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ABSTRACT

Hybrid structures with different materials have aroused increasing interest for 

their lightweight potential and excellent performances. For example, steel-aluminum 

hybrid structures could take advantage of both the light weight of aluminum and the 

high strength of steel in engineering applications. This study explored the optimization 

design of steel–aluminum hybrid structures for the highly nonlinear impact scenario. A 

metamodel based multi-response objective-oriented sequential optimization was 

adopted, where Kriging models were updated with sequential points. It was indicated 

that the sequential sampling strategy was able to obtain a much higher local accuracy 

in the neighborhood of the optimum and thus to yield a better optimum, although it did 

lead to a worse global accuracy over the entire design space. Furthermore, it was 

observed that the steel–aluminum hybrid structure was capable of decreasing the peak 

force and simultaneously enhancing the energy absorption, compared to the 

conventional mono-material structures.
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sampling, Crashworthiness optimization, Kriging
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1 Introduction

In recent years, protective structures have aroused extensive attention for impact 

and blast loadings [1]. S-shaped thin-walled structures have been widely used as a front 

rail in the automotive engineering to absorb energy during frontal crashes, as depicted 

in Fig. 1. However, the requirements for load withstanding capacity at different areas 

are not uniform [2, 3]. To address this issue, hybrid materials, such as steel-aluminum 

hybrid structure, were investigated to improve passenger safety and weight efficiency. 

In this regard, Zhou et al. [4] explored the crashworthiness and lightweight design of 

steel-aluminum structure and found that steel-aluminum hybrid structure could increase 

the total absorbed energy by 117.83% and reduce the peak force and total mass by 16% 

and 7.73%, respectively, compared to the base mono material model. Hosseini-Tehrani 

and Nikahd [5] pointed out that the steel-aluminum S-shaped rail could absorb more 

energy, produce a lower peak force and offer a lighter weight than the mono material 

counterpart. However, these above-mentioned studies are limited to the analysis of the 

crushing performance of the hybrid structure. In practical application, it needs to be 

further explored how to design the thicknesses and usage ratios of individual materials 

to excavate the potential of a hybrid structure. 

Fig. 1 S-shaped front rail in automotive engineering

Due to high nonlinearity of the crashworthiness problem, direct coupling the 

simulation model with an optimization algorithm is rather time-consuming or even 

prohibited in practice. As an alternative, the surrogate modeling or metamodeling 

technique is widely adopted in crashworthiness optimization [6]. In this regard, Qi et 

al. [7] combined the response surface metamodel with multi-objective optimization to 

improve the energy absorption of thin-walled rails under an oblique impact loading. 

Khakhali et al. [8] conducted a robust optimization design to maximize the energy-

absorbing capacity for S-shaped box beams using polynomial metamodels. Fang et al. 
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[9] conducted the multiobjective optimization of the functionally graded foam-filled 

tube under the lateral load based upon the multiobjective particle optimization 

(MOPSO) algorithm and Kriging modeling technique. Xiao et al. [10] investigated the 

crashworthiness of a novel functionally graded foam-filled bumper beam by utilizing 

the Kriging model. Qiu et al. [11, 12] proposed different multi-cell hexagonal tubes and 

compared their crashworthiness performance by employing Kriging surrogate model. 

Gao et al. [13] optimized the energy absorption capacity of foam-filled double ellipse 

tubes based on the Kriging model. Yamazaki and Han [14] aimed to maximize the 

crushing energy absorption of cylindrical shells based upon the response surface 

approximation technique. Hou et al. [15] conducted the crashworthiness optimization 

of corrugated beam guardrail based on RBF-MQ surrogate model. Wang et al. [16] 

developed a metamodeling optimization system and used to improve the crash behavior 

of the tube structure. Sun et al. optimized the crashworthiness of a novel criss-cross 

tubes based on the radial basic function surrogate model[17]. Fang et al. 

[18]comprehensively reviewed different surrogate models used in the crashworthiness 

optimization problem. 

