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is usually quite demanding from a numerical viewpoint, as it is necessary to propagate separately 19

both types of uncertainty, leading in practical cases to a nested implementation in the so-called 20

double loop approach. In view of this issue, this contribution presents an alternative approach that 21

avoids the double loop by replacing the imprecise probability problem by an augmented, purely 22

aleatory reliability analysis. Then, with the help of Bayes’ theorem, it is possible to recover an 23

expression for the failure probability as an explicit function of the imprecise parameters from 24

the augmented reliability problem, which ultimately allows calculating the imprecise probability. 25

The implementation of the proposed framework is investigated within the context of imprecise 26

first excursion probability estimation of uncertain linear structures subject to imprecisely defined 27

stochastic quantities and crisp stochastic loads. The associated augmented reliability problem is 28

solved within the context of Directional Importance Sampling, leading to an improved accuracy 29

at reduced numerical costs. The application of the proposed approach is investigated by means of 30

two examples. The results obtained indicate that the proposed approach can be highly efficient 31

and accurate. 32
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Highlights:35

• Imprecise reliability problem is replaced by an augmented reliability problem.36

• Bayes’ theorem allows retrieving relevant information out of augmented reliability.37

• Focus on uncertain linear structures described by imprecise random properties subject to38

stochastic loads.39

• Augmented reliability problem is solved with Directional Importance Sampling.40

1. Introduction41

Numerical tools to approximate the solution of (sets of) differential equations have become in-42

dispensable in the design of components from the micro-scale to complete structures, all subjected43

to loads that are representative for those they encounter during their functional life. Thanks to44

these tools, an engineer is now able to design, test and optimize designs long before a first pro-45

totype is built. However, despite the highly detailed numerical predictions that can be obtained,46

the results of these calculations often show a non-negligible discrepancy with the actual physical47

behaviour of the structure. At the core of this discrepancy lies epistemic (= lack of knowledge)48

and aleatory (= caused by inherent variation) uncertainty in the description of the model physics,49

as well as the governing parameters. In recent years, several highly performing methods based on50

stochastic analysis [1], Fuzzy set theory and Interval analysis [2] have been introduced in literature51

to account for respectively aleatory and epistemic uncertainties in the model parameters. Also,52

recent studies compared the applicability of several of these techniques in applications such as53

geotechnical engineering [3] or inverse uncertainty quantification for stochastic dynamics [4, 5].54

Uncertainties, be it epistemic or aleatory, are commonly encountered in the context of struc-55

tural dynamics. This is especially true when considering natural phenomena such as earthquakes56

or wind loads, since the corresponding dynamical loads that act on the system often cannot be57

described in a crisp way. Similarly, when considering natural materials and/or products manufac-58

tured using highly advanced production techniques, such uncertainties may arise. Stochastic pro-59

cesses, see, e.g. [6, 7], provide a rigorous framework to deal with the uncertainties and space/time60

correlations of uncertain loads and properties by resorting to the well-documented framework of61
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probability theory, which is highly suited to deal with aleatory uncertainties. However, in prac- 62

tice, the analyst is often confronted with limited, incomplete or conflicting sources of data (i.e., 63

epistemic uncertainty). In this case, the application of a pure probabilistic framework to take this 64

additional level of uncertainty into account is questionable since in this case, there is simply not 65

enough information to construct an objective probabilistic uncertainty model. In this case, by in- 66

troducing probability density functions to represent lack of knowledge, one automatically inserts 67

subjective information into the analysis, which might cause further divergence from the actual 68

physics. The framework of imprecise probabilities (see, e.g. [3]) might in this case offer a more 69

objective framework, since, rather than assuming a specific probability measure, it incorporates 70

credal sets of probability measures to fully represent all sources of uncertainty. In practice, this 71

allows to explicitly consider a set of probabilistic models, each consistent with the definition of 72

the epistemic uncertainty, and to infer bounds on the possible model behaviour [8]. For example, 73

in the context of structural dynamics, rather than computing a crisp value of the first excursion 74

probability given a crisp stochastic process load (e.g., following the methods proposed in [9]), an 75

imprecise probabilistic calculation provides bounds on the first excursion probability given a set 76

of stochastic processes that are consistent with the epistemic uncertainty. This allows both to 77

assess the sensitivity of the model reliability to the existing epistemic uncertainty, as well as to 78

provide an estimate of the lower bound of the reliability. Similar observations can be made when 79

considering imprecisely defined stochastic structural properties, which is the main focus of this 80

contribution. 81

In engineering practice, however, the application of the framework of imprecise probabilities 82

to infer bounds on the probability of failure is hindered by the computational cost of propagating 83

both sources of uncertainty (aleatory and epistemic) jointly towards the model responses. The 84

high computational cost is a direct result of the fact that the propagation has to be conducted 85

such that the effects of aleatory and epistemic uncertainty are kept separated [10]. Hence, double 86

loop approaches are typically applied, where the outer loop takes care of epistemic uncertainty 87

while the inner loop deals with aleatory uncertainty. Many recent works deal with improving the 88

numerical efficiency of propagation schemes for imprecise probabilities. In general four groups of 89

approaches can be considered: (1) series expansion methods, (2) surrogate modelling schemes, (3) 90

decoupling approaches and (4) augmented space techniques. Series expansion methods rely on the 91

approximation of the epistemic uncertain parameters via series expansion methods (see e.g., [11], 92
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[12]) or orthogonal polynomial expansion schemes (see e.g., [13]), effectively enabling propagation93

without double loop approaches. However, in case the epistemic uncertainty is comparatively large,94

perturbation approaches are known to be inaccurate [2], a problem that is alleviated by resorting95

to Chebyshev polynomial based schemes such as presented in [14]. Considering surrogate mod-96

elling schemes, many efficient techniques for the propagation of imprecise probabilistic problems97

have been proposed using sparse polynomial chaos expansion representations of the model (see98

e.g., [15, 16]), interval predictor models [17, 18] or variants of the Sobol-Hoeffding decomposition99

(also known as HDMR representation) of the relation between the epistemic parameters and the100

probability of failure [19, 20], providing an efficient and accurate approximation of the problem.101

