, incremental methods have to be developed for solving 

nonlinear problems. In the last decades, the authors of several important and favorite textbooks in the 

field, for instance, see [5-7], who have made great contributions to the development and perfection of 

the geometric nonlinear theories. 

In line of 3-D elastoplastic large deformation problems, Khoei and Lewis [2] described a general 

framework for finite element simulation of metal powder forming. Their approach is based on a total 

and updated Lagrangian formulation, an adaptive finite element strategy, and automatic remeshing 

techniques. Chiou et al. [4] developed a 3-D finite element code for large strain elastic-plastic solids. 

They used their own theory by decomposing the deformation gradient into a product of the elastic and 

plastic parts, instead of a combination of elastic and plastic strain rates. They stated that their solutions 

for elastic-plastic solids are path-dependent. The numerical results still may not be acceptable if the 

incremental step size is too large, even through the obtained solutions are stable. Reese et al [8] 

proposed a new locking-free brick element for 3-D large deformation problems in finite elasticity on 

the basis of enhanced strain method. Their new elements are free of locking, which is often caused by 

using isoparametric low-order elements in modeling elasto-plastic large deformation, arising mainly in 

bending-dominated situation and in the limit of incompressibility. Puso and Solberg [9] devoted a 

stabilized nodally integrated tetrahedral element, an effective low-order element that can circumvent 

the poor performance of classical linear tetrahedral element in problems with plasticity, nearly 

incompressible materials and acute bending. Areias and Matous [10] presented a 3-D mixed stabilized 

four-node tetrahedron with nonlocal pressure for hyperelastic materials of reinforced elastomers. Their 

element is unconditionally convergent and free of spurious pressure modes. Duster and Rank [11] 

applied the high-order finite element method to the problem of large plastic deformation, obtained high 

convergence rate and accurate solution, and there is no self-locking phenomenon. Recently, Pascon and 

Coda [3, 12-14], in contrast, developed high-order full integrated tetrahedral elements and successfully 

applied them to large deformation analysis of, for instance, elastoplastic homogeneous materials, 

elastic functionally graded materials, elastoplastic functionally graded materials, and functionally 

graded rubber-like materials. Nevertheless, there are a number of previous studies available in literature, 

and most of them are in 2-D and are carried out using the FEM [15, 16]. In the contrary to the 

low-order finite elements, the present study however is devoted to 3-D large deformation analysis of 

elasto-plastic materials, but using an effective, accurate, high order and locking-free isogeometric finite 

element method.  
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Isogeometric analysis (IGA) pioneered by Hughes et al. [17] owns many advantages as compared 

with the traditional FEM. The exact geometrical representation, high-order continuity, and high 

accuracy are those that substantially exhibit the implication of the IGA to be an effective numerical tool 

nowadays. The inherently desirable characteristics of IGA makes it superior to the classical FEM in 

many aspects and has successfully applied to many engineering problems including plate/shell 

structures [18-25], structural optimization [26], contact problem [27], fluid mechanics [28], 

fluid–structure interaction [29], damage and fracture mechanics [30-33], and unsaturated flow problem 

in porous media [34].  

The IGA has also been applied to the modeling of material and geometric nonlinear problems 

such as elasto-plastic behavior, nearly incompressible behavior and large deformation behavior [35-38]. 

In Elguedj and Hughes [35], the IGA is applied to solve the nearly incompressible large strain plasticity 

problem, and it is found that the displacement and relative displacement of the specific position of the 

reaction force curve, often in the plastic problem is misleading metric. In their analysis, high-order 

NURBS cell does not appear low-order finite element mesh self-locking phenomenon, and can 

accurately describe the phenomenon of large plastic deformation, calculated accurate results. Basically, 

the implementation of the conventional IGA approach based on NURBS is often complex since their 

basis functions are not confined to one single element, but span over a global domain instead. Recently, 

the construction of the Bézier extraction operator of NURBS integrated into the IGA has been 

described, e.g., see [39, 40], by which the NURBS basis functions are thus decomposed into linear 

combinations of Bernstein polynomials. This development brings great benefit as it provides an 

element structure for IGA that can be incorporated into any existing FEM code. In other words, this 

transformation makes it possible to use C0-continuous Bézier elements as the finite element 

representation in IGA, thus a local data structure for IGA is close to that for traditional FEM. The IGA 

implementation can now be made similarly to that of traditional FEM.  