While the surrogate modeling is widely used in crashworthiness optimization, it is 

generally known that the accuracy of the metamodels largely depends on the number 

of training points [19]. Thus, it becomes a key issue to gain a satisfactory accuracy 

using the minimum number of sample points. Conventional one-stage sampling is used 

to capture the global trend of the real response with less flexibility, as the sampling 

points cannot be changed during the optimization. As a result, the one-stage sampling 

will not be able to guarantee a good local accuracy especially at the neighborhood 

region of the optimum. On the other hand, a more flexible alternative, which is referred 

to as sequential sampling strategy, can be utilized to refine the previous surrogate model 

with adding new sample points in an iterative fashion during the optimization [20]. 

Among various sequential sampling approaches, the objective-oriented sampling is a 

variant tailored for design optimization which takes the objective design into 

consideration [21-23]. However, in most of the previous works, objective-oriented 

sampling only deals with one response which combines objective and constraints. 
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While Chen et al. [24] proposed an effective multi-response and multi-constraint 

metamodeling technique and introduced uncertainty quantification to take into account 

the confidence interval because of insufficient samples. Since a series of Boolean 

operation was utilized, this approach could deal with subspace with arbitrary shapes. In 

this paper, this sequential sampling strategy is utilized to optimize the steel–aluminum 

hybrid side rail structure.

This paper is structured as follows. Section 2 introduces the finite element 

modeling technique for both base model and hybrid steel-aluminum structure and 

described the optimization problem for the hybrid structure. Section 3 provides the 

detailed information about the multiresponse objective-oriented sequential sampling 

method. Section 4 discusses the optimization results and the effect of sequential 

sampling technique. Finally, the conclusions are drawn in Section 5.

2 Crashworthiness of a hybrid side rail 

2.1 Finite element modeling and experimental validation 

The structure studied herein is a thin-walled S-shaped front rail with a rectangle 

cross-section subjected to an axial impact loading (see in Fig. 2). The model was 

developed by using explicit non-linear finite element software LS-DYNA. The 

Belytschko-Tsay reduced integration shell elements with five integration points 

through thickness were adopted to model the tube. Stiffness-based hourglass control 

was used to avoid spurious zero energy deformation modes and reduced integration was 

utilized to avoid volumetric locking. “Automatic single surface” contact was selected 

to the thin walls themselves to avoid interpenetration of tube folding.

Fig. 2 Shape and cross section for S-shaped structure (thickness=1.3 mm)

The baseline design was made of mild steel, with the following properties: density 

=7800 kg/m3, Young’s modulus =206 Gpa, Poisson’s ratio =0.3. The S-shaped tube 

was modeled by material model 24 in LS-DYNA, having a piecewise linear elastic-
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plastic behavior with strain hardening. To accurately describe the hardening 

characteristic in the FE model, the relationship between the plastic strain and plastic 

stress are shown as in Fig. 3 [25].

Fig. 3 Strain hardening data for mild steel for base model

As pointed out by Pan et al.[26] and Zhao et al. [27], the localized effect of welding 

properties on the global crashworthiness could be neglected, and thus the welding 

connection between two parts can be modeled with coincident nodes. The moving end 

of the tube was connected to the rigid body with the keyword 

*CONSTRAINED_EXTRA_NODES. The constant velocity of 2000 mm/s was 

adopted to consider the low-velocity impact as in reference [4]. For the low-velocity 

impact, strain rate effect of the materials was considered throughout the optimization 

process below. The load was applied at the center of gravity of this rigid body. The rear 

end of the tube was fully clamped. The boundary condition applied to the hybrid 

structure is shown in Fig. 4. 

In order to determine the size of elements, a convergence test was conducted to 

minimize the effect of mesh refinement on the accuracy of the numerical results in 

terms of the energy absorption and the maximum force. It was found that 5 mm was the 

optimal mesh size of the tube, as it could reduce computing time without sacrificing the 

simulation accuracy too much.

Fig. 4 The boundary condition applied to the hybrid structure

2.2 Experimental validation

The quasi-static experimental data was used to validate the FE modeling approach, 

since experimental data for the low-velocity impact is not available. Specifically, the 

experimental test was conducted with the cross-head velocity of 5 mm/min [28]. 

Therefore, a load velocity of 0.5 mm/s with a smooth ramp [28] was used to simulate 

the quasi-static load condition for the purpose of experimental validation. Also, the 
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strain rate effect was not considered in the simulation model when doing experimental 

validation. It can be seen that generally the simulation results of both the deformation 

pattern (Fig. 5) and load energy response (Fig. 6) agree well with the corresponding 

experimental results. 

