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Abstract 
 

This paper presents a half-analytical elastic solution convenient for parametric 

studies of 2D cracked pavements. The pavement structure is reduced to three elastic 

and homogeneous equivalent layers resting on a soil. In a similar way than the 

Pasternak’s modelling for concrete pavements, the soil is modelled by one layer, 

named shear layer, connected to Winkler’s springs in order to ensure the transfer of 

shear stresses between the pavement structure and the springs. The whole four-layer 

system is modelled using a specific model developed for the analysis of 

delamination in composite materials. It reduces the problem by one dimension and 

gives access to regular interface stresses between layers at the edge of vertical cracks 

allowing the initial debonding analysis. In 2D plane strain conditions, a system of 

twelve-second order differential equations is written analytically. This system is 

solved numerically by the finite difference method (Newmark) computed in the free 

Scilab software. The calculus tool allows analysis of the impact of material 

characteristics changing, loads and locations of cracks in pavements on the 

distribution of mechanical fields. The approach with fracture mechanic concepts is 

well suited for practical use and for some subsequent numerical developments in 

3D. 

 

Keywords: Calculus tool, half-analytical solution, M4-5nW, pavement, cracks, 

debonding. 

 

1 Introduction 
 

Most of pavement structures subjected to the climatic hazards and repeated passage 

of heavy loads (bus, truck, aircraft, etc.), reach their limit of life and need 

rehabilitation. They can be reinforced by several methods such as adding or 

replacing layers. Depending on the type of roads, these layers are made with 

different types of materials such as recycling bituminous material, cement concrete 
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layers especially in France for urban area and/or glass grids. Taking into account the 

possibility of presence of discontinuities in a pavement structure is then important 

for analysing its final service life and predicting its failure mode [1]. Nowadays, 

these reinforcements are poorly mastered because they still are generally proposed 

empirically or on the basis of design methods that do not take into account partial 

discontinuities at the interfaces between layers and/or vertical cracks in multilayer 

pavement structures. Indeed, most of the design pavement methods, such as the 

French method [2], use the elastic Burmister’s axisymmetric model [3]. This 

modelling as well as advance ones developed for 3D viscoelastic pavement tools, for 

instance ViscoRoute© [4-6], cannot take into account vertical discontinuities and/or 

partial delamination encountered in these multilayer damaged structures. So far, 

there is no tool for engineers to calculate and analyse the mechanical fields 

responsible of the debonding between layers in the cracked pavement structures. The 

main objective is to propose practical tools for the design of appropriate and 

sustainable solutions of pavement reinforcement. To be widely used in engineering 

offices, these tools must be fast and easy to implement in software. 

The analysis of multilayer structures partially cracked may be difficult due to 

singularities located at the interfaces between layers of material near the edges or 

vertical cracks [7-8]. Many works, preliminary on theoretical modelling [9-11], then 

on experimental developments [12-13] and on numerical modelling [14] may help to 

understand how taking into account those discontinuities in such 3D multilayer 

structures. Among the existing numerical methods, the Finite Element Method 

(FEM) is nowadays the most used one. This method has many advantages such as 

introducing complex boundary conditions. But it requires the use of fine meshes 

near cracks or discontinuities. It increases the work of 3D meshing and the time of 

calculation. At the end of 90s, advanced numerical models such as G-FEM [15] and 

X-FEM [16] have been developed in order to overcome the problems of re-meshing 

during crack propagation. More recently, new models such as TLS (Thick Level Set) 

approach, developed by [17], permit the description of initiation and propagation of 

defects in a unified framework [18]. However, the introduction of partial inter-facial 

cracks is not fully established yet, even if there is many promising works on this 

subject [19-20]. In addition, all these models and approaches to solve the problem 

may be too heavy to be contained in practical software.  

In an alternative way, the French Institute of Science and Technology of 

Transport, Development and Networks (IFSTTAR) proposes an approach that is 

used in this paper. It uses one of the multi-particle models of multilayer materials 

(M4) that have been specially developed to study the edge effects and delamination 

in composite structures materials [21-23]. In such models, assumptions for the 

unknown field variables are introduced for each layer separately. 

The M4 selected herein for the pavement bending problem contains five 

kinematic fields (5n) per layer i (i ∈ {1, n}, where n denotes the total number of 

layers). The M4-5n is formulated by making approximations on the stress field. It 

has a linear polynomial expansion through the thickness, in each layer, for the 

bending stresses. The Hellinger–Reissner variational principle [24] is used. Then 

from a multi-particulate description in 2D, this modelling approach can determine 

the intensity of the 3D mechanical fields. As opposed to other classical models, 
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these mechanical models yield finite stresses at a free edge or crack tip at the 

interface point location of two different layers. While the number of unknowns may 

be significant, the semi-analytical solution of the equations of the model allows for 

easy and quick parametric studies. It is useful for modelling office engineer 

calculation types [25-26]. 

For pavement-cracked applications, an initial adaptation of the multi-particular 

model (M4-5n) combined with the Boussinesq model (B) [27] for the soil has been 

proposed in [28-29]. The M4-5nB proposed has shown its effectiveness in modelling 

3D mechanical fields in the case of loading with or without introduction of thermal 

gradients. However, the numerical solution of the system of differential equations of 

order 2 of the M4-5n equations coupled to the integral Boussinesq’s equations still 

takes too long for the expected final 3D tool. A faster solution using Winkler springs 

[30] for the soil, named M4-5nW, was tested recently, and applied to the case of 

plane strain of bilayer and tri-layer pavement [31]. The results showed that the stress 

fields at the interfaces are similar to those obtained by the simulation of a structure 

with a Boussinesq soil and the FEM solution far from the interface between the 

pavement and the soil. In that case the M4-5nW solution is obtained four times CPU 

faster than the M4-5nB and five times faster than the one obtained by the FEM. 

Following these previous works [29] and in order to simplify to a maximum the 

modelling of the real 3D pavement, this one is finally chosen equivalent to 3 layers 

(surface course, base course and sub-base course) [32] resting on a soil. In the aim to 

get better approximations of the mechanical fields between the pavement layers and 

the soil, the modelling of the soil is improved in this work. Similar to Pasternak’s 

assumptions [33], the soil is taken equivalent to a combination of a fictitious layer 

(shear layer) ensuring the transfer of shear stresses between the sub-base course and 

Winkler’s springs. The all four layers are then modelled by means of the M4-5n. 

This paper is based upon Nasser’s work presented in [34]. In addition it includes 

the full and detailed method to construct the “2D plane strain reference case” and the 

calculus of the elastic stress energy of the M4-5n. In the first section, the specific 

elastic model denoted finally M4-5nW is presented. In the second section, a 

composite pavement structure is studied in the aim to determine and to optimize the 

thickness of the equivalent layer that is added to the Winkler’s massif soil. The third 

section illustrates the advantages of such modelling for a 2D cracked pavement case. 

Few parametric calculations to determine the most critical load position relative to 

the existence of a vertical crack and to examine some thermal changing effects in a 

composite pavement structure are finally illustrated on the distribution of some 

interface stresses. 

 

 

2 Development of M4-5nW for the pavement structures 
 

In this section, the Multi-Particle Model of Multilayer Materials (M4-5n) with 5n 

equilibrium equations (n: total number of layers) is presented. Then the modelling 

for the soil is discussed in the aim to determine the thickness of the shear layer.  
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2.1 The M4-5n 
 

2.1.1 General system of the M4-5n equations 

 

The M4-5n is adopted to simulate bending problems in pavement structures [29]. It 

belongs to the M4 family [21-23]. Assuming that kinematic fields and stress fields 

may be written per layer rather than per the total thickness of the multi-layered, the 

M4 family estimates the mechanical fields are thinner than the "Layer Wise plate 

models" [35]. The M4-5n construction is based on a polynomial approximation by 

layer in z for the in-plane stress fields (x and y represent the coordinates of the plane 

of the layers and z represents the vertical coordinate). The thickness of each layer is 

given by iii hhe   , where ih  and ih  are the ordinate of the higher and lower face 

of layer i respectively (i ∈ {1,n} where n is the total number of layers). The 

coefficients of these polynomial approximations are expressed via Reissner’s 

classical stress generalized fields. The shear and normal stresses (respectively 
1, ii

  

(x,y) and 𝜈𝑖,𝑖+1(𝑥, 𝑦), α ∈ {1,2}, i ∈ {1,n-1}) at the interface between layers i and i+1 

(similarly i-1 and i) are ensuring the continuity of the 3D stress field,  𝜎𝑘𝑙  (k ∈ 

{1,3}, l ∈ {1,3}), between these two consecutive layers (Eq. 1-2).  
 