In addition, IGA data structures based on Bézier extraction of T-splines is also introduced recently 

in [41]. Based on Bézier extraction and spline reconstruction, a Bézier projection for local projection, 

refinement, and coarsening of NURBS and T-splines was proposed by Thomas et al [42], which results 

in an element-based formulation that may easily be implemented in existing finite element codes. Irzal 

et al [43] developed an interface element of the IGA through Bézier extraction, which can be casted in 

the same framework as the conventional interface element. Evans et al. [44] extended Bézier extraction 

to HASTS, which are utilized as a basis for adaptive IGA. Schillinger et al [45] and Rypl et al. [46] 

further put their efforts to some studies about the computational efficiency of numerical quadrature 

schemes in IGA based on Bézier extraction. However, most of the existing studies using the IGA based 

on Bézier extraction have been limited to two-dimensional (2-D) elastic problems only. In this 

manuscript, the IGA based on Bézier extraction of NURBS will be further extended to large 

deformation analysis of 3-D elasto-plastic solids under static loading condition. This interesting work, 

in fact, has not been carried out in literature so far. Indeed, this is a much more difficult and challenging 

task as compared to 2-D problems, due to the material and geometrical nonlinearities plus complicated 

inherent configuration of 3-D models. The accuracy and the performance of our present 3-D IGA 

method will be verified by comparing the computed numerical results with respect to reference results 

derived from other numerical methods, e.g., FEM (ABAQUS). The mesh convergence, distributions of 

displacements and stresses, the force versus displacement curves, and other relevant field variables 

pertaining to large elasto-plastic deformation analysis will be analyzed to confirm the effectiveness of 

the developed IGA. 
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One crucial issue related to the simulation of elasto-plastic large deformation problems, which 

must be stated here, is the mesh distortion. In terms of the classical FEM, as it has stated and discussed 

in [47] that the higher order Lagrange elements are notoriously sensitive to mesh distortion, which in 

general prevents their use in modeling large deformation problems. In the contrary, the recent 

investigation of the IGA robustness by Lipton et al [48] demonstrated that higher-order and 

higher-continuity functions are able to lessen the impact of the distortions in most cases. In words, the 

IGA elements with the high-order NURBS basis functions appear to be quite robust out, to at least p=4 

[48], implying that the robustness of the IGA NURBS elements increase with order. Nonetheless, their 

studies [47, 48] shed light on the potential, robustness and capability of the IGA to many large 

deformation problems of industrial interest. Inspired by aforementioned works, our motivation is to 

further extend the capability of the IGA to large elasto-plastic deformation problems. However, we are 

particularly interested in simulation of 3-D problems, which is rarely available in literature, and the 

Bézier extraction of NURBS which owns some advantages over the NURBS is taken instead.     

The rest of the manuscript is structured as follows. In Section 2, three-dimensional IGA formulation 

based on Bézier extraction is presented. Fundamental equations of elasto-plastic large deformation 

problems are then given in Section 3. Subsequently, solution of nonlinear equations is described in 

Section 4. Three numerical examples in 3-D large elasto-plastic deformation are considered, analyzed, 

and discussed in Section 5. Some conclusions drawn from the study are stated in Section 6. 

 

2. Three-dimensional isogeometric analysis based on Bézier extraction of NURBS 

For the sake of completeness, we briefly present in this section the three-dimensional IGA based 

on Bézier extraction of NURBS, which will be used for the large deformation analysis of elasto-plastic 

materials. Detail can be found in Ref. [39, 40]. 

 

2.1 The NURBS basis functions [17-25]  

An arbitrary set of B-spline basis functions can be defined in a corresponding standard parameter 

space  0,1  . The one-dimensional parameter space is called a knot vector. A knot vector is a set 

of non-decreasing numbers in the parametric space as the following description 

   1 2 1, ,...,
T

n p
     k                    (1) 

where 
i
  is the ith knot with 1i i

   , the indices n and p denote, respectively, the number of basis 

functions and the order of B-spline basis function. According to the Cox-de Boor recursion formula, 

and for a given knot vector  k , the B-spline basis function  ,i pN   is expressed as  

1

,0

1
( )

0 otherwise

i i

iN
  

  
 


    for 0p=                   (2) 

and 

1

, , 1 1, 1

1 1

( ) ( ) ( )
i pi

i p i p i p

i p i i p i

N N N
    

   
 

  
   


 

 
 for 1p      (3) 