Fig. 5 Experimental [29] and numerical results for global deformation

Fig. 6 Comparison of energy-displacement responses between the numerical and 
experimental results

2.3 Hybrid steel-aluminum S-shaped side rail structure

For the hybrid steel-aluminum structure, the high-strength steel DP300/500 was 

adopted as the base steel material, with the following mechanical properties: density 

=7800 kg/m3, Poisson’s ratio =0.3, Young’s modulus =206 Gpa, and the relationship 

between stress and strain rate (Fig. 7) was also considered. Aluminum alloy AA6060-

T4 was employed as the front-end material. Its mechanical properties is described as 

follows: density =2700 kg/m3, Poisson’s ratio =0.3, Young’s modulus =68.2 Gpa, and 

initial yielding stress = 80 Mpa [30]. The relationship between the true stress and plastic 

strain is shown in Fig. 8, which was defined to accurately describe the hardening effect 

in FE model. Since the aluminum is insensitive to the strain rate, the rate-dependent 

effect was not measured.

Fig. 7 Relationship between plastic strain and true stress at various strain rates for 

DP300/500

Fig. 8 Strain hardening data for AA6060T4
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2.4 Formulation of the optimization problem

To systematically study and optimize the crashworthiness of the S-shaped front 

rail structure, it is essential to determine the crashworthiness criteria before the 

optimization process. There have been many different criteria which are available to 

evaluate the crashing characteristics of different structures. Energy absorption (EA) is 

widely used to estimate the energy absorption capability of absorbers as follows

(1)0
( ) ( )d

d
EA d F x x 

where F(x) is the crashing force in the axial direction and x is the crash displacement. 

Obviously, a higher EA value indicates a higher capability of energy absorption. In our 

case, when the displacement reaches 200 mm the front rail has experienced sufficient 

deformation (in particularly two plastic hinges have formed at a much earlier time). 

After 200 mm, the reaction force remains at a low level and less energy will be 

absorbed. In other words, further deformation could provide limited benefits of energy 

absorption. Instead, it could lead to severe intrusion to occupant compartment, which 

is prohibited in real-life applications. Therefore, EA during the first 200 mm was 

adopted as a performance indicator.   

In automotive applications, a large impact force often leads to a high acceleration 

and severe injury or even death of occupants. Therefore, the peak impact force Fmax 

represents a critical indicator to the occupant survival rate when an impact occurs. In 

this study, the objective was to maximize EA while constraining the peak force and the 

total mass less than the predefined levels(  and M* respectively). Besides, the rear *
maxF

part of the hybrid rail was high-strength steel for offering the required stiffness and 

preventing severe intrusion to the occupant compartment in practical applications, 

while the front part was aluminum to lower the peak force. The length ratio of the 

aluminum part to the whole length (λ=L1/L), the aluminum thickness (tAL) and the steel 

thickness (tAHHS) were taken as the design variables (Fig. 9). Thus, this optimization 

problem could be expressed mathematically as follows:
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Fig. 9 Design variables
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To improve the computational efficiency, the metamodeling or surrogate modeling 

technique was adopted. The surrogate model can provide an approximate functional 

relation between design variables and specific responses with a moderate number of 

computational analyses [31]. Therefore, after generating the training points, various 

metamodels, namely Polynomial response surface (PRS), moving least square (MLS), 

Kriging (KRG) and radial basis function (RBF) can be implemented to evaluate the 

performance responses. The Kriging model is chosen herein mainly because the 

following two reasons: (1) it allows better capturing nonlinear response with respect to 

usage of the two materials and (2) the predicted error of its estimated response value 

can be easily obtained as a by-product that will form a basis of sequential sampling 

strategy to be outlined below.