𝜏𝛼
𝑖,𝑖+1(𝑥, 𝑦) = 𝜎𝛼3 (𝑥, 𝑦,

ih ) = 𝜎𝛼3 (𝑥, 𝑦,
ih ) (1) 

𝜈𝑖,𝑖+1(𝑥, 𝑦) = 𝜎33 (𝑥, 𝑦,
ih ) = 𝜎33 (𝑥, 𝑦,

ih ) (2) 

 

Where ),(1,0 yx , ),(1,0 yx , ),(1, yxnn 

  and ),(1, yxnn   represent respectively the 

boundary conditions above and below the pavement interface related to interface 

efforts between the multilayer structure and its external environment.  

This model can be viewed as a superimposition of n Reissner plates linked by 

interfacial forces. Between two adjacent material layers, it becomes possible to 

express delamination criteria in terms of interfacial forces [26, 36]. The evaluation 

of interface stresses is obtained by a method based on the Hellinger–Reissner 

variational principle [24]. This formulation reduces then the real problem 3D at the 

determination of plane fields (x, y) per each layer i and interface i, i+1, (and i-1, i). 

These fields in the plane (x,y) are regular. Thus the real object 3D (2D) is 

transforming into one geometry 2D (1D). Furthermore, the M4 approach avoids 

singularities by giving a finite value of stresses at plate edges [23]. 

In order to simplify the analysis, the equations of M4-5n used to model the three 

equivalent pavement layers and the shear layer ensuring the connection between the 

pavement and the Winkler’s soil (Figure 1), are solved here under the assumption of 

plane strain conditions and assuming that the volume forces are negligible. 

Subsequently, the mechanical fields of the M4-5n depend only on variable x.  

The layers are numbered from top to bottom of the structure. We denote E
i
, e

i
 and 

υ
i
 (i ∈ {1, 4}) respectively the Young's modulus, the thickness, and the Poisson's 

ratio of each layer i. E
s
 is the Young's modulus of the soil, and k is the stiffness of 

the springs. The uniform pressure load is assumed to be applied vertically on the 

pavement by help to the normal stress ν0,1(x); the shear stress at the interface 
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between the first layer of the pavement and its external environment is null 

(τ1
0,1(x) = 0).  

 

 
Figure 1: The equivalent pavement structure modelled by the M4-5nW 

 

After combining the mechanical M4-5n equilibrium and behaviour equations per 

layer i, a system of three 2
nd

 order differential equations for each layer i (i ∈ {1, n}) 

of the pavement multilayer is generated (Eq. 3-5). 
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iU 11,3
(𝑥) +

i

1,1 (𝑥) =
12(1+𝜐𝑖)

5𝑒𝑖𝐸𝑖
(𝜈𝑖−1,𝑖(𝑥) − 𝜈𝑖,𝑖+1(𝑥)) −

(1+𝜐𝑖)

5𝐸𝑖
(

ii ,1

1,1

 (𝑥) +
1,

1,1

ii (𝑥))  (5) 

 

)(1 xU i , )(3 xU i
 and )(1 xi  are respectively the average in-plane displacements, 

average out-plane displacements and average rotations of the layer i. Similarly, a 

system of two 1
st
 order differential equations per interface i,i+1 (i ∈ {1, n-1}) is 

obtained as follows (Eq. 6-7): 
 

𝑒𝑖+1

12

1

1,3

iU (𝑥) +
𝑒𝑖

12

iU 1,3
(𝑥) +

1

1

iU (𝑥) −
iU1
(𝑥) −

5𝑒𝑖+1

12

1

1

i (𝑥) −
5𝑒𝑖

12

i

1 (𝑥) =

−
𝑒𝑖+1(1+𝜐𝑖+1)

12𝐸𝑖+1
2,1

1

 ii (𝑥) −
𝑒𝑖(1+𝜐𝑖)

12𝐸𝑖
ii ,1

1

 (𝑥) + (
𝑒𝑖(1+𝜐𝑖)

4𝐸𝑖
+
𝑒𝑖+1(1+𝜐𝑖+1)

4𝐸𝑖+1
)

1,

1

ii (𝑥)  (6) 

 
1

3

iU −
iU3
(𝑥) =

9𝑒𝑖+1

70𝐸𝑖+1
𝜈𝑖+1,𝑖+2(𝑥) +

9𝑒𝑖

70𝐸𝑖
𝜈𝑖−1,𝑖(𝑥) +

13

35
(
𝑒𝑖

𝐸𝑖
+
𝑒𝑖+1

𝐸𝑖+1
)𝜈𝑖,𝑖+1(𝑥)  (7) 

 

The manipulation of the three 2
nd

 order differential equations per layer i and two 

1
st
 order differential equations per interface i,i+1 leads to a system of 3n 2

nd
 

differential equations of M4-5n. This system function of (x) is written as given by 

(Eq. 8):  

 

𝐴𝑋′′(𝑥) + 𝐵𝑋′(𝑥) + 𝐶𝑋(𝑥) = 𝐷𝑌0,1′(𝑥) + 𝐸𝑌𝑛,𝑛+1′(𝑥) + 𝐹𝑌0,1(𝑥) + 𝐺𝑌𝑛,𝑛+1(𝑥) (8) 
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We denote respectively « ' » and « '' » the first and the second derivatives of the 

unknown fields with respect to the variable x. X(x) is the vector containing the 

Reissner-Mindlin’s average kinematic unknowns by layer. Y
0,1

(x) and Y
n,n+1

(x) are 

the interface efforts vectors between the multilayer structure and its external 

environment (Eq. 9). These vectors are used to write the boundary conditions of 

vehicle’s load exerted on the top and below of the pavement structure. The indexes '' 

0,1 '' and '' n,n+1 ''are used respectively for the boundary locations between outside 

and the first layer and between the outside and the fourth layer where it provides the 

connection between the shear layer and the Winkler's massive. 
 

𝑋 = [
𝑋1

⋮
𝑋𝑛
]

3𝑛×1

 ;   [𝑋] = [

𝑈1
𝑖

i
1

𝑈3
𝑖

]  ;   𝑌0,1 = [
𝜏1
0,1

𝜈0,1
]
2×1

 ;   𝑌𝑛,𝑛+1 = [
𝜏1
𝑛,𝑛+1

𝜈𝑛,𝑛+1
]
2×1

 (9) 

 

The matrixes [A]3nx3n, [B]3nx3n, [C]3nx3n, [D]3nx2, [E]3nx2, [F]3nx2 et [G]3nx2 of the 

system (8) depend only on geometric and mechanical parameters of equivalent 

elastic problem. The use of the Mathematica software allows writing analytically 

these matrixes in order to reduce the number of operations to perform. It minimizes 

thus the computing time during the numerical resolution of the problem. The filling 

shape of these matrixes is given in Appendix A.  