For modeling 3-D problems, the NURBS basis functions can be obtained directly from the 

tensor-product of three one-dimensional B-spline basis functions [49]  
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       
     

     
 

, , , , , , , , , ,, ,

, ,

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ , , , , ,1 1 1

, ,
, ,

i p j q k r i j k i p j q k r i j kp q r

i j k n m l

i p j q k r i j ki j k

N N N w N N N w
R

WN N N w

     
  

    
  

 
  

 (4) 

in which  ,i pN  ,  ,j qN   and  ,k rN 
 

are the B-spline basis functions of orders p , q , 

and r  in the  , 
 

and   directions, respectively; 
, ( )

j q
N   and  ,k rN   follow the 

recursive formula shown in Eqs. (2) and (3) with knot vector  k  and  k , and the definition 

of  k  and  k  is similar to that of  k ; 
, ,i j k

w  are the weight, and  , ,W     represent 

the weight function.  

By defining W  as the diagonal matrix of weights,  

1

2

n

w

w

w

 
 
 
 
 
  

W
O

                       (5) 

and let  , ,  N  be the vector of B-spline basis functions, then Eq.(4) can be rewritten in matrix 

form  

     1
, , , ,

, ,W
     

  
R WN                (6) 

Fig. 1 schematically illustrates the representation of a quadratic B-spline defined by the knot 

vectors  0,0,0,1,2,2,2  ,  H 0,0,0,1,2,3,3,3  and  0,0,0,1,1,1Z  . That is 

accomplished by assumption that, if two elements, three elements and one element are taken for the  , 

  and   directions, respectively. One can see from the figure that a B-spline basis function spans 

the parameter space composed of several elements. As a result, the NURBS function hence spans the 

parameter space also composed of several elements. Importantly, it can now easily be seen that 

implementing the NURBS basis function is arduous. 
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Fig. 1 Schematic representation of quadratic B-spline basis functions. 

 

 

2.2 Bézier extraction of NURBS 

Due to the complicated calculation of the NURBS basis functions as addressed in the previous 

section, the underlying idea behind the Bézier extraction of the NURBS is, as pointed out in [39], to 

provide an element structure for IGA that can be incorporated into any existing FEM code.  

Basically, the Bézier extraction operation is to decompose the NURBS basis function into a set 

of linear combinations of Bernstein polynomials, and to obtain a set of C0-continuity Bézier elements, 

which is similar to the Lagrange elements, once again, straightforwardly integrating into the existing 

FEM code. The Bézier decomposition is the consequence of the decomposing process of the NURBS 

basis functions into corresponding Bézier elements. The Bézier decomposition is attained by repeating 

all interior knots of a knot vector until they have a multiplicity equal to p. The degree of interior knots 

should be p +1 to produce the truly separate Bézier elements. However, the multiplicity equal to p is 

sufficient to represent the Bernstein polynomial that is the Bézier basis function.  

Let    1 2 1, ,...,
T

n p
     k be the original knot vector, let us insert a new knot 

1[ , )k k     ( k p ) into the knot vector, the number of the new basis functions reaches 

1m n  , and the new control points 
i

P
 

can be deduced with old control points 
i

P  [39, 40] 

 
1

1

   1

1    1

  

i i i i i

n

P i

P P P i m

P i m

  


    
 

       (7) 

with 

1               

   1

0              1  

i
i

i p i

i k p

k p i k

i k

 
 

  


     
  

       (8) 

It is worth noting that the knot values may be inserted multiple times, but it makes the continuity 

of the basis to be reduced by one for each repetition of a given knot value. The continuity of the curve, 

however, is preserved, provided that the control variables in Eqs.(7) and (8) are chosen. 

According to [39, 40], the Bézier extraction operator of the 
th

j  knot inserted is defined by  

1 2

2 3

1

1 0 0

0 1 0 0

0 1

j

n j n j

 
 

   

 
  
 
   

C

L

L

M O M

L

    (9) 



 7 

P is the original control points, and let 
1 P P , Eq. (7) can then be rewritten in matrix form  

1 ( )j T

j j P C P         (10) 

By defining 
1 2{ , , , , , }j m   L L  is the set of inserted knots vector, the whole Bézier 

extraction operator yields 

1 1( ) ( ) ...( )T T T T

m mC C C C        (11) 

Consequently, the relation between the new control points 
bP  after Bézier extraction and the 

original control points P  can be expressed as 
b TP C P         (12) 