The Kriging model was originally developed for mining and geostatistical 

applications involving spatially and temporally correlated data [32]. The Kriging model 

assumes the deterministic response of a system to be a stochastic process function , ( )y x

consisting of a regression model and a stochastic error [33]:

(3)
T( ) ( ) ( )y z x f x xβ

where  is the column vector of regression parameters, ;  is the β T
1 2[ , ,..., ]p  β ( )f x

column vector of basis functions, ; p denotes the number T
1 2( ) [ ( ), ( ),..., ( )]pf f ff x x x x

of basis functions;  represents a stochastic parameter with zero mean, variance , ( )z x 2

and nonzero covariance. The covariance matrix of  is given as:( )z x

(4)
2

[ ( ), ( )] [ ( , )]i j i jCov z z Rx x R x x
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where R is a correlation matrix defined by Gaussian correlation function  as ( , )i jR x x

follows:

(5)

2

, ,
1

( , ) expi j

N

k i k j k
k

R x x


     
x x

where  is the unknown correlation parameter used to fit the model.k

Then, the predicted estimate  of response is given as:ˆ( )y x ( )y x

(6)
T 1T ˆˆ( ) ( ) ˆ(x) ( )sy   x f x β r R y Fβ

where  is the response vector of the training points 1 2[ ( ), ( ),..., ( )]
ss ny y y Ty x x x sn

which are obtained from the finite element analyses, and 1 2{ , ,..., }
ss nx x x x

 is a matrix.1 2[ ( ), ( ),..., ( )]
sn TF f x f x f x sn p

 is a correction vector that implies how        1 2

T
T , , ,..., , nsR R R 

 
r x x,x x x x x

close between training points and untried points is.  is the general least square β̂

estimator given as follows:

(7)
T -1 -1 T -1ˆ

sβ (F R F) F R y

The estimate to the variance of training data from the global model is described as

(8)

2
T

ˆ
ˆ ˆ( ) ( )s s

sn
 

-1y - Fβ R y - Fβ

For calculating  in Eq. (5), the maximum likelihood estimates can be used by solving k

the following the maximization problem over the interval , as0k 

(9)

 2

max
ˆln ln

2
sn  

 
 
 

R

where both  and are the functions of .2̂ R k

Kriging model provides estimation to the prediction error from an unobserved 

point, which is also called as the mean squared error (MSE):

(10)

1T
2 2 T Tˆ ˆ( )

( )
1 [ ( ) ( )]

( )
s 

             
   

x
f x0 F

f x r x
r xF R

In this study, we adopt the ordinary Kriging model [34], in which the regression 
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can be reduced to a simple constant term (i.e., ) without significant loss in T( ) f x β β

model fidelity. As a result, turns out to be a column vector filled with unity.F

3 Multi-Response Objective-Oriented Sequential Sampling procedure

Several previous works [35-42] have shown certain advantages provided by a 

particular sequential sampling strategy. In this study, an objective-oriented sampling 

strategy addressed in the literature [24] was applied to the crashing performance 

optimization. At the initial iteration, only a small number of sampling points were 

prepared, and then three new points selected in the feasible region were added to update 

the metamodels at each iteration.A flowchart of the proposed sequential sampling 

strategy for refining Kriging-based optimization is provided in Fig. 10.

Fig. 10 Flowchart of the sequential sampling strategy

Step1: The sampling points at the first iteration were considered to estimate the global 

trend of the responses. In this study, the optimal Latin Hypercube sampling（OLHS） 

method was used to generate 15 initial sampling points.

Step2: Fit the Kriging metamodels for the objective and  and for the ˆ ( )objf x 1ˆ ( )g x 2ˆ ( )g x

two constraints. The prediction error of the Kriging models from an unobserved point 

could be estimated by the mean squared error (MSE), which is related with the variance 

of training data and the position of predicted point. In this study, the sampling error was 

taken into consideration by calculating the MSE( )for the objective and MSE( ) ˆobj ˆ
ig

for the constraint metamodels. 

( )% confidence level (CI) for objective metamodel:1 

[ , ] (11)
ˆ ˆ( ) ( )obj ojbf x k x ˆ ˆ( )+ ( )obj ojbf x k x

As self-evident ( )% confidence level (CI) for constraint metamodels:1 

[ , ] (12)ˆ ˆ( ) ( )
ii gg x k x ˆ ˆ( )+ ( )

ii gg x k x
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Here k denotes the constant determined by the confidence level.

Step3: Determine the feasible regions and run optimizations for the best and worst cases 

using the artificial bee colony algorithm [43, 44]. The optimal problem was defined in 

Eq. (13) and Eq. (14) for the best and worst case respectively, considering the 

confidence level.