Decoupling approaches, such as presented in recent work by some of the authors (see [21, 22, 23])102

are proven to be extremely efficient, but their application is limited to linear models. Finally,103

the idea of using augmented space methods was introduced by [24] in the context of probabilistic104

failure analysis and further developed for sensitivity analysis and reliability-based optimization105

in, e.g. [25, 26, 27, 28, 29]. In the context of imprecise probabilities, similar methods were intro-106

duced by [19, 20, 30] and independently by [31] in a different form. Following these approaches,107

the main idea is to propagate the epistemic and aleatory uncertainty jointly in a purely aleatory,108

augmented space that is optimal with respect to a certain well-defined measure, in such a way109

that both sources of uncertainty can be decoupled again at the response side.110

This contribution is situated in the latter category: augmented space methods, and it aims at111

solving a particular class of problems, that is, those of bounding the first excursion probability112

of a system subjected to a Gaussian excitation, where epistemic uncertainty is present in the113

hyper-parameters of the distributions of several uncertain model quantities (i.e., parameterized114

p-boxes). Imprecise stochastic loads, such as considered in [21], are not considered in this con-115

tribution. The proposed approach converts the p-box valued uncertain parameters into aleatory116

uncertainties in an augmented space. Then, with the help of Bayes’ theorem, it is possible to117

recover an expression for the failure probability as an explicit function of the imprecise param-118

eters from the augmented reliability problem, which ultimately allows calculating the imprecise119

probability due to the established functional relationship. The implementation of the proposed120

framework is investigated within the context of imprecise first excursion probability estimation of121

uncertain linear structures where epistemic uncertainty is present in the hyper-parameters of the122

distributions of several uncertain model quantities. The associated augmented reliability problem123
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is solved within the context of Directional Importance Sampling [32], leading to an improved ac- 124

curacy at reduced numerical costs. Furthermore, by virtue of Directional Importance Sampling, 125

it is possible to derive an explicit approximation of the probability of failure as a function of the 126

interval-valued hyper-parameters of the uncertain input quantities. The paper is complementary 127

to earlier work by the authors, presented in [21, 22, 23], in the sense that it presents a conceptually 128

totally different framework for the propagation of imprecise probabilities towards the bounds on 129

first excursion probabilities. Indeed, whereas the work in [21, 22, 23] focuses on the operator norm 130

framework to decouple the double loop, the methods presented in this paper are based on solving 131

the problem in an augmented space. 132

The paper is structured as follows: Section 2 introduces the general framework of augmented 133

methods. Section 3 discusses the application of the framework to the calculation of the first 134

excursion probability of uncertain linear dynamical systems. Section 4 provides two examples to 135

illustrate the application, efficiency and effectivity of the proposed framework. Section 5 lists the 136

conclusions of the work and gives some outlook for future developments. 137

2. General Framework 138

2.1. Imprecise Probability 139

Consider a numerical model that represents the behavior of a system. It is assumed that some 140

input parameters of this model are uncertain. These uncertain parameters are grouped into two 141

vectors z and y, whose dimensions are nz × 1 and ny × 1, respectively, and which are assumed 142

to be independent. The uncertainty associated with these two vectors is represented in terms of 143

probability density functions fZ(z) and fY (y|θ), respectively, where θ is a vector of dimension 144

nθ × 1 that collects distribution parameters such as mean value, standard deviation, etc. Due to 145

issues such as lack of knowledge, imprecision, conflicting sources of information, etc., θ cannot be 146

identified precisely and hence, it is described as an interval valued vector, whose lower and upper 147

bounds are θ and θ, respectively. From the above discussion, it is noted that: the uncertainty 148

associated with z is aleatoric; the uncertainty associated with θ is epistemic; and that the un- 149

certainty associated with y is both aleatoric and epistemic. In fact, the uncertainty associated 150

with y falls into the category of a parametric probability box (p-box) with specified distribution 151

function [33]. 152

The response of the system under analysis becomes uncertain due to the uncertainty in its in- 153
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put parameter vectors z and y. Such response is monitored in terms of a performance function154

g, which assumes a value equal or smaller than zero whenever an unacceptable system behavior155

occurs. In other words, unacceptable behavior occurs whenever g(z,y) ≤ 0. It is important to156

note that the performance function does not depend on θ: recall that this is a vector collect-157

ing distribution parameters which do not affect the physical behavior of the system but just the158

probabilistic description associated with y. The chances that an unacceptable behavior occur are159

measured in terms of a probability of failure pF , which is defined as:160

pF (θ) =

∫
y∈Ωy

∫
z∈Ωz

IF (y, z)fZ(z)fY (y|θ)dzdy, (1)

where Ωy and Ωz are the sets containing all values that y and z may assume, respectively; and161

IF (y, z) is the indicator function, which is equal to one in case g(y, z) ≤ 0 and zero, otherwise.162

It is noted from the equation above that the failure probability pF does depend on θ. This is163

evident, as θ affects the probabilistic description of the problem. Furthermore, as the uncertainty164

associated with θ is described in terms of an interval, the failure probability itself becomes interval165

valued as well. In other words, due to the imprecision associated with the vector of distribution166

parameters, the failure probability is actually imprecise. Its lower and upper bounds (denoted as167

p
F

and pF , respectively) can be determined by solving the following two optimization problems.168

p
F

= min
θ∈[θ,θ]

(pF (θ)) , (2)

pF = max
θ∈[θ,θ]

(pF (θ)) . (3)

The structure of eqs. (2) and (3) indicates that for determining the bounds of the imprecise169

failure probability, it is necessary to solve two optimization problems with respect to the epistemic170

uncertainty associated with θ. In turn, for a given crisp value of θ, it is necessary to propagate171

the aleatoric uncertainty associated with z and y in order to calculate the failure probability172

as shown in eq. (1). Such structure reveals the challenge associated with the calculation of an173

imprecise probability, as it is necessary to propagate both epistemic and aleatoric uncertainty at174

different levels. In other words, failure probabilities must be calculated for different crisp values175

of θ as required by the optimization. In turn, as the calculation of failure probabilities demands176

performing repeated system analyses for different realizations of the uncertain input parameters177

z and y, the numerical cost associated with the estimation of an imprecise failure probability178
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becomes insurmountable, even for simple problems. For the sake of completeness, it should be 179

noted that surrogate modelling schemes, such as e.g., presented in [15] or [19], can alleviate 180

the computational cost of propagating imprecise probabilities drastically. Indeed, in some cases, 181

the application of appropriate surrogate modelling schemes might even render the application of 182

brute-force double loop approaches tractable at acceptable levels of accuracy. Nonetheless, even 183

when applying surrogate modelling schemes, it is advantageous to apply more efficient calculation 184

methods to further increase the numerical efficiency. For a thorough discussion on the applicability 185

of decoupling approaches and surrogate modelling schemes, the reader is referred to [34]. 186

2.2. Augmented Reliability Problem 187

A possible means for avoiding the double loop problem associated with the calculation of im- 188

precise probabilities consists of formulating an augmented reliability problem. This augmented 189

problem was originally devised within the context of sensitivity analysis and reliability-based op- 190

timization in [24, 25, 27, 28] and was later applied to calculation of imprecise probabilities arising 191

in problems where the performance function is affected by interval valued parameters [30]. In the 192

following, a novel application of the augmented reliability approach is proposed, where the focus 193

is on estimating imprecise probabilities in case imprecision affects the distribution parameters of 194

some random variables of a reliability problem. This novel application can be seen as an extension 195

of the approach proposed in [35] for sensitivity analysis in structural reliability. 196