The boundary condition systems of the multilayer edges and cracks are expressed 

as function of both the kinematic unknowns and interface forces using the 

constitutive equations of layer i for M4-5n [21]. Introducing cracks that are either 

longitudinal (x direction) or vertical over the thickness of one or more layers (z 

direction), requires considering that crack tips constitute two free edges, whose 

distance interval from one another corresponds to the width of the crack. The 

boundary conditions are expressed in the form of the five equations per layer 

system. The multilayer pavement is considered blocked at its edges, far from the 

loading where the material is confined (Eq. 10). 
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The boundary conditions of free edges (Eq. 11) are applied to represent vertical 

cracks. 
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The comparison between the results of the M4-5n with those from other types of 

modelling can be done on the value the elastic energy 𝑊2𝐷
5𝑛(𝑥). After many 

simplifications, it is given below analytically in terms of the material characteristics 

and the unknown kinematics fields of layers i and interface stress field (Eq. 12). 
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2.1.2 Numerical solution using the Finite Difference Method 

 

The numerical solution of the system (Eq. 8) is done by applying a non-dimensional 

method along with the finite difference method in order to avoid any problems of ill 

conditioning of matrixes during numerical manipulations. Then, the studied 

multilayer equivalent medium is discretized to N points (nodes), in x direction, 

according to the Newmark scheme [37] which is implemented in the French open 

source software for numerical computations known as Scilab 

(http://www.scilab.org/fr). Newmark’s method allows an easily introduction of a 

vertical crack across a layer because each layer of M4-5n has its own equilibrium 

equations (Eq. 3-5), constitutive law and boundary conditions (Eq. 10-11). The 

introduction of such type of cracks is done by replacing, in the final systems, 

corresponding lines and columns between two consecutive nodes by the boundary 

conditions of the free edges. The filling shape of the matrixes corresponding to a 

case with a vertical crack in the third layer is given in Appendix B. After several 

manipulations, it is possible to reduce the order of the system of differential 

equations (Eq. 8) to obtain the final system (Eq. 13). 
 

 𝔸𝕏 (x) = 𝔹𝕐0,1(𝑥) + ℂ𝕐𝑛,𝑛+1(𝑥) (13) 
 

Where [𝔸]3nNx3nN is the resultant matrix, [𝔹]3nNx2N and [ℂ]3nNx2N represent the 

tensor forces and other boundary conditions exerted above and below the multilayer 

via vector 𝕐0,1(𝑥) and 𝕐𝑛,𝑛+1(𝑥) respectively. Whatever the case of a load position 

http://www.scilab.org/fr
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with respect to the crack, the multilayer thus modelled by the M4-5n is divided into 

four wired zones (Figure 2). 

 

 
Figure 2: Discretization of the M4-5n for a cracked pavement 2D structure 

 

 The zone I, containing the NI nodes, is located to the left of the load with a 

decreasing preference mesh from the left toward the right side; 

 The zone II, containing the NII nodes, contains the loading zone, its 

discretization is regular; 

 The zone III, containing 2 nodes only, corresponds to the cracked zone (where 

the M4-5n boundary conditions of free edges are written between two 

consecutive nodes); 

 The zone IV, containing the NIV nodes, is located to the right of the load with 

an increasing preference discretization from the left toward the right side 

To determine the number of nodes for each zone, a test of convergence of the 

mechanical fields is done. 

 

2.2 Winkler’s solution for the soil mass 
 

Although the modelling of the soil by a massive of springs (Winkler’s massive) [30] 

is simple and fast to use, it cannot takes into account the shear stresses between the 

soil and the pavement structure. It considers that they are equal to zero when in 

reality they are not [31]. To improve the modelling and get better approximations of 

the mechanical fields near the soil, and in the aim to keep the simplicity of this 

modelling, a M4-5n layer is added between the pavement structure and the Winkler's 

springs in order to ensure there the transfer of shear stresses (see Figure 1). The 

stiffness of springs, k, is then extrapolated to four layers according to the Odemark 

formula as given by (Eq. 14) [38], where h*, the equivalent thickness of the 

multilayer, is calculated from the "Method of Equivalent Thickness '' (MET). f is a 

correction factor which is equal to 0.9 for a bilayer. For an upper number of layers, f 

is equal to 0.8 except for it first interface. For the first interface f is equal to 1.0 or 

1.1 if the radius of the load is greater than the thickness of the layer i. 
 

𝑘 =  
𝐸𝑠

ℎ∗
 ;  ℎ∗ = ∑𝑓 𝑒𝑖  

𝑖=𝑛

𝑖=1

√
𝐸𝑖

𝐸𝑠

3

 (14) 

 

Marchand and al. [39] found that the formula (Eq. 14) can be used only if the 

thickness of the layers is greater than half the radius of the load or if the ratio 
Ei

Ei+1
 is 

greater than 2. The assumption of continuity of vertical displacements between the 

multilayer (n layers) and the Winkler’s soil (indexed by n+1) implies the boundary 
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conditions the interface M4-5n stress fields between the fourth layer and Winkler’s 

springs (Eq. 15). 
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In the development of the simplified modelling tool M4-5nW the thickness of the 

"shear layer" must be determined. This thickness must respect two rules:  

 The geometric validity of the assumptions of plate models (e
i
 << L). A ratio of 

10 between the length of the pavement (L) and the thickness of the shear layer 

(𝑒𝑛) is considered sufficient to keep the assumption of plate models (e
n
 ≤ L/10). 

 Due to the assumptions made in the M4 constructions, a thickness relationship 

between two consecutive layers of the M4-5n (𝑒𝑛/𝑒𝑛−1 ≤ 4) must also be taken 

into account in order to obtain results sufficiently accurate [28]. 

 

2.3 The resulting M4-5nW approach 
 

The resulting model is a pavement structure reduced to three elastic and 

homogeneous equivalent layers resting on a soil modeled by adding a shear layer to 

Winkler’s springs (Figure 1). This pavement structure is modeled using the M4-5n. 

In the modelling, each pavement layer has its own boundary conditions and the 

introduction of a macro-vertical crack in one layer only is easy to be introduced 

separately. In the aim to consider real size of pavement structures and to offer 

interesting computational power, a macro-scale level to choose the mechanical and 

geometrical characteristics of all layers is used. Each material layer is considered as 

homogeneous and elastic. The speed of the loads and the viscoelastic effects of 

eventual bituminous layers are taken into account indirectly by means of its 

equivalent elastic modulus. Several fracture mechanic concepts can be easily used. 

The solution method of M4-5n is implemented in the free Scilab software. The user 

of the resulting tool can calculate the finite values of mechanical fields in this 

multilayer structure (pavement) easily and quickly especially at the interfaces and at 

the crack edges without any problems of singularity. The version of this final tool, 

presented in this paper, is limited to study 2D cases only. 

 

3 Study of a 2D composite pavement structure 
 

The composite pavement structure studied here is chosen according to the French 

catalogue for pavements [32]. This type of structure is subjected to a heavy traffic 

type TC7 (between 17.5 and 43.5 million Trucks during all the life of the pavement). 

The pavement structure is composed of three layers and rests on a PF3 soil type. In 

the M4-5nW, we suppose that each M4-5n layer has the “real” thickness of the 

pavement and that the shear layer (M4-5n fourth layer) and the springs have the 

same Young modulus (Figure 1). All the mechanical and geometrical properties of 

the pavement and the soil are given below in Table 1. 
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Table 1: Geometrical and mechanical characteristics of the three layer pavement 

structure and the soil 

Material Thickness (m) Young’s modulus (MPa) Poisson’s ratio 

BBSG e
1
=0.08 E

1
=5400 υ

1
=0.35 

GB3 e
2
=0.15 E

2
=9300 υ

2
=0.35 

GC3 e
3
=0.23 E

3
=23000 υ

3
=0.25 

Soil - E
s
=120 υ

4
=0.35 

 

Where BBSG is a classical French bituminous mixes (NF EN 13108-1) such as GB3 

for class-3 asphalt-treated roadbase aggregate (NF EN 13108-1) and GC3 is cement 

bound granular mixtures (NF EN 14227-1). Eventually, due to a shrinkage 

phenomenon that may occur in the third layer made of material treated by hydraulic 

cement, we assumed that this layer is cracked vertically across its thickness. In the 

case 2D plane strain, a unit pressure load (1 MPa) is chosen arbitrarily and 

uniformly distributed over a width (b-a) of 0.15m (Figure 1). We assume that the 

boundary conditions of blocked edges applied at the edges of the structure (Eq. 10) 

correspond to the confinement assumptions of the materials. 

To choose the dimensions of the structure from which the load has no effect, a 

parametric study is done on an example of non-cracked pavement. The M4-5nW 

tool developed and programmed in Scilab is used. The results of M4-5nW 

calculation (the z axis upwards) are validated by comparison to those obtained by 

the Finite Element Method (FEM) given by the César-LCPC code 

(http://www.itech-soft.com/cesar/) (Figure 3). The 2D FEM mesh is made realized 

with quadratic assumptions and with help of the rectangular elements (Q8). A layer 

of 6m thick is usually admitted sufficient to represent the soil by FEM [40]. In the 

case of this example of non-cracked M4-5nW pavement structure, the zone III does 

not exist in the mesh (Figure 2). The thickness of the fourth layer is arbitrary chosen 

equal to 4e
3
. For both calculations of tools, there is no mesh optimization. We 

consider a regular mesh of a 0.001m width along the x-axis. 