(13)

1 1

2 2

ˆ ˆ. . + 0
ˆ ˆ+

ˆ ˆmax (

0

) ( )

g

obj j

g

obf x
s t g k

g

k x

k








 



(14)

1 1

2 2

ˆ ˆmax
ˆ ˆ. . 0
ˆ ˆ 0

( ) ( )obj obj

g

g

f x k x
s t g k

g k






 

          

 



Step4: Check the result convergence by comparing the objective value between the best 

( ) and worst ( ) cases. If the difference was smaller than 5%, current optimal x* BO WO

was updated as the final optimal point. If not, go to Step5.

Step5: Identify the regions of interest determined by the objective function . In ( )obj x

the whole design space, the region where the objective solution was worse than the 

worst case ( ) or better than the best case (1
ˆ ˆ( )= ( )obj obj Wx f x k O  

 would be ruled out.  was calculated as 2
ˆ ˆ( )= ( ( ) )obj obj Bx f x k O    ( )obj x

(15)1 2( )= max( ( ), ( ))obj x x x  

Step6: Identify maximum feasible region ( ) based on the two constraints ( )g x

considering quantified uncertainties,

(16)ˆ ˆ( ) min( ( ) ( )) 1,2
ig i gx g x x i     

Step7: Synthesize the final interest region, which was the intersection of the regions 

determined in Step 5 and Step 6 by Eq. (17).This region was considered to be the new 

feasible region for determination the location of the new training points. The final 

interest region would shrink with the process of the level set sequential sampling 

method.
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(17)( min( ( ), ( ))SEQ obj gx x x  ）

Step8: Select the new points for next iteration by solving the maximum-minimum 

distance problem as shown in Eq. (18).

(18)

max min ( , )
. . ( ) 0

n i

SEQ n

d x x
s t x  

Here the xn and xi denote the location of the new selected and previous sample points, 

respectively.

Step9: Go to Step2. Update the Kriging metamodels for objective and constraints with 

both the added points and the previous samples.

4 Results and discussion

4.1 Optimization results 

In this paper, the optimal problem has three responses, i.e. one objective and two 

constraints. The metamodels were constructed based on 15 initial samples, which 

uniformly spread over the whole design space, using Latin Hypercube sampling

（OLHS）method. The sequential sampling strategy was conducted by adding three 

new training points at each stage. Finally, the solution was considered to be converged 

after five sequential sampling stages, and the final optimum is presented in Table 1, 

compared with the results of the baseline model. In addition, the crashworthiness of 

mono high-strength steel was also optimized based on 20 OLHS points and polynomial 

response surface models. As shown in Table 1, the pure high-strength steel performed 

the worst in peak force and energy absorption due to the high strength of the material. 

The Fig. 11 plots the deformation mode of the baseline model and the optimal hybrid 

model, respectively. Obviously, the optimal solution of the hybrid structure had a much 

smaller maximum force than the base model, which indicates that the optimal hybrid 

structure was more likely to increase the occupant survival rate. In addition, the energy 

absorption of the hybrid structure was increased by 11.4% with the 7% mass reduction 

than the baseline model. 

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708



13

Table 1 Comparison between the optimal hybrid model and the base model

In brief, the optimal steel-aluminum hybrid structure generated from the sequential 

sampling strategy showed a better performance in terms of crashworthiness and weight 

efficiency.

(a) baseline model   (b) optimal hybrid model

Fig. 11 Deformation mode

Fig. 12 Comparison of the force impact force between the optimal hybrid model and the base 

model 

As the aluminum at the front end of the hybrid model was less rigid than the mild 

steel of the base model, the hybrid model experienced a lower peak force than the mild 

steel model (see Fig. 12). Moreover, due to the lightweight effect of aluminum, the 

high-strength steel part of the hybrid structure could be much thicker than that of 

baseline model (see Table 2). As the bending hinge occurred in the high strength steel 

part, the hybrid model could provide more resistance to the bending deformation as 

shown in Fig. 12, offering more energy absorption. Overall, the hybrid steel-aluminum 

structure could enhance the energy absorption while maintaining the peak force and 

mass at an allowable level). 