The augmented reliability problem is defined such that an instrumental probability density func- 197

tion fΘ(θ) is associated with the distribution parameter vector θ. It is emphasized that this 198

probability distribution is only an artifact, which has no physical meaning, as the uncertainty 199

associated with θ is epistemic (and not aleatoric). In principle, this instrumental probability dis- 200

tribution could be chosen arbitrarily. In this sense, note that the distribution does not have to 201

be bounded between the lower and upper bounds of the associated intervals. In fact, any distri- 202

bution that is capable of characterizing the effect of the epistemic uncertain parameters from a 203

physical standpoint is admissible. In this contribution, a uniform distribution is selected, such 204

that fΘ(θ) ∼ U(θ,θ). Thus, the failure probability pAF associated with the augmented reliability 205

problem is: 206

pAF =

∫
θ∈Ωθ

∫
y∈Ωy

∫
z∈Ωz

IF (y, z)fZ(z)fY (y|θ)fΘ(θ)dzdydθ, (4)
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where Ωθ = [θ,θ]. This augmented failure probability can be calculated using any suitable207

reliability method.208

Let F represent the failure set, that is F = {(z,y) : g(z,y) ≤ 0}. Applying Bayes’ theorem, it is209

noted that [24, 25, 30]:210

P (F |θ) = pF (θ) =
fΘ(θ|F )pAF
fΘ(θ)

, (5)

where P (·) denotes probability of occurrence of the argument and fΘ(θ|F ) is the (instrumental)211

probability distribution associated with θ conditioned on failure. Eq. (5) provides an expression212

for calculating the failure probability as a function of the imprecise distribution parameters. In213

this expression, fΘ(θ) is known (as it is selected arbitrarily) and pAF is estimated by means of a214

reliability method. Hence, the only term which remains to be evaluated is fΘ(θ|F ). In order to215

calculate this term, recall the definition of a marginal distribution, that is:216

fΘ(θ|F ) =

∫
y∈Ωy

∫
z∈Ωz

fΘ,Y ,Z(θ,y, z|F )dzdy, (6)

with fΘ,Y ,Z(θ,y, z|F ) the joint distribution of y, z and θ conditional on the failure set. Applying217

Bayes’ theorem, it is found that:218

fΘ(θ|F ) =

∫
y∈Ωy

∫
z∈Ωz

fΘ(θ|y, z, F )fY ,Z(y, z|F )dzdy. (7)

Now, focusing on the conditional probability distribution fΘ(θ|y, z, F ) and recalling that y and219

z are independent between them, it is possible to deduce the following:220

fΘ(θ|y, z, F ) = IF (y, z)
fΘ,Y ,Z(θ,y, z)

fY ,Z(y, z)
,

= IF (y, z)
fΘ,Y (θ,y)

fY (y)
,

= IF (y, z)
fΘ(θ)fY (y|θ)∫

θ∈[θ,θ]
fY (y|θ)fΘ(θ)dθ

. (8)

The last equation can be further simplified recalling that fΘ(θ) is a constant, as it is selected221

as a uniform distribution. Taking into account this fact and defining ∆(y) =
∫
θ∈[θ,θ]

fY (y|θ)dθ,222
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eq. (8) reduces to: 223

fΘ(θ|y, z, F ) = IF (y, z)
fΘ(θ)fY (y|θ)∫

θ∈[θ,θ]
fY (y|θ)fΘ(θ)dθ

,

= IF (y, z)
fΘ(θ)fY (y|θ)

fΘ(θ)
∫
θ∈[θ,θ]

fY (y|θ)dθ
,

= IF (y, z)
fY (y|θ)

∆(y)
. (9)

Inserting eq. (9) into (7) leads to the following expression for fΘ(θ|F ): 224

fΘ(θ|F ) =

∫
y∈Ωy

∫
z∈Ωz

fY (y|θ)

∆(y)
fY ,Z(y, z|F )dzdy, (10)

where the indicator function IF (y, z) has been omitted, as it assumes a value equal to one given 225

the presence of the probability density fY ,Z(y, z|F ), which ensures that integration is carried out 226

exclusively over the failure domain. 227

The expression in eq. (10) is quite convenient from a practical viewpoint, as it can be evaluated by 228

means of simulation. This is due to the following: the terms fY (y|θ) and ∆(y) are both known 229

either in closed form or numerically. Moreover, samples distributed according to fY ,Z(y, z|F ) 230

can be obtained as a byproduct of a reliability analysis associated with the calculation of the 231

augmented failure probability in eq. (4), see e.g. [24]. Thus, by combining eqs. (5) and (10), it is 232

possible to construct an explicit expression for estimating the failure probability as a function of 233

the vector of distribution parameters θ. This expression can then be used to solve the optimization 234

problems in eqs. (2) and (3) at reduced numerical efforts, as it is no longer required to solve a 235

nested problem. 236

As a summary, it can be stated that the approach based on an augmented reliability problem can 237

be quite convenient from a numerical viewpoint. This is due to the fact that the calculation of 238

the bounds for the imprecise probability reduces to: 239

• A single reliability analysis, carried out considering the augmented problem. 240

• Solution of two optimization problems considering the explicit approximation of the failure 241

probability as a function of θ 242
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3. Application to the Calculation of First Excursion Probabilities of Uncertain Linear243

Dynamical Systems244

3.1. General Remarks245

The framework for determining imprecise probabilities as described in Section 2.2 is quite general246

in the sense that no assumptions have been introduced with respect to the type of system in-247

volved. In principle, the approach can cope with, e.g. linear or nonlinear systems under static or248

dynamic loading. Nonetheless, the choice of a specific reliability method for solving the associated249

augmented failure probability is heavily influenced by the type of system. For the particular case250

of this contribution, the focus is on the analysis of uncertain linear structural systems subject251

to imprecise stochastic loading. In such case, Directional Importance Sampling can offer a con-252

venient means for calculating failure probabilities, as shown in [32, 36]. Thus, the rest of this253

Section is organized as follows. Section 3.2 describes the type of stochastic load considered here,254

which corresponds to a Gaussian process. Then, Section 3.3 describes the characterization of the255

dynamic response of a linear system, where the structural matrices (that is, mass, damping and256

stiffness) may be affected by the input parameter y. Then, Sections 3.4 and 3.5 address the solu-257

tion of the augmented reliability problem in order to estimate the augmented failure probability258