It is important to stress out here that inserting a new knot to the curve does not change the 

geometric shapes, and B-spline curves can now be defined by    T C P N , yielding the 

following relation 

             T T
b T T T       C P B C P B P CB P N      (13) 

The relationship between the B-spline basis functions and Bernstein polynomials is thus obtained as 

    N CB         (14) 

Using the same technique, we can infer the local 3-D Bézier extraction operator 
e k j i

    C C C C         (15) 

in which 
i

C ,
j

C
 

and 
k

C
 

respectively are the 
th

i , 
th

j
 

and 
th

k  univariate element Bézier 

extraction operator in the  ,   and   directions, and e  denotes the number of element. Through 

Eqs. (14) and (15), the local 3D relationship between the B-spline basis functions and Bernstein 

polynomials reaches:  

   , , , ,e e e     N C B         (16) 

In analysis, it is unnecessary to establish the global extraction operator. Instead, only 

establishment of the local extraction operator of each element is needed. The NURBS basis functions 

after Bézier extraction operator is now defined as 

   
 

, ,
, ,

, ,

e e e

e

b
W

  
  

  


W C B
R         (17) 

where 
eW  is the local NURBS weights, and  , ,b

W     finally yields the form  

       
( 1) ( 1) ( 1)

, , , , ,

1 1 1

, ,

d d dp p pp q r
b b

i p j q k r i j k

i j k

W B B B w     
  

  

         (18) 

with 
p

d
 

representing the parameter dimensions. 

The relationship between Bézier control points 
,b eP  and NURBS control points 

eP  can be 

written as  

  1
, , ( )b e b e e T e e


P W C W P        (19) 

with 
,b eW defining the local Bézier weights, which is in diagonal matrix.  

For 3-D model, the NURBS basis functions and control points, in matrix form, is expressed as 

   , , , ,T     C P R         (20) 

The NURBS 3-D model in C0 continuous Bézier elements, by combining Eqs. (17), (19) and (20), 

can now be defined as 

   
 

, ,
( , , )

, ,

T
b b

b
W

  
  

  


W P B
C           (21) 

Additionally, Fig. 2 sketches the Bézier basis functions derived from B-spline basis functions as 

shown in Fig.1 by taking the Bézier extraction operator. The resulting basis function has been 

decomposed into a set of C0 continuous Bézier elements with each element corresponding to a knot 

spans in the original knot vector. 
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Fig. 2 Schematic representation of Bézier basis functions obtained from B-spline basis functions using 

the Bézier extraction operator. 

 

3. Fundamental equations of elasto-plastic large deformations 

In this section, we briefly present fundamental equations for elasto-plastic large deformation 

analysis of solids. Basically, the non-linearity in the elasto-plastic large deformation analysis is 

composed of two parts: the material nonlinearity and geometric nonlinearity. The basic description of 

elastoplastic constitutive models at finite strains is clear and detail can be found in Simo [15, 16] and 

Simo and Hughes [50]. Due to the elasto-plastic large deformation relating with the deformation history, 

the Total Lagrange description are used in this analysis. In that circumstance, meaning that, the initial 

state is the reference system, and the reference system is unchanged during the increment process. 

In large deformation problem, the strain is expressed by the Green strain: 

1

2

j i k k
ij

i j i j

u u u u
E

X X X X

    
        

        (22a) 

1

2

j i k k
ij

i j i j

u u u u
E

X X X X

    
        

                        (22b) 

The Green strain ijE  at time 1mt t t  V  can be expressed as the sum of the Green strain 

ij
E  at time mt t  and strain increment 

ij
EV  in this time step tV : 

       + + + +1
= + =

2

j j i i k k k ki
ij ij ij

i j i j

u u u u u u u u
E E E

X X X X

    
  
     

V V V V
V   (23) 

It is trivial to obtain the strain increment 
ij

EV  from the Eqs. (22) and (23): 
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0 1

L L N

ij ij ij ijE E E E             (24) 

with 

  
0

1

2ij

jL i

i j

u u
E

X X

  
     

V V
V                     (25a) 

1

1

2ij

L k k k k

i j i j

u u u u
E

X X X X

    
       

V V
V             (25b) 

1

2ij

N k k

i j

u u
E

X X

  
     

V V
V                      (25c) 

And Eq. (24) can be written in matrix form as 

0 1L L N    E E E E        (26) 

where 

 0L V VE L u                               (27a) 