4.2 Effect of sequential technique 

Fig. 13 shows the history of the sequential sampling strategy, where the squares 

denote the previous samples, the diamond represents the optimum at the current stage 

and the circles stand for the selected training points for next iteration. The boundary 

surfaces of region of interested obtained by Eq. (17) are displayed by the blue surfaces. 

It could be seen that the region of interest, i.e., the space between the two blue surfaces, 

shrank gradually toward the final optimum as the sequential sampling strategy 

progresses with three points added per iteration. Obviously, the region of interest 

always embodied the optimum throughout the whole optimization process. It was also 

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



14

observed that the sample points located in the neighborhood of the optimum became 

denser. As a result, the local accuracy at this region was improved with the sequential 

strategy, which could help attain the optimum design.

 

Fig. 13 Sampling region of the sequential strategy. (squares: previous points; circles: 

newly selected points; diamonds: optimal solution)

To show its effectiveness, the result of the sequential sampling strategy was 

compared with that of the one-stage strategy with the same total number of sampling 

points, as shown in Table 2. 
Table 2 Optimization results obtained from the two sampling strategies

To evaluate the accuracy of the metamodels, additional 5 checking points 

spreading over the whole design region was generated using the OLHS method. 

Two commonly-used metrics, i.e. average absolute error eavg relative maximum 

absolute error emax, as formulated in Eqs. (19) and (20) respectively, were selected to 

assess the accuracy of the metamodels constructed by the sequential sampling and one- 

stage strategies.

(19)1

| |1
| |

d
i i

avg
i i

y ye
d y

 
  

 


(20)
max

| |max
| |
i i

i d
i

y ye
y

 
  

 

As shown in Table 3, the one-stage sampling strategy seemed to perform better in 

the global accuracy than the sequential sampling strategy. However, the optimum 

generated by the sequential sampling strategy was much better than the one-stage 

solution and yielded more accurate results by comparing the predicted and real 

responses. Although the optimization based on the one-stage sampling strategy had a 

higher accuracy over the entire design domain, it failed to find the true optimum. On 

the other hand, the sequential sampling strategy generated many points in the 

neighborhood of the optimum. As a result, the local accuracy was greatly improved, 

which was much more critical for the optimization.
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Table 3 Accuracy assessment of metamodels in the entire design space

In the local region of , and 0.22 0.25  2.6 2.9ALmm t mm 

, additional 5 examination training points were generated by the 1.3AHHSmm t mm  

OLHS method. As shown in Table 4, the sequential sampling strategy was demonstrate 

to achieve a much higher local accuracy than the one-stage sampling strategy. Because, 

in this case, the sequential sampling strategy successfully generated more sampling 

points in the neighborhood of the optimal solution, which helps to improve the local 

accuracy of the established metamodels and seek the true optimal design. 
Table 4 Accuracy assessment of the metamodels in the neighborhood of the optimum

5 Concluding remarks

To obtain the optimal thicknesses and usage ratios for each individual material in 

a steel–aluminum hybrid S-shaped front side rail, a metamodel-based optimization was 

developed, which integrating with the multi-response objective-oriented sequential 

sampling strategy. The optimization problem was defined to maximize the EA (energy 

absorption) with the constraints of mass and peak force. To improve the optimization 

efficiency, the sequential sampling strategy was used to update the Kriging metamodel 

adaptively by adding certain training points at each iteration. 
Through a comparative study of the sequential sampling and one-stage sampling 

strategies, it was found that although the one-stage sampling method achieved more 

accurate metamodels over the whole design domain, it may obtain a false optimum due 

to the lower local accuracy. On the other hand, the sequential sampling strategy 

generated more training points in the neighborhood of the optimum, thereby achieving 

higher local accuracy and obtaining the true optimum successfully. After 5 iterations of 

sequential sampling with a total of 30 training points, the optimal thicknesses and usage 

ratios for the hybrid structure was identified. Compared with the base model, t the steel-

aluminum hybrid structure increased the energy absorption while constraining the peak 

force and total weight at a lower level.
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Table Captions

Table 1 Comparison between the optimal hybrid model and the base 

Table 2 Optimization results obtained from the two sampling strategies

Table 3 Accuracy assessment of metamodels in the entire design space

Table 4 Accuracy assessment of metamodels in the neighborhood of the optimum
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Figure Captions

Fig. 1 S-shaped front rail in automotive engineering

Fig. 2 Shape and cross section for s-shaped structure (thickness=1.3 mm)