(pAF , see eq. (4)) as well as the probability distribution of the vector of distribution parameters259

conditioned on failure (fΘ(θ|F ), see eq. (10)), respectively. Section 3.6 formulates the expression260

for estimating the failure probability as a function of the vector of distribution parameters (that261

is, pF (θ)) while Section 3.7 provides a summary.262

3.2. Stochastic loading263

The uncertain load acting over the structure is denoted as p(t, z), where t stands for time. Its264

duration is T and is represented at discrete time instants tk = (k − 1)∆t, k = 1, . . . , nT , where265

∆t is the time step and nT is the total number of time instants considered. The load process266

has zero mean and it is assumed as a crisp Gaussian process (that is, it does not depend on267

y). Such an assumption implies that the probability density fZ(z) associated with z is actually268

Gaussian. The covariance matrix of the discretized process is denoted as Γ, whose dimension is269

nT × nT . Following the above assumptions, the stochastic load is represented by means of the270

Karhunen-Loève expansion (see, e.g. [37]):271

p(z) = ΨΛ1/2z, (11)
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where p(z) is a vector containing a realization of the uncertain load of dimension nT ×1, where its 272

k-th component pk represents the load at time tk; Λ is a matrix whose diagonal contains the largest 273

nKL eigenvalues of the covariance matrix Γ; Ψ is a matrix of dimension nT × nKL containing the 274

nKL eigenvectors of the covariance matrix Γ associated with the aforementioned eigenvalues; nKL 275

is the number of terms retained for the Karhunen-Loève expansion (nKL ≤ nT , see, e.g. [37]); and 276

z is a realization of a standard Gaussian random variable vector Z of dimension nKL × 1. It is 277

easily verified that due to the above formulation, nz = nKL. 278

279

3.3. Imprecise Structural Response 280

This contribution considers systems that are modeled as a linear structures with classical damping 281

subject to dynamic loading. The associated equation of motion is [38]: 282

M (y)ẍ(t,y, z) +C(y)ẋ(t,y, z) +K(y)x(t,y, z) = ρ(y)p(t, z), (12)

where M , C and K are the mass, damping and stiffness matrices of dimension nD × nD each; 283

nD is the number of degrees-of-freedom of the structural model; ρ is a vector of dimension nD× 1 284

coupling the stochastic load p(t, z) with the degrees-of-freedom of the structure; and where ẍ, 285

ẋ and x denote the acceleration, velocity and displacement vectors, each of dimension nD × 1. 286

It is noted that the system’s matrices as well as the coupling vector ρ are affected by y, whose 287

uncertainty is described by a p-box model, while the loading is affected by aleatoric uncertainty. 288

Hence, the uncertainty associated with the response of the structure becomes a p-box as well. 289

It is assumed that there are nR responses of interest of the structural system that are of interest 290

due to, e.g. practical design reasons. These responses are denoted as ηi(t,y, z), i = 1, . . . , nR. 291

Due to the linearity of the structure, these responses are calculated by means of a convolution 292

integral. In fact, as shown in Appendix A, the i-th response of interest at the k-th time instant 293

is given by the expression: 294

ηi(tk,y, z) = aik(y)z, (13)

where aik(y) is a row vector of dimension 1 × nKL which is associated with the discrete time 295

representation of the convolution integral (see Appendix A for details). Furthermore, the i-th 296
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response of interest at each of the nT time instants of analysis is equal to:297

ηi(y, z) = Ai(y)z, i = 1, . . . , nR, (14)

where ηi is a vector of dimension nT × 1 containing the i-th response along the duration T of the298

stochastic loading; and Ai is a matrix of dimension nT × nKL whose k-th row contains the vector299

aik(y).300

The structural system undergoes an unacceptable behavior whenever the absolute value of any of301

its responses exceeds corresponding prescribed thresholds bi, i = 1, . . . , nR at any time within the302

duration of the imprecise stochastic load. The occurrence of such unacceptable behavior can be303

expressed in mathematical terms with the help of the normalized response function ξ(y, z) [39],304

which is equal to:305

ξ(y, z) = ‖A(y)z‖∞, (15)

where ‖·‖∞ represents infinity norm; and A is a matrix of dimension (nRnT ) × nKL that allows306

calculating all responses of interest throughout the duration T of the load and which is calculated307

as shown below, assuming that bi > 0, i = 1, . . . , nR. The matrix A is specifically given as:308

A(y) =


b−1

1 A1(y)
...

b−1
nR
AnR(y)

 . (16)

Matrix A as shown in eq. (16) provides a means for calculating the responses of interest in a309

dimensionless, normalized fashion. This is a consequence of multiplying by the inverse of the cor-310

responding threshold level. Furthermore, the infinity norm introduced in eq. (15) allows retrieving311

the maximum value of these dimensionless responses. Hence, whenever ξ ≥ 1, one or more of the312

nR responses of interest of the structure exceed their prescribed thresholds at one or more time313

instants within the duration of the stochastic load. Thus, the performance function associated314

with the failure probability in eq. (1) and its augmented counterpart in eq. (4) is equal to:315

g(y, z) = 1− ξ(y, z),

= 1− ‖A(y)z‖∞. (17)
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3.4. Application of Directional Importance Sampling for Calculating Augmented Failure Probabil- 316

ity 317

The structure of the performance function in eq. (17) reveals that the limit state function g(y, z) = 318

0 is actually a piecewise linear function with respect to z for a fixed value of y [9, 40, 41]. In fact, 319

linearity is due to the functional form of the i-th response with respect to z as shown in eq. (14) 320

while the piecewise characteristic stems out of the infinity norm present in eq. (15). Figure 1 321

shows an schematic representation of such issue. For simplicity, it has been assumed that ny = 1 322

and nz = nKL = 2. The abscissa and ordinate contain coordinates z1 and z2 while coordinate y 323

is orthogonal to the plane of the Figure. The limit state function is represented schematically for 324

two different realizations y and y + ∆y with solid and dashed line, respectively. It is noted that 325

both limit state functions are different, as they correspond to two different values of y. However, 326

they are both piecewise linear with respect to z. 327

z1

z2

ξ(y, z) = 1

ξ(y + ∆y,z) = 1

y

failure

safe

c(y,u)
u

Figure 1: Schematic representation of limit state surface.