 

 
Figure 3 : Comparison of mean vertical displacement of layer 3 for different models 
 

After various simulations, a 20m length for the M4-5nW pavement seems enough 

to ensure that the maximum deflection under load converges and that the vertical 

displacements of the pavement at the edges are zero (Figure 3). In the case of the 

http://www.itech-soft.com/cesar/
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FEM calculus, although the maximum deflection under load (greater than that 

obtained by the M4-5nW by 2.4%) converges to a length of 20m, it needs a 40m 

length for ensuring a zero displacement at the edges of the pavement (Figure 3).  

In the following, we consider that a pavement of a 20m length is sufficient to 

make the comparison between models and validate the results obtained by M4-5nW 

simulation. The thickness e
4
 of the shear layer is to be determined in the next 

paragraph. 

 

3.1 Determination of the thickness of M45nW shear layer – case of 

2D non-cracked pavement  
 

In the case of the composite pavement of 20m long in the simulations, the M4-5nW 

assumptions (see section 2.2) indicate a maximum thickness of the shear layer of 

0.92 m (emax
4 =4e3). The influence of this thickness on the structural behaviour is 

carried out for four different values (e
4
 = e

3
, 2e

3
, 3e

3
 and 4e

3
) and four fields: for 

each layer i, the horizontal average displacement (U1
i (x)) and the vertical average 

displacement (U3
i (x)); at the interface i, i + 1, the shear interface stress ( 1,

1

ii (x) =

σxz(x, ∑ eii
i=1 )) and normal interface stress (νi,i+1(x) = σzz(x, ∑ eii

i=1 )). 

For example, for the non-cracked composite pavement and different values of e
4
, 

the vertical displacement upper of the first layer of the pavement and the interface 

normal stresses between the three layer pavement and the shear layer are shown in 

[34]. These values are compared with FEM results. Both simulations have the same 

mesh as for previous cases. This study leads to the following conclusions: 

 The thickness e
4 

of the shear layer has no influence on the horizontal 

displacements of layers (U1
i (x)) or on shear interface stress and normal interface 

stress for the first two interfaces ( 2,1

1 (x), 3,2

1 (x), ν1,2(x), ν2,3(x)). 

 It affects the vertical displacement of all the layers (U3
i (x)) and the interface 

stresses of the third interface (between the pavement and the soil shear layer). 

The values of U3
i (x), τ1

3,4(x) and ν3,4(x)  increase with the thickness of e
4
.  

For the interface shear stress of M4-5nW, the area under the curve gives a value 

equal to that obtained by FEM with a thickness e
4
=4e

3
. 

 

4 M4-5nW analyses in the case of the 2D cracked pavement 

structure 
 

Thereafter, in the case of the composite pavement structure studied in this paper, we 

suppose that the e
4 

thickness of the shear layer is of 0.92m (emax
4 = 0.92m). 

Moreover, the third layer of the pavement generates a vertical crack, due to the 

shrinkage of the material treated with hydraulic binders. This crack either goes into 

the second layer (the phenomenon of "reflective cracking"); or contributes to a 

separation of the interface between the layers 2 and 3 [41-43]. In order to study this 

case, a vertical crack of 0.001m width is introduced across the layer 3. According to 

the principles of linear elastic fracture mechanics that are easily used in this type of 
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modelling [26], this initial crack modifies only the boundary conditions of the 

concerned layer of the structure. Subsequently, it is assumed that the load is 

positioned on the left of the crack. 

In this case, an irregular mesh is chosen in the zones I and IV (see Figure 2) in 

order to optimize computation time and obtain accurate M4-5n intensities of the 

interface stresses under load and at the edge of the crack. These interface fields may 

be used to understand the interface failure mechanisms of the initial cracked 

pavement structure. 

 

4.1 Validation of the M4-5nW vs the FEM 
 

In the case of a load located on the centre of the pavement and on the left of a 

vertical crack edge (positioned in the layer 3 between the points x= 10.075m and x= 

10.076m), a parametric study of the convergence of interface stress fields of the M4-

5n (between the layers 2 and 3) is done. To realize this study, first we consider that 

the length of the mesh in zone II under the load is equal to the length of the first 

mesh in zone IV just after the crack. According to the formula used to determine the 

distribution of mesh in different zones, we can determine the number of nodes in 

zone II and IV. And then, the number of nodes in zone I is adjusted in order to 

obtain a length of the last mesh equal to those in zone II. Different values are tested 

and it is then found that 74 nodes in zone I, 121 nodes in zone II (under the load) 

and 70 nodes in zone IV are sufficient to obtain finite intensities with a precision of 

10
-2

 MPa at the left and right tip of the crack. The length of the mesh is then 

0.00125mm. Zone III contains 2 nodes to characterize the crack (Figure 2). For 

example Figure 4 shows the variation of the intensity of normal stress along the 

interface 2,3 (ν2,3(x)) at the left tip of the crack for x=b=10.075m (a) and the right 

tip of the crack for x=10.076 (b), as function of the number of nodes in zone II and 

IV respectively.  

 
(a)                                                              (b) 

                
  Figure 4: Converge of interface normal stress between layers 2 and 3 at: (a) the left 

tip of the crack; (b) the right tip of the crack 

 

Figure 5 thus illustrates a comparison between simulations made by FEM (finite 

elements Q8) and M4-5nW results regarding the shear stress (a) and normal stress 

(b) at the interface between the layers 3 and 4. 

The results are normalized by the maximum of stresses obtained by the FEM (𝜎𝑥𝑧
𝑀  

and 𝜎𝑧𝑧
𝑀). We note that the simulations of the shear stress and the normal stress at the 
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interface are consistent for both models excluding their intensity at the crack edge as 

expected (the area under the curves representing the interface shear and normal 

stress between layers 3 and 4 given by the M4-5nW is lower than that given by the 

FEM by 0.7% and 0. 1% respectively). 

 
(a)                                                              (b) 

  
Figure 5 : The M4-5nW results compared to the FEM ones (a) interface shear stress 

between layers 3 and 4; (b) interface normal stress between layers 3 and 4 

 

In the Table 2 below, the time of calculation CPU obtained for the two models 

used here is presented for the case of 2D plane strain. We note that for the same 

number of regular meshes, the time obtained for M4-5nW is very interesting 

compared to the one obtained by FEM (6 times faster). This result responds to the 

objective of building a fast calculation tool in order to use it in parametric studies. 

 

Table 2: Comparison of time of calculation CPU between the two models in the 

cracked pavement case 

 M4-5nW F.E.M. 

Time CPU (s) 0.89 5.4 

 

 These results show clearly the interest of M4-5nW thus built. In fact, the 

proposed approach reducing of one dimension the studied problem needs indeed for 

its development a high number of unknowns and equations. But this difficulty is 

hidden for the users of the “M4-5nW” tool, in which this model is implemented. As 

said before, the real object 3D (2D) is transforming into one geometry 2D (1D) 

which makes the mesh less complex and reduces the number of elements, then the 

calculus time. The developed method using the M4-5n is implemented in a tool 

“Scilab” which is easy to use to calculate the finite values of mechanical fields in a 

multilayer structure (pavement) especially at the interfaces and at the crack edges 

without problems of singularity. This tool also allows practical parametric studies. 

All these elements represent the advantages of the model developed in this paper, 

which becomes more interesting against classical FEM used when the tool is 

developed to study 3D cases [45-48]. 
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4.2 Evaluation of interface stresses of the M4-5nW for a cracked 

composite pavement subjected to different positions of load 
 

In order to illustrate the ability of the pavement to generate delamination at the 

interface between layer 2 and layer 3 during the reflective cracking phenomenon, 

different load case positions are studied to understand the influence of its position 

with respect to the vertical crack location in the third layer. The M4-5nW developed 

is used. Figures 6 and 7 present respectively the interface shear 
2,3

(x) and normal 

stress 
2,3

(x) between layers 2 and 3 for four cases of pavement calculations: load at 

the centre of non-cracked pavement (case a); load position at 1m to the left of the 

crack located in the third layer (case b1); load position at 0.5m to the left of the 

crack (case b2); load at the left edge of crack (case b3). 