  1L V VE AH u                             (27b) 

1

2
N
E AH uV V V                          (27c) 

with 

T

1 2 3

2 1 3

3 2 1

0 0 0

0 0 0

0 0 0

X X X

X X X

X X X

   
    
   

     
   
 

   

L               (28a) 

T
T T T

1 2 3

T T T

2 1 3

T T T

3 2 1

0 0 0

0 0 0

0 0 0

X X X

X X X

X X X

   
    
   

  
   

    
    

u u u

u u u
A

u u u

               (28b) 
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T
T T T

1 2 3

T T T

2 1 3

T T T

3 2 1

0 0 0

0 0 0

0 0 0

X X X

X X X

X X X

   
    
   

  
   

    
    

V V V

V V V
V

V V V

u u u

u u u
A

u u u

        (28c) 

1

2

3

X

X

X

 
  
 

   
 
 

 

I

H I

I

                             (28d) 

Because of the displacement field is
eu Nu , Eq. (26) can be written as 

eE B uV V        (29a) 

   e E B uV V        (29b) 

where 

0 1 0 1L L N L L     VB B B B B B AHN            (30a) 

0 1 0 1L L N L L     B B B B B B AHN             (30b) 

Here 0L B LN  and 1L
B AHN have no connection with 

eVu , and 0LB  equivalents to 

the strain matrix B  in small deformation problems, 1LB  represents the displacement effect of the 

linear incremental strain 
L

VE . 

 The balance equation at time 1mt t t  V  can be obtained according to the energy-variational 

principle: 

0 0 0

T T

0 0
V V A

dV dV dA     ES u p u q      (31) 

 Because of the displacement u  and strain E  are known at time mt t , it is possible to 

obtain the following formula: 

     e   u u N uV V        (32a) 

     e   E E B uV V        (32b) 
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 By substituting Eq. (7) into Eq. (6), and considering  e uV  is arbitrary, one can get:  

 
0 0 0

T T T

0 0
V V A

dV dV dA   B S N p N q       (33) 

The above formula can be written in the form of incremental: 

   
0 0 0

T T T T

0 1 0 0
N

e

L L
V V V

dV dV dV        u B S B S B B S FV V    (34) 

where 
0 0

T T

0 0 0
V A

dV dA  F N p N q  

 From Eq. (34), the following equations can be obtained by using two-step linearization 

approximation.  

First, strain-displacement transformation matrix linearization is achieved by substituting 

0 1L LB B  for B : 

E B uV V  turn into  0 1L L E B B uV V        (35) 

Second, strain increment and stress increment are expressed by linearization: 
Td dS D E  

turn into 
E E

T
E

d


  S D E , where 
TD  is the elasto-plastic matrix at time 

mt t . 

    
0 0 0

T T T T

0 1 0 1 0

e

L L T L L L
V V V

dV dV dV      B S B D E B B D B B u K uV V V V  (36) 

   
0 0 0

T T T

0 0N

e e

s
V V V

dV dV dV    B S G MG u G MG u K uV V V     (37) 

 
0

T T

0 1L L s
V

dV  B B S F          (38) 

where LK  is the stiffness matrix of linear strain, 
s

K  is the stiffness matrix of nonlinear strain, and 

sF  is the equivalent nodal force vector at time mt t . 

 One can finally get linearized balance equation: 

  0s L s  K K u F FV         (39) 

In summary, one can use the Euler-Newton method to solve the above equations in each time step. 

 

4. Solution of nonlinear equations 
The Euler-Newton method is one of the common methods used for solving nonlinear equations. It 

is also called incremental iteration method, meaning that the load is applied according to the given load 

factor in some steps and the load incremental iteration calculated for each step. Let 
0

m
u  and mu  be 

the initial and final value of displacement, m  
be the given load factor in step 

th
m  and F  be the 

total load. The iterative formula for step 
th

m  is [51] 
0

1m mu u                            (40) 

m mF F                        (41) 

   
0

, 0

T
i i i

m m s m m m
V

dV    ψ F F F B S S       (42) 
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    1

,m ,m

i i i i

m L s m



   u K K ψ                   (43) 

 1i i i

m m m    u u u                     (44) 

where 
mF

 
is the total load after the 

th
m  load increment applied,  1m m m m      F F F

 

is the 
th

m  load increment, 
,

i

s mF
 

is the nodal force after the 
th

i  iteration of the 
th

m  load 

increment, 
i

mψ  
is the unbalanced force,  i

m u  is the displacement increment after the 
th

i  

iteration of the 
th

m  load increment. 