The fact that the limit state function is piecewise linear with respect to z for a fixed value of 328

y opens the way to solve the augmented reliability problem in eq. (4) by means of Directional 329

Importance Sampling. Such an approach has been shown to be particularly effective for addressing 330

this type of limit state functions [32, 36]. Therefore, the application of this simulation method is 331

investigated in the following for the problem at hand. 332

As a preliminary step before applying Directional Importance Sampling, it is necessary to express 333

vector z in polar form, that is z = ru, where u = z/‖z‖ is the unit vector pointing towards z, 334

r = ‖z‖ is the radius and ‖·‖ denotes Euclidean norm. Thus, the augmented failure probability 335
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in eq. (4) is expressed as:336

pAF =

∫
θ∈Ωθ

∫
y∈Ωy

∫
u∈ΩU

∫ ∞
0

IF (y, ru)2rfR2(r2)fU (u)fY (y|θ)fΘ(θ)drdudydθ, (18)

where ΩU denotes the unit hypersphere in (nKL−1) dimensions; fU (u) is the uniform probability337

density over the (nKL− 1)-dimensional hypersphere; and fR2(r2) is the Chi-square distribution of338

nKL degrees-of-freedom. The factor 2r in eq. (18) appears due to the rule of change of variables339

for probability distributions [42]. In this sense, note that r2 follows a Chi-square distribution of340

nKL degrees-of-freedom as it is the sum of the squares of nKL standard Gaussian variables. Hence,341

the probability density function associated with r is equal to fR(r) = 2rfR2(r2).342

The integral associated with r in eq. (18) can be solved in closed form taking advantage of the343

linearity of the responses of interest with respect to z. In fact, let c be the scalar that solves the344

equation g(y, cu) = 0 for fixed values of y and u. Then, c can be obtained in explicit form out of345

eq. (17), as shown below.346

c(y,u) = min
i=1,...,nη

(
min

k=1,...,nT
(ci,k(y,u))

)
, (19)

where ci,k(y,u) is defined as:347

ci,k(y,u) =
bi

|aik(y)u|
, (20)

and where aik(y) represents the k-th row of matrix Ai(y) (see Appendix A) and | · | denotes348

absolute value. Note that c(y,u) in eq. (19) represents the Euclidean distance between the origin349

of the standard normal space and the limit state function along direction u. Figure 1 sketches350

distance c (y,u) for a given unit vector u.351

From the above discussion, it is seen that IF (y, ru) = 1 for r ∈ [c(y,u),∞). Thus, the integral352

associated with r in eq. (18) can be solved in closed form, leading to the following expression:353

pAF =

∫
θ∈Ωθ

∫
y∈Ωy

∫
u∈ΩU

∫ ∞
0

IF (y, ru)2rfR2(r2)fU (u)fY (y|θ)fΘ(θ)drdudydθ,

=

∫
θ∈Ωθ

∫
y∈Ωy

∫
u∈ΩU

∫ ∞
c(y,u)

2rfR2(r2)fU (u)fY (y|θ)fΘ(θ)drdudydθ,

=

∫
θ∈Ωθ

∫
y∈Ωy

∫
u∈ΩU

(
1− FR2

(
c(y,u)2

))
fU (u)fY (y|θ)fΘ(θ)dudydθ, (21)
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where FR2(r2) denotes the Chi-square cumulative density function of nKL degrees-of-freedom. 354

Eq. (21) provides a mean for estimating the augmented failure probability in a directional fashion 355

with respect to u by means of simulation [43, 44]. However, the associated estimator may posses 356

a large variability, which is undesirable from a numerical viewpoint. This issue can be addressed 357

by introducing an Importance Sampling density (ISD) function associated with u that takes 358

advantage of the geometry of the limit state function, that is, piecewise linear for a fixed value 359

y, as shown in Figure 1. For this purpose, consider the so-called elementary failure event Fi,k 360

[9], where the i-th response of interest exceeds its prescribed threshold level bi at time tk for a 361

given value y. Recalling the linearity of the response with respect to z (see eq. (13)), the polar 362

representation z = ru and the definition of quantity ci,k(y,u) in eq. (20), the elementary failure 363

event is defined in mathematical terms as: 364

Fi,k(y) = {z ∈ Ωz : |aik(y)Tz| ≥ bi},

= {u ∈ Ωu ∧ r ∈ [0,∞) : |aik(y)T (ru)| ≥ bi},

= {u ∈ Ωu ∧ r ∈ [0,∞) : r ≥ cik(y,u)}. (22)

According to Bayes’ theorem, the probability density associated with u conditioned on the occur- 365

rence of the elementary failure event Fi,k(y) is the following [9, 32]. 366

fU (u|Fi,k(y)) =
fU (u)P (Fi,k(y)|u)

P (Fi,k(y))
. (23)

From the above equation, it is noted that fU (u) is available in closed form (see, e.g. [45]). The 367

term P (Fi,k(y)|u) measures the probability of occurrence of the elementary failure event for a 368

fixed value of u. Given the definition of the elementary failure event in eq. (22) and recalling that 369

r2 follows a Chi-square distribution of nKL-degrees-of-freedom, this probability can be determined 370

in closed form, that is: 371

P (Fi,k(y)|u) = P (r ≥ ci,k(y,u)) = 1− FR2

(
ci,k(y,u)2

)
. (24)

Moreover, the denominator in eq. (23) can also be determined in closed form recalling that 372

ai,k(y)Tz follows a Gaussian distribution with zero mean and variance ai,k(y)Tai,k(y) for a fixed 373
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value y. Thus, it is noted that:374

P (Fi,k(y)) = P
(∣∣ai,k(y)Tz

∣∣ ≥ bi
)

= 2FZ (−βi,k(y)) , (25)

where FZ(·) is the standard Gaussian cumulative distribution and βi,k(y) is the so-called relia-375

bility index, which is equal to βi,k(y) = bi/
√
ai,k(y)Tai,k(y) [9, 40]. As the terms P (Fi,k(y)|u)376

and P (Fi,k(y)) can be calculated in closed form as shown in eqs. (24) and (25), the conditional377

probability density function fU (u|Fi,k(y)) in eq. (23) is available as well. A salient characteristic378

of this density function is that it assigns no weight to direction vectors u which do not lead to379

the occurrence of the elementary failure event. Thus, the ISD function is chosen as a weighted380

summation of the density functions fU (u|Fi,k(y)) associated with each elementary failure event381

(that is, Fi,k, i = 1, . . . , nη, k = 1, . . . , nT ) [9, 36, 32]. The weight associated with each density382

function is denoted as wi,k, i = 1, . . . , nη, j = 1, . . . , nT , and is selected proportional to P (Fi,k(y)),383

as done customarily in Importance Sampling [9, 46]. Hence:384

wi,k(y) =
2FZ (−βi,k(y))

p̂F (y)
, (26)

where p̂F (y) =
∑nη

i1=1

∑nT
k1=1 2FZ (−βi1,k1(y)). Inserting eqs. (24) and (25) into eq. (23) and taking385

the summation of all conditional density functions weighted by the expression in eq. (26), the ISD386

function becomes the following [32, 36].387

f IS
U (u|y) =

nη∑
i=1

nT∑
k=1

wi,k(y)fU (u|Fi,k(y)) ,

=
fU (u)

p̂F (y)

nη∑
i=1

nT∑
k=1

(
1− FR2

(
ci,k(y,u)2

))
. (27)