First, due to the fact that the M4-5nW intensity of the shear stress and normal 

stress at the interface are finite near the crack, we can compare the different results 

between themselves. For the case of non-cracked pavement (case a), we note that the 

curve of the shear stress and the normal stress are symmetrical at the crack location. 

The maximum of the value of these stresses is low. For the case of the cracked 

pavement structure, the maximum of the intensity of the shear stress and the normal 

stress near the crack at the interface 2,3 (just above the crack) is increasing when the 

load is moving to the crack. It reaches its maximum value for the case b3, i.e. when 

the load is at edge of the crack. Their maximum intensity is quite comparable. If the 

interface resistance is smaller than the layer 2 material (that is working under tension 

condition), a debonding phenomenon may happen in a mixed mode fracture 

condition. This phenomenon may occur either under heavy loading or per fatigue 

due to the traffic of the loads. In addition, along the moving load course, on this 

interface a non-negligible shear stress value exists before the crack area (Figure 6). 

 

 
Figure 6 : A comparison of the distribution of shear stresses of the M4-5n at the 

interface 2,3 for four loading position cases (a, b1, b2 and b3) 
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Figure 7: A comparison of the distribution of normal stress of the M4-5n at the 

interface 2,3 for four loading position cases (a, b1, b2 and b3) 

 

With the help of such a M4-5nW tool, this short analysis confirms that the 

position of the load with respect to the crack location plays an important role in the 

analysis of the behaviour of the 2D cracked pavement structure. The risk of interface 

damage of a pavement structure having a vertical crack is higher when the load is on 

the edge of this crack than for other loading positions. It is sufficient to consider this 

case in any 2D analysis of pavement with a single vertical crack across a layer. 

 

4.3 Evaluation of interface stresses of the M4-5nW for a composite 

pavement subjected to temperature changing 
 

In the case of the cracked composite pavement previously studied with a load 

located at the edge of the vertical crack (b3 case of Figures 6 and 7), the temperature 

changing (between day and night) is studied on the values of the interface shear and 

normal stresses. The temperature influences the bituminous materials depending in 

which location the layers are placed with or not in contact with the outside 

temperature. Actually, according to some full-scale data [44], the second layer 

usually receives a thermal delay in the depth of the pavement. The temperature 

affects the stiffness of the bituminous materials that have thermos-susceptible 

behaviour properties. In case of a hot external temperature, the Young's modulus of 

the first layer decreases in comparison of its first value. We consider that the ratio of 

modulus between the first and second layer is equal to ¼, with E
1
= 2325 MPa and 

E
2
= 9300MPa (initially the ratio is ½ with E

1
= 5400MPa and E

2
= 9300MPa). On the 

contrary, in the case of a cold external temperature, the Young's modulus of the first 

layer increases and the case of a ratio of modulus between layers equal to 1 is taken, 

with E
1
= 9300MPa and E

2
= 9300MPa. Figures 8 and 9 illustrate a zoom of the 

interface shear stress 
2,3

(x) and normal stress 
2,3

(x) between layers 2 and 3 

respectively for the three ratio of modulus between layers 1 and 2: E
1
/E

2
=1/2, 
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E
1
/E

2
=1/4 and E

1
/E

2
=1. We note that the different values of the Young modulus of 

the first layer of the composite pavement cracked in its third layer have few effects 

on the intensity of the M4-5nW interface stresses between layer 2,3 especially for 

the shear stress (Figure 8). These effects are not so much huge as those obtained 

previously in the case of the moving load at several positions. Nethertheless, 

cumulated to the moving load, it may favor reflective cracking phenomenon in the 

structure. 

 

 
Figure 8: Thermal variation effect in the 1

st
 bituminous material layer on the M4-

5nW shear stress distribution at the interface 2,3 of a composite cracked pavement 

 

 
Figure 9: Thermal variation effect in the 1

st
 bituminous material layer on the M4-

5nW normal stress distribution at the interface 2,3 of a composite cracked pavement 
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5 Conclusions and perspectives 

 

In this paper, we propose to model the pavement structures with initial vertical crack 

across one layer with the help of a simplified modelling tool. The tool is based on 

the M4-5n that is a model of multi-layer structures dedicated to a simplified bending 

analysis of delamination problems in composite structures [21-23] [25]. On the 

contrary to classical FEM tool, in the proposed approach the problem reduction of 1 

dimension and the regular mechanical stress fields at the interface and vertical crack 

locations offer practical parametric studies for pavements with such discontinuities. 

In this half analytical elastic proposed solution dedicated to the analysis of 

pavements that have such strong discontinuities, the speed of the loads and the 

viscoelastic effects of eventual bituminous layers are taken into account indirectly 

by means of its equivalent elastic modulus. The pavement structure is chosen to be 

equivalent to three elastic layers resting on a soil. The soil is modelled by a massive 

of Winkler (W) and an additional shear layer to ensure the transfer of shear stresses 

between the pavement and the soil. It leads to practical and efficient calculations for 

the analysis of fracture behaviour of pavement at a real-scale. The pavement and the 

soil constitute the M4-5nW. All the layers are modelled by the M4-5n. This new 

approach of the pavement modelling is then called the M4-5nW. 

In the case of 2D plane strain, all the equations of the M4-5n are written 

analytically. These second order differential equations are solved by the finite 

difference method (Newmark). The numerical solution of the system of equations is 

validated, by comparing the results of the M4-5n with those obtained by a finite 

element code, with a very promising CPU time. This time saving is due to the choice 

of the modelling for the soil and the use of the M4-5n that reduces the dimension of 

the studied problem. Thus the real object 3D (2D) is transforming into one geometry 

2D (1D). Furthermore, the M4 modelling approach avoids singularities by giving a 

finite value of stresses at plate edges. Between two adjacent material layers, it 

becomes possible to express a delamination criterion in terms of interfacial stresses 

[21] [25-26] [36]. The time saving is also due to the simplified writing of matrixes 

needed to solve the problem as well as the optimum number of meshes chosen. 

Although the number of M4-5n unknowns to be solved is quite large, the semi 

analytical solution of the equations of this model (for the finite difference method) 

allows practical parametric studies. This computational simple tool aims to be used 

by the engineers especially for the macro-scale analysis of cracked pavement 

structures. It provides reference solutions for further 3D developments of a more 

general engineering software [45]. 

The mechanical response of a 3D cracked structure, representative of a flexible 

pavement tested under full-scale conditions during an accelerated fatigue test 

performed at IFSTTAR is also possible. Recently, first scenarios of cracking have 

been successfully computed and proposed [46-48]. A partial debonding of interface 

between layers will be introduced in the modelling in order to deep those results and 

other full-scale experimental data [49-50]. In addition, according to previous works 

[28-29], thermal gradients will be introduced in such developments in order to study 

the degradation of cement concrete pavements and the durability of next road 

concepts of the future. 
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Appendix A 
 

Let’s note 

 𝜆𝑖 = 
𝑒𝑖 (1−𝜈𝑖)

𝐸𝑖
, 𝜅𝑖 = 

𝑒𝑖

𝐸𝑖
  Eq. (A.1) 

∆1 =  (
𝜆3

12
)
2

(
𝜆1

4
+
𝜆2

4
) + (

𝜆2

12
)
2

(
𝜆3

4
+
𝜆4

4
) − (

𝜆1

4
+
𝜆2

4
) (

𝜆2

4
+
𝜆3

4
) (

𝜆3

4
+
𝜆4

4
)  Eq. (A.2) 

∆2 = 13 ((
9

2

𝜅3

35
)
2

(
𝜅1

35
+
𝜅2

35
) + ((

9

2

𝜅2

35
)
2

− 132 (
𝜅1

35
+
𝜅2

35
) (

𝜅2

35
+
𝜅3

35
)) (

𝜅3

35
+
𝜅4

35
))  Eq. (A.3) 

 

and let’s notice that all coefficients written in the following matrixes A, B and C are 

proportional to the quotients 1/𝜅𝑖  that is to say 
Ei

ei
 and to 1 in the matrixes D, E, F and 

G. 