We will continue to iterate until  i

q
ψ δ R  with 

q
  being a predetermined tolerance, 

and when the convergence criterion is satisfied, one takes 
exact m

u u . 

Additionally, some key steps of solution procedure for the implementation of the present work can 

be summarized as follows:  

1. Pre-processing of the geometric model and define relevant parameters 

2. The Bézier extraction operator 

3. Assemble the global load array 

4. Loop over all load steps 

a. Ascertain the elato-plastic modulus and assemble the global stiffness matrix including 

both linear and nonlinear parts 

b. Use the Euler-Newton method for solving the linearized balance equation 

c. Calculate the stress and strain increment at each iteration step 

d. Calculate the total displacement and stress of the load step 

5. Post-processing of the calculation results 

 

5. Numerical examples and discussions 

The merits of the present method for 3D elasto-plastic large deformation analysis described in the 

previous sections are illustrated here through numerical examples, showing the accuracy of computed 

numerical results. To this end, three representative numerical examples such as a block with a cylinder 

hole under tension, a partially loaded elasto-plastic block, and a local compression bending cylinder are 

considered.  

In three numerical examples, the distribution of displacements and von Mises stress, the 

force-displacement curves, and plastic zone are all presented, investigated and discussed, addressing 

the accuracy and effectiveness of our developed IGA based on Bézier extraction of NURBS. To verify 

the accuracy of our developed approach, all the numerical examples have additionally been computed 

the same using 3-D FEM via ABAQUS, since proper reference solutions are not available in literature. 

In particular, the second-order elements in IGA based on Bézier extraction and second-order elements 

(20-node hexahedron elements) in FEM are taken.  

In the numerical examples, unless stated otherwise the following material parameters are adopted: 

the Young’s modulus 5=2.1 10  MPaE   and the Poisson ratio 0.3  , and the uniaxial initial 

yield stress 
0 440 MPas   and the hardening modulus 0H  , which implies that a perfect 

elasto-plastic model is employed. The von Mises yield criterion is used, while the incremental step 
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loading technique is applied. Here, 
q

 =0.001 is adopted. 

 

5.1 A block with a cylinder hole under tension 

The first numerical example of elasto-plastic large deformation problems deals with a bock with a 

cylinder hole under tension whose geometry is schematically depicted in Fig. 3a. The radius of the hole 

is 5m, while the length, width and height of the block are set to be 36m, 20m and 10m, respectively. In 

this example, the maximum acting load is set by p=225 MPa. Only a quarter of block as depicted in Fig. 

3b is modeled, which is to reduce the computational time, due to the double symmetry of the geometry. 

As mentioned already, the reference solutions for this example are conducted by FEM (ABAQUS). 

Figure 4 shows a physical mesh of 10×5×5 elements (or 1764 DOFs) used for the IGA simulation 

based on Bézier extraction of NURBS, and a mesh of 4335 Q20 elements (or 60072 DOFs) of the FEM 

analysis. In this example, we concentrate our investigation on the accurate comparison of the 

distributions of displacements and von Mises stress between our developed IGA and the FEM, see Figs. 

5-7. As observed from the figures, a good agreement between two solutions is obtained. While the 

FEM, as usual, takes a higher number of elements or DOFs to be able to achieve the acceptable results, 

our developed method, in contrast, offers good results with less effort. This in general is known as 

major advantages of employing the IGA. 

 

 

(a) 
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(b) 

Fig. 3 Schematic representation of a block with a cylinder hole (a), and its quarter model (b), the 

normal displacements on the shadow planes of the quarter model are constrained. Two typical points 

with their coordinates such as A(5m,0,10m) and B(0,10m,10m) are considered to estimate the 

appropriate numerical results. 