It is emphasized that the ISD function as shown in the above equation is valid for a given value388

of y. Now, this ISD function can be considered for estimating the augmented failure probability389
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defined in eq. (21), leading to: 390

pAF =

∫
θ∈Ωθ

∫
y∈Ωy

∫
u∈ΩU

(
1− FR2

(
c(y,u)2

)) fU (u)

f IS
U (u|y)

f IS
U (u|y)fY (y|θ)fΘ(θ)dudydθ

=

∫
θ∈Ωθ

∫
y∈Ωy

∫
u∈ΩU

p̂F (y) (1− FR2 (c(y,u)2))∑nη
i=1

∑nT
k=1 (1− FR2 (ci,k(y,u)2))

f IS
U (u|y)fY (y|θ)fΘ(θ)dudydθ,

≈ p̃AF =
1

N

N∑
j=1

p̂F
(
y(j)
) (

1− FR2

(
c(y(j),u(j))2

))∑nη
i=1

∑nT
k=1

(
1− FR2

(
ci,k (y(j),u(j))

2
)) ,

θ(j) ∼ fΘ(θ), y(j) ∼ fY (y|θ(j)), u(j) ∼ f IS
U (u|y(j)), j = 1, . . . , N, (28)

where (̃·) denotes an estimator of a quantity. From the above equation, it is important to note 391

that samples of θ are generated such that they follow the instrumental uniform probability density 392

fΘ(θ); then, samples of y are generated conditional on those samples of θ; and finally, samples of 393

u are generated conditional on the samples of y. For details on how samples of u are generated, 394

it is referred to Appendix B. 395

3.5. Application of Directional Importance Sampling for Calculating Conditional Probability Den- 396

sity Function fΘ(θ|F ) 397

The next challenge for applying the formulation presented in Section 2 is the calculation of 398

the conditional probability density function fΘ(θ|F ) in eq. (10). The objective is estimating 399

this density function by means of simulation with samples of y and z distributed according to 400

fY ,Z(y, z|F ). In this sense, the samples used for estimating the augmented failure probability in 401

eq. (28) could be used for that purpose. Nonetheless, these samples cannot be used directly, as 402

they are distributed according to the ISD function, which is not necessarily equal to fY ,Z(y, z|F ). 403

Therefore, special care must be taken for using those samples, as described in the following. 404

According to the definition of a marginal distribution and Bayes’ theorem, fY ,Z(y, z|F ) is equal 405

to: 406

fY ,Z(y, z|F ) =

∫
θ∈[θ,θ]

fΘ,Y ,Z(θ,y, z|F )dθ

=
1

pAF

∫
θ∈[θ,θ]

IF (y, z)fZ(z)fY (y|θ)fΘ(θ)dθ. (29)
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Recalling the definition of polar coordinates z = ru, the latter expression is further simplified to:407

fY ,Z(y, z|F ) = fY ,R,U (y, r,u|F ) =
1

pAF

∫
θ∈[θ,θ]

IF (y, ru)2rfR2(r2)fU (u)fY (y|θ)fΘ(θ)dθ. (30)

Note that eq. (30) provides an expression for the conditional probability distribution of fY ,Z(y, z|F )408

as a function of the polar coordinates, which has been considered for the implementation of Direc-409

tional Importance Sampling in Section 3.4. Now, this expression is inserted into eq. (10) for the410

calculation of fΘ(θ|F ). However, special consideration should be paid to one detail: in eq. (10), θ411

refers to an independent variable, that is, θ may assume any value within [θ,θ]. On the contrary,412

in eq. (30), θ corresponds to an integration variable over the domain [θ,θ]. Hence, and in order413

to avoid confusion, the variable θ appearing in eq. (30) is written in the following as θ′. Having414

taken this special consideration, the expression for fΘ(θ|F ) becomes:415

fΘ(θ|F ) =
1

pAF

∫
θ′∈[θ,θ]

∫
y∈Ωy

∫
u∈Ωu

∫ ∞
0

fY (y|θ)

∆(y)
IF (y, ru)2rfR2(r2)fU (u)fY (y|θ′)fΘ(θ′)dudydθ′.

(31)

This last equation can be simplified by recalling that IF (y, ru) = 1 for r ∈ [c(y,u),∞) and416

that for its evaluation, it is possible to introduce the ISD function defined in eq. (27). Thus, the417

expression for fΘ(θ|F ) is as follows.418

fΘ(θ|F ) =
1

pAF

∫
θ′∈[θ,θ]

∫
y∈Ωy

∫
u∈Ωu

fY (y|θ)

∆(y)

p̂F (y) (1− FR2 (c(y,u)2))∑nη
i=1

∑nT
k=1 (1− FR2 (ci,k(y,u)2))

f IS
U (u|y)fY (y|θ′)fΘ(θ′)dudydθ′. (32)

3.6. Explicit Approximation of the Failure Probability as a Function of the Distribution Parameter419

Vector420

Considering all previous deductions, it is possible to determine the following expression for the421

failure probability as a function of the distribution parameter vector by inserting eq. (32) into422

eq. (5).423

pF (θ) =
1

fΘ(θ)

∫
θ′∈[θ,θ]

∫
y∈Ωy

∫
u∈Ωu

fY (y|θ)

∆(y)

p̂F (y) (1− FR2 (c(y,u)2))∑nη
i=1

∑nT
k=1 (1− FR2 (ci,k(y,u)2))

f IS
U (u|y)fY (y|θ′)fΘ(θ′)dudydθ′. (33)
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It is noted that the above expression can be estimated by using samples of u, y and θ′ gener- 424

ated when conducting augmented reliability analysis with Directional Importance Sampling, as 425

performed in Section 3.4. This estimator is equal to: 426

pF (θ) ≈ p̃F (θ) =
1

N

N∑
j=1

fY
(
y(j)|θ

)
∆ (y(j))

p̂F
(
y(j)
) (

1− FR2

(
c(y(j),u(j))2

))∑nη
i=1

∑nT
k=1

(
1− FR2

(
ci,k (y(j),u(j))

2
)) ,

θ′(j) ∼ fΘ′(θ′), y(j) ∼ fY (y|θ′(j)), u(j) ∼ f IS
U (u|y(j)), j = 1, . . . , N. (34)

As pF (θ) is estimated with independent, identically distributed samples, it is straightforward to 427

estimate the standard deviation of this estimator, which is equal to: 428

σp̃F (θ) =

√√√√√√ 1

N(N − 1)

N∑
j=1

fY (y(j)|θ)

∆ (y(j))

p̂F (y(j))
(

1− FR2

(
c (y(j),u(j))

2
))

∑nη
i=1

∑nT
k=1

(
1− FR2

(
ci,k (y(j),u(j))

2
)) − p̃F (θ)

2

.