 

Matrix A  
 

A=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑒1 𝐸1

1− 𝜈12
0 0 0 0 0 0 0 0 0 0 0

0
𝑒1
2
 𝐸1

5(1− 𝜈12)
0 0 0 0 0 0 0 0 0 0

0 0 𝑒1𝐴33 0 0 𝑒2𝐴36 0 0 −𝑒3𝐴39 0 0 −𝑒4𝐴312

0 0 0
𝑒2 𝐸2

1− 𝜈2
2 0 0 0 0 0 0 0 0

0 0 0 0
𝑒2
2
 𝐸2

5(1− 𝜈2
2
)

0 0 0 0 0 0 0

0 0 𝑒1𝐴36 0 0 𝑒2𝐴66 0 0 −𝑒3𝐴69 0 0 −𝑒4𝐴612

0 0 0 0 0 0
𝑒3 𝐸3

1− 𝜈32
0 0 0 0 0

0 0 0 0 0 0 0
𝑒3
2
 𝐸3

5(1− 𝜈3
2
)

0 0 0 0

0 0 −𝑒1𝐴39 0 0 −𝑒2𝐴69 0 0 𝑒3𝐴99 0 0 𝑒4𝐴912

0 0 0 0 0 0 0 0 0
𝑒4 𝐸4

1− 𝜈4
2 0 0

0 0 0 0 0 0 0 0 0 0
𝑒4
2
 𝐸4

5(1− 𝜈4
2
)

0

0 0 −𝑒1𝐴312 0 0 −𝑒2𝐴612 0 0 𝑒3𝐴912 0 0 𝑒4𝐴1212)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐴33 = 
5𝐸1 

𝑒1(1 + 𝜈1)
+ 𝑎33       ,    𝐴66 =

5𝐸2 

𝑒2(1 + 𝜈2)
+ 𝑎66 

𝐴99 =
5𝐸3 

𝑒3(1 + 𝜈3)
+ 𝑎99       ,    𝐴1212 =

5𝐸4 

𝑒4(1 + 𝜈4)
+ 𝑎1212 

Eq. (A.4) 

 

With the following 6 Ajk and 4 ajk coefficients 

 

𝑎33 =
1 

12∆1
((

𝜆3

12
)
2

− (
𝜆2

4
+
𝜆3

4
) (

𝜆3

4
+
𝜆4

4
))   ;  𝐴36 = 

1 

12∆1
((

𝜆3

12
)
2

− (
𝜆2

3
+
𝜆3

4
) (

𝜆3

4
+
𝜆4

4
))       Eq. (A.5) 

𝐴39 = 
𝜆2 

122∆1
(
𝜆3

3
+
𝜆4

4
) ;  𝐴312 = 

𝜆2𝜆3 

123∆1
 ; 𝑎66 = 

1 

12∆1
((

𝜆3

12
)
2

− (
𝜆1

4
+
2𝜆2

3
+
𝜆3

4
) (

𝜆3

4
+
𝜆4

4
)) 

 

 𝐴69 = 
1 

12∆1
(
𝜆1

4
+
𝜆2

3
) (

𝜆3

3
+
𝜆4

4
) ;  𝐴612 = 

𝜆3 

122∆1
(
𝜆1

4
+
𝜆2

3
) 

𝑎99 = 
1 

12∆1
((

𝜆2

12
)
2

− (
𝜆1

4
+
𝜆2

4
) (

𝜆2

4
+
2𝜆3

3
+
𝜆4

4
))  

𝐴912 = 
1 

12∆1
((

𝜆2

12
)
2

− (
𝜆1

4
+
𝜆2

4
) (

𝜆2

4
+
𝜆3

3
)); 𝑎1212 = 

1 

12∆1
((

𝜆2

12
)
2

− (
𝜆1

4
+
𝜆2

4
) (

𝜆2

4
+
𝜆3

4
)) 
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Matrix B  

 

B=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0
𝑒1 

12
𝐵13 0 0

𝑒2 

12
𝐵16 0 0

−𝑒3 

12
𝐵19 0 0

−𝑒4 

12
𝐵112

0 0 𝑒1𝐵23 0 0
𝑒2 

12
𝐵16 0 0

−𝑒3 

12
𝐵19 0 0

−𝑒4 

12
𝐵112

−𝐵13 −
5𝑒1

12
𝐵23 0 𝐵34 −

5𝑒2

12
𝐵16 0 −𝐵37

5𝑒3

12
𝐵19 0 −𝐵112

5𝑒4

12
𝐵112 0

0 0 −
𝑒1 

12
𝐵34 0 0 −

𝑒2 

12
𝐵46 0 0

−𝑒3 

12
𝐵49 0 0

−𝑒4 

12
𝐵412

0 0
𝑒1 

12
𝐵16 0 0

𝑒2 

12
𝐵56 0 0

−𝑒3 

12
𝐵59 0 0

−𝑒4 

12
𝐵512

−𝐵16 −
5𝑒1

12
𝐵16 0 𝐵46 −

5𝑒2

12
𝐵56 0 −𝐵67

5𝑒3

12
𝐵59 0 −𝐵512

5𝑒4

12
𝐵512 0

0 0
𝑒1 

12
𝐵37 0 0

𝑒2 

12
𝐵67 0 0

𝑒3 

12
𝐵79 0 0

𝑒4 

12
𝐵712

0 0 −
𝑒1 

12
𝐵19 0 0 −

𝑒2 

12
𝐵59 0 0

𝑒3 

12
𝐵89 0 0

𝑒4 

12
𝐵812

𝐵19
5𝑒1

12
𝐵19 0 𝐵49

5𝑒2

12
𝐵59 0 −𝐵79 −

5𝑒3

12
𝐵89 0 𝐵812

−5𝑒4

12
𝐵812 0

0 0
𝑒1 

12
𝐵112 0 0

𝑒2 

12
𝐵512 0 0

−𝑒3 

12
𝐵812 0 0

−𝑒4 

12
𝐵1012

0 0 −
𝑒1 

12
𝐵112 0 0 −

𝑒2 

12
𝐵512 0 0

𝑒3 

12
𝐵812 0 0

𝑒4 

12
𝐵1112

𝐵112
5𝑒1

12
𝐵112 0 𝐵412

5𝑒2

12
𝐵512 0 −𝐵712

−5𝑒3 

12
𝐵812 0 𝐵1012

−5𝑒4

12
𝐵1112 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

𝐵23 =
− 12𝐸1

𝑒1(1 + 𝜈1)
+ 𝐵13   ,   𝐵56 =

−12 𝐸2

𝑒2(1 + 𝜈2)
+ 𝑏56 

𝐵89 =
−12𝐸3

𝑒3(1 + 𝜈3)
+ 𝑏89  ,   𝐵1112 =

− 12𝐸4

𝑒4(1 + 𝜈4)
+ 𝐵1012 

Eq. (A.6) 

 

With the following 16 Bjk and 2 bjk coefficients (some of them are linked to the 

previous Ajk ones) 

 
𝐵13 =  12𝑎33 ; 𝐵16 =  12𝐴36; 𝐵19 =  12𝐴39 ;  𝐵112 =  12𝐴312 

Eq. (A.7) 

𝐵34 = 
1 

∆1
((

𝜆3

12
)
2

− (
𝜆2

6
+
𝜆3

4
) (

𝜆3

4
+
𝜆4

4
)) ;  𝐵37 = 

𝜆2 

12∆1
(
𝜆3

6
+
𝜆4

4
) 

𝐵46 = 
1 

∆1
((

𝜆3

12
)
2

− (−
𝜆1

4
+
𝜆3

4
) (

𝜆3

4
+
𝜆4

4
)) ;    𝐵49 = 

1 

∆1
(
𝜆1

4
+
𝜆2

6
) (

𝜆3

3
+
𝜆4

4
)  

𝐵412 = 
𝜆3 

12∆1
(
𝜆1

4
+
𝜆2

6
);  𝑏56 =  12𝑎66 ; 𝐵59 =  12𝐴69 ; 𝐵512 =  12𝐴612  

𝐵67 = 
1 

∆1
(
𝜆1

4
+
𝜆2

3
) (

𝜆3

6
+
𝜆4

4
) ; 𝐵79 = 

1 

∆1
((

𝜆2

12
)
2

+ (
𝜆1

3
+
𝜆2

4
) (−

𝜆2

4
+
𝜆4

4
))    