 

 

 

(a) The FEM (ABAQUS) 

 

(b) The IGA 

Fig. 4 Mesh discretization of the quarter of the block using the FEM (a) and the IGA (b) 

   

 

(a) The FEM (4335 elements, 60072 DOFs) 

 

(b) The IGA (250 elements, 1764 DOFs) 

Fig. 5 Comparison of the displacement xu  for the quarter of a block for 225p MPa   (unit:m) 

 

(a) The FEM(4335 elements, 60072 DOFs) 

 

(b) The IGA (250 elements, 1764 DOFs) 

Fig. 6 Comparison of the displacement 
y

u for the quarter of a block for 225p MPa  (unit:m)  
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(a) The FEM (4335 elements, 60072 DOFs) 

 

(b) The IGA (250 elements, 1764 DOFs) 

Fig. 7 Comparison of the von Mises stress for the quarter of a block for 225p MPa (unit:Pa)  

 

In this work, the force-displacement curve is also an important aspect to be analyzed. To this end, 

two typical points as indicated in Fig. 3, A(5m,0,10m) and B(0,10m,10m), are chosen to visualize such 

load-displacement curve results. It is observed from Fig. 3b that the displacement in y-direction at point 

A and that in x-direction at point B are equal to zero. Thus, Figs. 8 and 9 represent the 

load-displacement curve on the point A and B, respectively. The accuracy of the developed IGA can be 

confirmed as very good agreements between two solutions are obtained.  

 

 

Fig. 8 Comparison of the load- x-displacement curves at point A between the developed IGA and the 

FEM. 
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Fig. 9 Comparison of the load- y-displacement curves at point B between the developed IGA and the 

FEM. 

 

Further study for mesh convergence using the proposed IGA is shown in Fig. 10, representing the 

variation of x-displacement along the inner bottom edge of the cylinder hole (i.e., the red curve in Fig. 

3b) with different meshes. Not surprisingly, our own numerical experiment has found that adequate fine 

meshes can provide acceptable solutions, whereas coarse meshes, e.g., 4x2x2 elements, destroy the 

accuracy. For more information, we also report in Table 1 the computational time and the number of 

iteration during loading by the Newton-Raphson nonlinear IGA. As expected, the computational time 

and the number of iteration significantly increase when the meshes get finer. 

 

 

 

Fig. 10 The variation of x-displacement along the inner bottom edge of the cylinder hole with different 

meshes using the developed IGA method. 

 

Table 1 
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Information of computational time and number of iteration during loading by the IGA 

No. of elements 4×2×2 8×4×4 12×6×6 16×8×8 

Computational time/s 58 691 2535 4027 

No. of Iteration during the first 

loading 2 2 2 2 

No. of Iteration during the second 

loading 9 9 9 9 

No. of Iteration during the third 

loading 15 15 16 16 

No. of Iteration during the fourth 

loading 32 44 48 51 

No. of Iteration during the fiveth 

loading 76 91 98 104 

 

 

 

 

Additionally, the plastic regions of the quarter of the block calculated are studied. The plastic 

regions calculated by our proposed IGA based on Bézier extraction compared with those derived from 

the FEM (ABAQUS) are thus shown in Fig. 11. It is interesting to see that the plastic zone given by the 

IGA is in good agreement with the plastic zone by using FEM.  

 

 

 

(a) The FEM (4335 elements, 60072 DOFs)  

(b) The IGA (250 elements, 1764 DOFs) 

Fig. 11 Comparison of the plastic regions for the quarter of a block for 225p MPa  between the 

developed IGA and the FEM.  

 

5.2 Partially loaded elasto-plastic block 

 The second example is a tridimensional elasto-plastic block under partial compression as shown 

in Fig. 12a. The material parameters used for the analysis are 6900 MPaE   and 0.3  , and 

0 =500 MPa
s

 . The maximum acting load for this example is 800p MPa . Due to the double 

symmetry, only one quarter of the block as depicted in Fig. 12b is sufficient to be modeled to save the 

computational time. A physical mesh of 10 10 10   elements is taken for the simulation of IGA 

based on Bézier extraction, while a mesh of 20 20 20   Q20 elements is for the FEM analysis, see 
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Fig. 13. Similarly, the distributions of the displacement and the von Mises stress of the quarter of the 

block, the force-displacement curve, and the plastic regions, computed by the FEM (ABAQUS) and the 

proposed IGA based on Bézier extraction are analyzed. Figs. 14-17 respectively show comparisons of 

the von Mises stress and three components of displacements between two approaches. Good 

agreements between both solutions are obtained. The load-z-displacement curve at point A(0,0,10)m 

plotted in Fig. 18 calculated by the IGA agrees well with the curve obtained by the FEM. The plastic 

regions are depicted in Fig. 19. Overall, the results of both approaches are similar, but the FEM yields 

the plastic zone slightly larger than the IGA.  