(35)

3.7. Summary 429

As a summary of the material presented in this Section, it is seen that it is possible to formulate 430

an explicit approximation of the failure probability as a function of the vector of distribution 431

parameters θ, as shown in eq. (34). This explicit approximation is constructed by carrying out 432

a single run of Directional Importance Sampling for solving the associated augmented reliability 433

problem. Then, this explicit approximation can be coupled with any appropriate optimization 434

algorithm in order to estimate the bounds of the imprecise probability. In addition, it is possible 435

to estimate the standard deviation of the probability estimator by means of eq. (35). This is most 436

useful from a practical viewpoint, as it is possible to assert whether or not the estimator of the 437

failure probability pF (θ) is sufficiently accurate and take proper action if necessary: for example, 438

increasing the number of samples in order to improve the accuracy. 439

As a side remark, it should be noted that the formulation of Directional Importance Sampling as 440

presented here considers an ISD function related with the direction vector u only. Nonetheless, 441

references in the literature suggest that for the class of problems considered here, that is, first 442

excursion probability of uncertain linear systems subject to imprecise dynamic load, it is also 443

feasible to establish an ISD function associated with the uncertain input parameters y, as discussed 444

in [27, 47, 48, 41]. Such an approach has the potential to improve even further accuracy when 445
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solving the augmented reliability problem. In spite of this issue, the possibility of introducing this446

additional ISD function is not further discussed here, in order to focus more on the application447

of the augmented reliability problem and its connection with the estimation of imprecise first448

excursion probabilities.449

4. Examples450

4.1. General Remarks451

This Section illustrates the application of the augmented reliability approach for estimating452

the bounds of first excursion probabilities. A test example involving a single-degree-of-freedom453

oscillator and an application example comprising the finite element model of a composite wing are454

considered. For both cases, aleatoric and epistemic uncertainties affect the structural parameters455

while the loading is modeled as purely aleatoric. In this sense, it should be noted that the scheme456

proposed in Section 3 can consider epistemic uncertainty on the loading as well. Studies on457

the effect of imprecise stochastic loads on the bounds on the first excursion probability of linear458

structures can be found in previous work of the authors [21, 22, 23]. These studies acknowledge459

the importance of including imprecision in the definition of stochastic loads modelled by advanced460

auto-correlation methods. However, this possibility is not explored further in order to simplify461

the presentation of the performance of the method and focus on the application of the augmented462

reliability framework for calculating imprecise probabilities.463

4.2. Test Example 1: Single-degree-of-freedom shear beam model subject to stochastic ground ac-464

celeration465

The first example involves the single-story shear beam model depicted in Figure 2. This model466

is subjected to a stochastic ground acceleration and its stiffness is characterized as a p-box. The467

objective is estimating the bounds for the first excursion probability.468

m

filtered white noise

x

k/2

Figure 2: Example 1 – Single story shear beam model subject to filtered white noise excitation

The mass of the shear beam model is equal to m = 104 [kg] while its (classical) damping ratio469

is d = 5%. The lateral stiffness k of the model is characterized by means of a lognormal p-box,470
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such that the expected value is represented by the interval µk ∈ [0.7 × 106, 1.3 × 106] [MN/m] 471

and the standard deviation is σk = 105 [MN/m]. The stochastic ground acceleration is modeled 472

as a white noise process of duration T = 20 [s] and spectral density S = 5 × 10−3 [m2/s3], 473

which is represented at discrete time steps of ∆t = 0.01 [s]. This discrete white noise is modulated 474

considering the Shinozuka-Sato envelope, with parameters c1 = 0.14 and c2 = 0.16 [7]. In addition, 475

the modulated white noise is filtered considering the Clough-Penzien model (see, e.g. [49]), with 476

circular frequencies ωg,1 = 6π [rad/s] and ωg,2 = 0.6π [rad/s] and damping ratios dg,1 = dg,2 = 477

60% for the primary and secondary filters, respectively. This stochastic ground acceleration is 478

represented by means of the Karhunen-Loève expansion, considering all nKL = nz = 2001 terms. 479

The responses of interest of the shear beam model are its relative displacement with respect to 480

the ground as well as its absolute acceleration. Failure occurs whenever any of these responses 481

exceeds the prescribed thresholds b1 = 0.07 [m] and b2 = 7.5 [m/s2] within the duration of the 482

acceleration. 483

In order to estimate the bounds of the first excursion probability, the augmented reliability problem 484

is solved first with Directional Importance Sampling. For this purpose, a total ofN = 2000 samples 485

are considered. The results obtained for the estimate p̃AF as well as its coefficient of variation δp̃AF 486

are shown in Figure 3. It is noted from this figure that the estimate of the augmented failure 487

probability stabilizes after about 500 samples and that a coefficient of variation of less than 10% 488

is attained at about 2000 samples. These results suggest that the level of precision of the estimator 489

is adequate. 490

Figure 3: Example 1 – Evolution of the estimator of the augmented failure probability p̃AF with respect to the
number of samples.

In a next step, the first excursion probability is estimated as a function of the interval variable 491
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µk applying eq. (34), using the samples generated when estimating the augmented failure proba-492

bility. This probability p̃F (µk) is plotted in Figure 4 with blue, solid line. In addition, the blue493

shaded area in that figure shows the standard deviation associated with the estimate of the failure494

probability, that is p̃F (µk)± σp̃F (µk). For comparison and validation purposes, the first excursion495

probability is also calculated for ten different crisp values of µk using Directional Importance Sam-496

pling. In other words, ten different simulations of Directional Importance Sampling are carried497

out, each of them considering N = 1000 samples. Hence, the total number of samples involved in498

such an approach is equal to NT = 10N = 104. The probability estimates along the grid of crisp499

values of µk are shown with red x marks; in addition, the standard deviation of these probability500

estimates is marked with a bar. It is seen that there is an excellent agreement between the two501

approaches, suggesting that the framework provided by augmented reliability is appropriate for502

estimating the first excursion probability as a function of the imprecise distribution parameter.503

Furthermore, it should be noted that the relation between the failure probability and the interval-504

valued µk is non-monotonic. In this sense, it is quite remarkable that the proposed approach can505

produce this type of approximations, as no particular assumptions have to be introduced to arrive506

to such result. The non-monotonic behavior can be explained as follows. For small crisp values507

of µk, the shear beam model is quite flexible and failure due to displacements is likely. As the508

crisp value of µk increases, the shear beam possesses more stiffness and it is capable of controlling509

displacements better, which decreases the failure probability. However, as the crisp value of µk510

continues increasing, the shear beam becomes too stiff, thus increasing the absolute acceleration511

and in turn, the failure probability.512

Figure 4: Example 1 – Failure probability as a function of the interval parameter µk. DIS: Directional Importance
Sampling
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Finally, the bounds on the imprecise failure probability are determined by minimizing/maximizing513

p̃F (µk). The numerical cost associated with this step is negligible, as the failure probability as 514

a function of µk is available in closed form. It is found that pF (µk) ∈ [2.3 × 10−4, 1.5 × 10−2], 515

revealing that the uncertainty on µk has a major impact in the first excursion probability. 516