𝐵712 = 
1 

∆1
((

𝜆2

12
)
2

− (
𝜆1

4
+
𝜆2

4
) (

𝜆2

4
+
𝜆3

6
)) ;  𝑏89 =  12𝑎99 ;  𝐵812 =  12𝐴912; 𝐵1012 =

 12𝑎1212 

 

 

Matrix C 
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C=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−𝐶11
−5𝑒1 

12
𝐶11 0 𝐶14

−5𝑒2 

12
𝐶15 0 −𝐶17

5𝑒3 

12
𝐶18 0 −𝐶110

5𝑒4 

12
𝐶110 0

−𝐶11
−5𝑒1 

12
𝐶22 0 𝐶14

−5𝑒2 

12
𝐶15 0 −𝐶17

5𝑒3 

12
𝐶18 0 −𝐶110

5𝑒4 

12
𝐶110 0

0 0
−12 

𝑒1
𝐶33 0 0

12 

𝑒1
𝐶36 0 0

12 

𝑒1
𝐶39 0 0

−12 

𝑒1
𝐶312

𝐶14
5𝑒1 

12
𝐶14 0 −𝐶44

5𝑒2 

12
𝐶45 0 −𝐶47

5𝑒3 

12
𝐶48 0 −𝐶410

5𝑒4 

12
𝐶410 0

𝐶15
−5𝑒1 

12
𝐶15 0 𝐶45 −

5𝑒2 

12
𝐶55 0 −𝐶57

5𝑒3 

12
𝐶58 0 −𝐶510

5𝑒4 

12
𝐶510 0

0 0
12 

𝑒2
𝐶36 0 0

−12 

𝑒2
𝐶66 0 0

−12 

𝑒2
𝐶69 0 0

12 

𝑒2
𝐶612

−𝐶17
−5𝑒1 

12
𝐶17 0 −𝐶47

−5𝑒2 

12
𝐶57 0 −𝐶77

−5𝑒3 

12
𝐶78 0 𝐶710

−5𝑒4 

12
𝐶710 0

𝐶18
5𝑒1 

12
𝐶18 0 𝐶48

5𝑒2 

12
𝐶58 0 −𝐶78

−5𝑒3 

12
𝐶88 0 𝐶810

−5𝑒4 

12
𝐶810 0

0 0
12 

𝑒3
𝐶39 0 0

−12 

𝑒3
𝐶69 0 0

−12 

𝑒3
𝐶99 0 0

12 

𝑒3
𝐶912

−𝐶110
−5𝑒1 

12
𝐶110 0 −𝐶410

−5𝑒2 

12
𝐶510 0 𝐶710

5𝑒3 

12
𝐶810 0 −𝐶1010

5𝑒4 

12
𝐶1010 0

𝐶110
5𝑒1 

12
𝐶110 0 𝐶410

5𝑒2 

12
𝐶510 0 −𝐶711

−5𝑒3 

12
𝐶810 0 𝐶1010

−5𝑒4 

12
𝐶1010 0

0 0
−12 

𝑒4
𝐶312 0 0

12 

𝑒4
𝐶612 0 0

12 

𝑒4
𝐶912 0 0

−12 

𝑒4
𝐶1212)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐶22 =
 12𝐸1

5𝑒1(1 + 𝜈1)
+ 𝐶11   , 𝐶55 =

12𝐸2

5𝑒2(1 + 𝜈2)
+ 𝑐55 

𝐶88 =
12 𝐸3

5𝑒3(1 + 𝜈3)
+ 𝑐88  ,   𝐶1111 =

12𝐸4

5𝑒4(1 + 𝜈4)
+ 𝐶1010 

Eq. (A.8) 

 

The 30 Cjk and 2 cjk coefficients are proportional to the quotients: 
Ei

ei
 (some of them 

are linked to the previous Ajk and Bjk ones). 

 

𝐶11 =  12𝑎33; 𝐶14 = 𝐵34; 𝐶15 =  12𝐴36; 𝐶17 = 𝐵37; 𝐶18 =  12𝐴39;  𝐶110 =  12𝐴312 

Eq. 

(A.9) 

𝐶33 = 
1 

∆2
((

9

2

𝜅3

35
)
2

− 132 (
𝜅2

35
+
𝜅3

35
) (

𝜅3

35
+
𝜅4

35
))  

𝐶36 = 
1 

∆2
((

9

2

𝜅3

35
)
2

− 13 (
𝜅2

2
+
13𝜅3

35
) (

𝜅3

35
+
𝜅4

35
)) ; 𝐶39 = 

1 

∆2
(
9

2

𝜅2

35
) (

𝜅3

2
+
13𝜅4

35
)  

𝐶312 = 
1 

∆2
(
9

2

𝜅2

35
) (

9

2

𝜅3

35
) ; 𝐶44 = 

1 

∆1
((

𝜆3

12
)
2

− (
𝜆1

4
+
𝜆2

3
+
𝜆3

4
) (

𝜆3

4
+
𝜆4

4
)) ; 𝐶45 = 𝐵46 

  𝐶47 =  
1 

∆1
(
𝜆1

4
+
𝜆2

6
) (

𝜆3

6
+
𝜆4

4
); 𝐶48 = 𝐵49; 𝐶410 = 𝐵412 

𝑐55 =  12𝑎66; 𝐶57 = 
1 

∆1
(
𝜆1

4
+
𝜆2

3
) (

𝜆3

6
+
𝜆4

4
); 𝐶58 =  12𝐴69; 𝐶510 =  12𝐴612 

𝐶66 = 
1 

∆2
((

9

2

𝜅3

35
)
2

− 13 (
13𝜅1

35
+ 𝜅2 +

13𝜅3

35
) (

𝜅3

35
+
𝜅4

35
)); 𝐶69 = 

1 

∆2
(
13𝜅1

35
+
𝜅2

2
) (

𝜅3

2
+
13𝜅4

35
) 

𝐶612 = 
1 

∆2
(
9

2

𝜅3

35
) (

13𝜅1

35
+
𝜅2

2
); 𝐶77 = 

1 

∆1
((

𝜆2

12
)
2

− (
𝜆1

4
+
𝜆2

4
) (

𝜆2

4
+
𝜆3

3
+
𝜆4

4
)) 

𝐶78 = 
1 

∆1
((

𝜆2

12
)
2

− (
𝜆1

4
+
𝜆2

4
) (

𝜆2

4
−
𝜆4

4
)); 𝐶710 = 

1 

∆1
((

𝜆2

12
)
2

− (
𝜆1

4
+
𝜆2

4
) (

𝜆2

4
+
𝜆3

6
)) 

𝑐88 =  12𝑎99; 𝐶810 =  12𝐴912; 𝐶99 = 
1 

∆2
((

9

2

𝜅2

35
)
2

− 13 (
𝜅1

35
+
𝜅2

35
) (

13𝜅2

35
+ 𝜅3 +

13𝜅4

35
)) 

 𝐶912 = 
1 

∆2
((

9

2

𝜅2

35
)
2

− 13 (
𝜅1

35
+
𝜅2

35
) (

13𝜅2

35
+
𝜅3

2
)); 𝐶1010 =  12𝐴1212    

𝐶1212 = 
1 

∆2
((

9

2

𝜅2

35
)
2

− 132 (
𝜅1

35
+
𝜅2

35
) (

𝜅2

35
+
𝜅3

35
))    

 

 

Matrix D and E 
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D=

(

 
 
 
 
 
 
 
 
 

0 0
0 0

−1 − 𝐷31 0
0 0
0 0

−𝐷61 0
0 0
0 0
𝐷91 0
0 0
0 0
𝐷121 0)

 
 
 
 
 
 
 
 
 

      E=

(

 
 
 
 
 
 
 
 
 

0 0
0 0
𝐸31 0
0 0
0 0
𝐸61 0
0 0
0 0

−𝐸91 0
0 0
0 0

−1 − 𝐸121 0)

 
 
 
 
 
 
 
 
 

 Eq. (A.10) 

 

The 4 Djk and Ejk coefficients are: 
 