 

 

 

(a) 

 

(b) 

Fig. 12 Schematic representation of the full model of a block under partial compression (a), and its 

quarter model (b). 
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(a) FEM 20×20×20                       (b) IGA 10×10×10 

Fig. 13 Mesh discretization of a quarter of the block using the FEM (ABAQUS) (a) and the developed 

IGA (b) 

 

(a) The IGA         (b) The FEM   

Fig. 14 Comparison of the von Mises stress of a quarter of the block between the 

developed IGA and FEM (unit: Pa). 

 

(a) The IGA         (b) The FEM 

Fig. 15 Comparison of the displacement xu  of a quarter of the block between the 
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developed IGA and FEM (unit:m) 

 

(a) The IGA         (b) The FEM 

Fig. 16 Comparison of the displacement 
y

u  of a quarter of the block between the 

developed IGA and FEM (unit:m) 

 

 

 

(a) The IGA         (b) The FEM 

Fig. 17 Comparison of the displacement zu  of a quarter of the block between the 

developed IGA and FEM (unit:m) 
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Fig. 18 Comparison of the load- z-displacement curve at point A (0,0,10)m between the 

developed IGA and FEM. 

 

 

    

(a) The IGA         (b) The FEM 

Fig. 19 Comparison of the plastic zone of a quarter of the block for 800p MPa  

between the developed IGA and FEM. 

 

 

 

5.3 A three-dimensional curved beam 

The last numerical example deals with a more complicated configuration, a curved beam as 

shown in Fig. 20, in which the inner and the outer radii are set to be 0.8a  m and 1b  m, and 

length 1L  m. The maximum acting load for this curved beam is 49p MPa . For the boundary 

conditions: the displacements in x- and z-directions at the left face (x=0) are fixed. The displacements 

in y-direction at the right face (y=0) are also fixed. Typical meshes used for the FEM and IGA 



 22 

simulations are shown in Fig. 21. Similar to the previous examples, the calculation results of the two 

methods are subsequently shown in Figs. 22-24, in which the displacements, the von Mises stress, and 

force-displacement curve at point A(0.8, 0,1)m, and the plastic regions obtained by the developed IGA 

match well with those using FEM (ABAQUS).  The plastic zone of this curved beam obtained by the 

IGA agrees well with the FEM. It is important to note that, while our IGA always offers efficient 

solutions with less effort as a smaller number of DOFs is used. In contrast, the FEM however requires 

much larger DOFs.  

 

 

Fig. 20 Schematic representation of a three-dimensional curved beam. 

 

(a) FEM 20×10×20                      (b)IGA 8×6×8     

Fig. 21 Mesh discretization of the curved beam by the FEM (a) and the IGA (b) 
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(a) The IGA         (b) The FEM   

Fig. 22 Comparison of the von Mises stress of the curved beam between the developed IGA and FEM 

 

(a) The IGA         (b) The FEM 

Fig. 23 Comparison of the displacement xu  of the curved beam between the 

developed IGA and FEM. 

 

 

  

(a) The IGA         (b) The FEM 

Fig. 24 Comparison of the displacement 
y

u  of the curved beam between the 
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developed IGA and FEM. 

 

  

(a) The IGA         (b) The FEM 

Fig. 25 Comparison of the yielded regions of the curved beam between the developed 

IGA and FEM. 

 

 

 

Fig. 26 Comparison of the load- x-displacement curve at the point A(0.8,0,1)m between 

the developed IGA and FEM. 

 

 

6. Conclusions 

In this paper, we have extended the IGA based on Bézier extraction of NURBS to the simulation 

of elasto-plastic large deformation problems in three-dimension (3-D), demonstrating the accuracy and 

effectiveness of the present method. All numerical examples of the elasto-plastic large deformation 

problems have additionally been computed using FEM based on ABAQUS, and their computed results 
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have been used as reference solutions for validation of the accuracy of the present IGA. The 

displacements, distributions of von Mises stress, convergence, plastic yielded region, and the 

force-displacement curves computed by the IGA are investigated and compared. In all cases, good 

agreements between two solutions are found. It is indicated from the obtained results that the IGA 

based on Bézier extraction of NURBS can effectively be used to solve the problems of elasto-plastic 

large deformation in 3-D, by which less elements than the FEM but can yield acceptable accuracy. 

More importantly, among many desirable features of the IGA, and the distortion issue of the meshes 

encountered when modeling elasto-plastic large deformation problems often needs a special treatment 

from the traditional FEM approaches, which however is not the case in terms of the IGA.  
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