Fig. 3 Strain hardening data for mild steel

Fig. 4 The boundary condition applied to the hybrid structure

Fig. 5 Experimental [29] and numerical results for global deformation

Fig. 6 Comparison of the numerical and experimental energy-displacement responses

Fig. 7 Relationship between plastic strain and true stress at various strain rates for DP300/500

Fig. 8 Strain hardening data for AA6060T4

Fig. 9 Design variables

Fig. 10 Flowchart of the sequential sampling strategy

Fig. 11 Deformation mode

Fig. 12 Comparison of the force impact force between the optimal hybrid model and the base model

Fig. 13 Sampling region of the sequential strategy. (squares: previous points; circles: newly selected 

points; diamonds: optimal solution)
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Table 1 Comparison between the optimal hybrid model and the base model

λ
tbase

(mm)

tAHHS

(mm)

tAL

(mm)

Fmax

(kN)
EA
(J)

M
(kg)

Baseline model / 1.3 / / 28.271 1364.9 1.670
Hybrid model 0.2476 / 2.8022 1.2781 26.174 1530 1.355
Mono AHHS / / 1.2138 / 28.271 1247 1.559
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Table 2 Optimization results obtained from the two sampling strategies

λ tAHHS(mm) tAL(mm) Fmax(kN) EA(J) m(kg)

0.2476 2.8022 1.2781 Predicted 21.932 1552.4 1.547
Real 21.949 1520.0 1.554

Sequential 
sampling

Error 0.14% 2.08% 0.45%
0.1170 2.6669 1.0894 Predicted 21.384 1568.2 1.533

Real 18.517 1144.4 1.375
One-stage 
sampling

Error 13.4% 27.02% 10.31%
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Table 3 Accuracy assessment of metamodels in the entire design space

metrics Fmax EA m
Sequential sampling eavg(%) 6.24 8.20 2.40

emax(%) 11.58 16.60 7.93
One-stage sampling eavg(%) 3.08 2.76 2.76

emax(%) 5.71 8.63 7.72
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Table 4 Accuracy assessment of metamodels in the neighborhood of the optimum

metrics EA Fmax m
Sequential sampling eavg(%) 0.72 2.85 1.09

emax(%) 1.45 3.98 1.46
One-stage sampling eavg(%) 3.40 3.05 1.89

emax(%) 5.45 4.67 2.91
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Fig. 1 S-shaped front rail in automotive engineering
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40 mm

1000 mm

40 mm

Fig. 2 Shape and cross section for s-shaped structure (thickness=1.3 mm)
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Fig. 3 Strain hardening data for mild steel for base model
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Fig. 4 Boundary condition applied to the hybrid structure
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Fig. 5 Experimental [29] and numerical results for global deformation
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Fig. 6 Comparison of the numerical and experimental load-displacement responses
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Fig. 7 Relationship between plastic strain and true stress at various strain rates for 

DP300/500
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Fig. 8 Strain hardening data for AA6060T4
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Fig. 9 Design variables
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Step1 :Generate initial samples using OLHS 

Step2： Fit/Update the Kriging metamodels 
for responses and quantify uncertainty

Step3: optimize with the metamodels 
for the worst and best cases 

Step4: converges?

Step5: Identify the region of interest
 for the objective function

Step6: Indentify interest region 
based on the constraints

Step7: Identify the sampling region

Step8: Generate new sample points

End

YES

N0

Fig. 10 Flowchart of the sequential sampling strategy
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(a) baseline model    (b) optimal hybrid model

Fig. 11 deformation mode
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Fig. 12 Comparison of the force impact force between the optimal hybrid model and the base 

model 
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a) Sampling region of initial iteration b) Sampling region of Iteration 1

d) Sampling region of Iteration 5c) Sampling region of Iteration 3

Fig. 13 Sampling region of the sequential strategy. (squares: previous points; circles: newly 

selected points; diamonds: optimal solution)
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Highlight

1. Steel–Aluminum Hybrid structures were optimized to achieve better 
crashworthiness

2. Artificial bee colony (ABC) algorithm was adopted to seek the optimum
3. A multi-response objective-oriented sequential sampling strategy was compared 

with one-stage sampling strategy