𝐷31 = 𝜆
1𝑎11; 𝐷61 = 𝜆

1𝐴36; 𝐷91 = 𝜆
1𝐴39; 𝐷121 = 𝜆

1𝐴312 Eq. (A.11) 
𝐸31 = 𝜆

4𝐴312 ; 𝐸61 = 𝜆
4𝐴612; 𝐸91 = 𝜆

4𝐴912; 𝐸121 = 𝜆
4𝐴1212 

 

 

Matrix F    
 

F=

(

 
 
 
 
 
 
 
 
 
 
 
 

1 − 𝐹11 0
−1 − 𝐹11 0

0
12 

𝑒1
(1 + 𝐹32)

𝐹41 0
−𝐹51 0

0 −
12 

𝑒2
𝐹62

−𝐹71 0
𝐹81 0

0 −
12 

𝑒3
𝐹92

−𝐹101 0
𝐹101 0

0
12 

𝑒4
𝐹122 )

 
 
 
 
 
 
 
 
 
 
 
 

   G=

(

 
 
 
 
 
 
 
 
 
 
 
 

𝐺11 0
𝐺11 0

0 −
12 

𝑒1
𝐺32

𝐺41 0
𝐺51 0

0
12 

𝑒2
𝐺62

−𝐺71 0
−𝐺81 0

0 −
12 

𝑒3
𝐹92

−1 + 𝐺101 0
−1 − 𝐺101 0

0 −
12 

𝑒4
(1 + 𝐺122))

 
 
 
 
 
 
 
 
 
 
 
 

 Eq. (A.12) 

 

The 10 Fjk and 10 Gjk coefficients are: 

 

𝐹11 = 𝜆
1𝑎33;  𝐹32 = (

9

2

𝜅1

35
)𝐶33; 𝐹41 = 

𝜆1 

12
𝐵34; 𝐹51 = 𝜆

1𝐴36;   𝐹62 = (
9

2

𝜅1

35
) 𝐶36 

Eq. (A.13) 

 

 

𝐹71 =
𝜆1 

12
𝐵37;  𝐹81 = 𝜆

1𝐴39; 𝐹92 = (
9

2

𝜅1

35
) 𝐶39; 𝐹101 = 𝜆

1𝐴312; 𝐹122 = (
9

2

𝜅1

35
)𝐶312  

𝐺11 = 𝜆
4𝐴312 ;𝐺32 = (

9

2

𝜅4

35
)𝐶312;  𝐺41 =

𝜆4 

12
𝐵412 ; 𝐺51 = 𝜆

4𝐴612; 𝐺62 = (
9

2

𝜅4

35
)𝐶612 

 𝐺71 =
𝜆4 

12
𝐵712; 𝐺81 = 𝜆

4𝐴912; 𝐺92 = (
9

2

𝜅4

35
) 𝐶912; 𝐺101 = 𝜆

4𝑎1212; 𝐺122 = (
9

2

𝜅4

35
) 𝐶1212 
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Appendix B - Boundary conditions 
 

 
At the edges 

 
𝐶𝑥1𝑋

′(𝑥) + 𝐶𝑥2𝑋(𝑥) = 𝐶𝑥3𝑌
0,1(𝑥) + 𝐶𝑥4𝑌

4,5(𝑥) Eq. (B.1) 

 

𝐶𝑥1=

(

 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝑒1𝐴33 0 0 𝑒2𝐴36 0 0 −𝑒3𝐴39 0 0 −𝑒4𝐴312
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝑒1𝐴36 0 0 𝑒2𝐴66 0 0 −𝑒3𝐴69 0 0 −𝑒4𝐴612
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑒1𝐴39 0 0 −𝑒2𝐴69 0 0 𝑒3𝐴99 0 0 𝑒4𝐴912
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑒1𝐴312 0 0 −𝑒2𝐴612 0 0 𝑒3𝐴912 0 0 𝑒4𝐴1212)

 
 
 
 
 
 
 
 
 

 Eq. (B.2) 

 

𝐶𝑥2=

(

 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

−𝐵13 −
5𝑒1

12
𝐵23 0 𝐵34 −

5𝑒2

12
𝐵16 0 −𝐵37

5𝑒3

12
𝐵19 0 −𝐵112

5𝑒4

12
𝐵112 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

−𝐵16 −
5𝑒1

12
𝐵16 0 𝐵46 −

5𝑒2

12
𝐵56 0 −𝐵67

5𝑒3

12
𝐵59 0 −𝐵512

5𝑒4

12
𝐵512 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

𝐵19
5𝑒1

12
𝐵19 0 𝐵49

5𝑒2

12
𝐵59 0 −𝐵79 −

5𝑒3

12
𝐵89 0 𝐵812

−5𝑒4

12
𝐵812 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

𝐵112
5𝑒1

12
𝐵112 0 𝐵412

5𝑒2

12
𝐵512 0 −𝐵712

−5𝑒3 

12
𝐵812 0 𝐵1012

−5𝑒4

12
𝐵1112 0)

 
 
 
 
 
 
 
 
 
 
 
 

 Eq. (B.3) 

 

𝐶𝑥3=

(

 
 
 
 
 
 
 
 
 

0 0
0 0

−1 − 𝐷31 0
0 0
0 0

−𝐷61 0
0 0
0 0
𝐷91 0
0 0
0 0
𝐷121 0)

 
 
 
 
 
 
 
 
 

  𝐶𝑥4=

(

 
 
 
 
 
 
 
 
 

0 0
0 0
𝐸31 0
0 0
0 0
𝐸61 0
0 0
0 0

−𝐸91 0
0 0
0 0

−1 − 𝐸121 0)

 
 
 
 
 
 
 
 
 

 Eq. (B.4) 



27 

 

Vertical crack across the third layer 

 
𝐶𝑥1𝑓𝑖𝑠𝑠𝑋

′(𝑥) + 𝐶𝑥2𝑓𝑖𝑠𝑠𝑋(𝑥) = 𝐶𝑥3𝑓𝑖𝑠𝑠𝑌
0,1(𝑥) + 𝐶𝑥4𝑓𝑖𝑠𝑠𝑌

4,5(𝑥) Eq. (B.5) 

 

 

𝐶𝑥1𝑓𝑖𝑠𝑠=

(

 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝑒1𝐴33 0 0 𝑒2𝐴36 0 0 −𝑒3𝐴39 0 0 −𝑒4𝐴312
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝑒1𝐴36 0 0 𝑒2𝐴66 0 0 −𝑒3𝐴69 0 0 −𝑒4𝐴612
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 −𝑒1𝐴39 0 0 −𝑒2𝐴69 0 0 𝑒3𝐴99 0 0 𝑒4𝐴912
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑒1𝐴312 0 0 −𝑒2𝐴612 0 0 𝑒3𝐴912 0 0 𝑒4𝐴1212)

 
 
 
 
 
 
 
 
 

 Eq. (B.6) 

 

𝐶𝑥2𝑓𝑖𝑠𝑠=

(

 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

−𝐵13 −
5𝑒1

12
𝐵23 0 𝐵34 −

5𝑒2

12
𝐵16 0 −𝐵37

5𝑒3

12
𝐵19 0 −𝐵112

5𝑒4

12
𝐵112 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

−𝐵16 −
5𝑒1

12
𝐵16 0 𝐵46 −

5𝑒2

12
𝐵56 0 −𝐵67

5𝑒3

12
𝐵59 0 −𝐵512

5𝑒4

12
𝐵512 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

𝐵19
5𝑒1

12
𝐵19 0 𝐵49

5𝑒2

12
𝐵59 0 −𝐵79 −

5𝑒3

12
𝐵89 0 𝐵812

−5𝑒4

12
𝐵812 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

𝐵112
5𝑒1

12
𝐵112 0 𝐵412

5𝑒2

12
𝐵512 0 −𝐵712

−5𝑒3 

12
𝐵812 0 𝐵1012

−5𝑒4

12
𝐵1112 0)

 
 
 
 
 
 
 
 
 
 
 
 

 Eq. (B.7) 

 
𝐶𝑥3𝑓𝑖𝑠𝑠=𝐶𝑥3  ;  𝐶𝑥4𝑓𝑖𝑠𝑠=𝐶𝑥4 Eq. (B.8) 

 

 