4.3. Example 2: Composite wing 517

4.3.1. Case introduction and physical description 518

The second example comprises of a Finite Element of a fictitious aircraft wing that is produced 519

in a laminated composite. The structure has a total length of 30 [m]. This wing is produced using 520

a multi-layer laminar composite material, with deterministic orthotropic ply material properties 521

E1 = 231 [GPa], E2 = 77 [GPa], ν12 = 0.31 and G12 = G23 = G13 = 42.7 [GPa]. The wing consists 522

of a composite outer shell (top, leading edge, bottom, trailing edge), as well as two vertical 523

stiffening ribs in the centre for structural stiffness. A total of 15 different composite lay-ups are 524

present throughout the structure, which are summarized in Table 1. The dynamic behavior of 525

the structure is modeled using a Finite Element model containing 621 nodes, 606 bi-linear shell 526

elements, 573 rigid connections, 10 concentrated masses and 132 rod elements. The finite element 527

model of this structure is shown in Figure 5. A single evaluation of this model takes approx. 30 [s] 528

on a server equipped with two AMD EPYC 7601 CPUs running at 2.65 [GHz] and 512 [GB] of 529

RAM. 530

Figure 5: Finite element model of the composite blade (taken from [50])

In this case, the equation of motion of the wing can be represented as in Eq. (12), where nD 531

of the unconstrained model is nD = 3726. 532
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Table 1: Composite lay-up structure of the wing. Left means at y = 0 in Figure 5 and the leading edge is depicted
at the back side of figure 5. The + and − signs in front of 450 denote an alternating layering sequence of laminae
oriented at +45◦ and −45◦.

Nr Location Lay-up (symmetrical) thickness
per layer [mm]

1 top and bottom left +− 45◦ 7.5 [mm]
2 leading edge left +− 45◦ 7.5 [mm]
3 front-middle edge left +−+−+−+45◦ 7.5 [mm]
4 back-middle vertical left +−+−+−+45◦ 7.5 [mm]
5 trailing edge left +−+−+−+45◦ 7.5 [mm]
6 top and bottom middle +− 45◦ 7.5 [mm]
7 leading edge middle +− 45◦ 7.5 [mm]
8 front-middle edge middle +−+−+−+45◦ 7.5 [mm]
9 back-middle vertical middle +−+−+−+45◦ 7.5 [mm]
10 trailing edge middle +−+−+−+45◦ 7.5 [mm]
11 top and bottom right +− 45◦ 7.5 [mm]
12 leading edge right +− 45◦ 7.5 [mm]
13 front-middle edge right +−+−+−+45◦ 7.5 [mm]
14 back-middle vertical right +−+−+−+45◦ 7.5 [mm]
15 trailing edge right +−+−+−+45◦ 7.5 [mm]

In this case study, we consider the case where the wing is subjected to a turbulence wind load,533

which is described as:534

p (t, ξ) = p0(t) + p′(t, ξ), (36)

where p0(t) is the mean load of the turbulence load and p′(t, ξ) is a zero-mean Gaussian stochastic535

process governed by the transverse Dryden spectrum [51]:536

Sp′p′(ω) =
cσ2

p′

2π

1 + 3c2ω2

(1 + c2ω2)2
, (37)

where c = L/v is a scale for the turbulence and σ2 is the variance, with L the turbulence length537

scale and v the true air speed. Applying the well-known Wiener-Kinchin transformation, following538

auto-correlation model is obtained:539

Γp,p′(τ) = (1− 0.5
τ

L
) exp(−τ/L), (38)

with τ a positive time-lag factor, which can be used directly in combination with the Karhunen-540

Loève expansion, as explained in Section 3.2. In this case study, failure is conceived as the first541

passage of the wing displacement over a threshold value of b = 7 [mm] under a unit variance542
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load (i.e., σ2
p′ = 1). It is important to note that in this case study, p0(t) is considered to be zero, 543

which is permissible due to linearity in the FE model. In all proceeding computations, the effect 544

of mode-crossover and -veering, which may occur during the calculation of the impulse response 545

functions, is accounted for by tracking the numerically computed mode shapes via the modal 546

assurance criterion. 547

4.4. Uncertainty propagation 548

The presented approach is applied to this model considering the thickness t of the 1st, 5th and 549

6th laminae as being modelled by a p-box, whereas the other 12 thickness values are considered to 550

have a thickness of 7.5 [mm]. This selection is made based on the observation that the thickness 551

of these three laminae has the largest influence on the wing tip displacement (see also [22]). 552

Specifically, these thickness values are modelled as a lognormal distribution with interval-valued 553

mean µt1 = µt5 = µt6 = [0.006, 0.009] [m] and standard deviation σt = 0.00075 [m]. This 554

imprecision in the mean of the distributions can come for instance from limited experimental data 555

set sizes, or a lack of precision in the employed measurement equipment such that only the bounds 556

of one deterministic measurement are known [34]. The aleatory (random) part of the uncertainty 557

is assumed to come from variations during the manufacturing of the laminae. The bounds on the 558

probability of failure are estimated by solving the augmented reliability problem using Directional 559

Importance Sampling with a sample size of N = 2000 samples. 560

Then, the first excursion probability is estimated as a function of the interval variables µt = 561

[µt1, µt5, µt6] applying eq. (34), using the samples generated when estimating the augmented failure 562

probability. This probability p̃F (µt) is plotted in Figure 6 with blue, solid line, assuming that 563

µt = [µt1, µt5, µt6]. Please note that during the analysis to determine the bounds on Pf , the 564

intervals are considered to be fully independent, and all samples in the augmented space are 565

drawn from the corresponding uniform distributions independently. It is only for the sake of 566

visualisation in Figure 6 that fully dependent samples are generated within the interval bounds. 567

In addition, the blue shaded area in that figure shows the standard deviation associated with 568

the estimate of the failure probability, that is p̃F (µt) ± σp̃F (µt). It is important to notice that 569

this blue line is obtained in a single run of Directional Importance Sampling. In addition, for the 570

purpose of validation, the first excursion probability is also determined using 10 runs of Directional 571

Importance Sampling for several crisp values of µt1 = µt5 = µt6, evenly distributed throughout 572

µIt . Each of these 10 runs requires a full Directional Importance Sampling propagation involving 573
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1000 deterministic model analyses. In Figure 6, the corresponding first excursion probabilities are574

indicated as red crosses, and their standard deviation is indicated using error bars.575

As can be noted, also in the case of a realistic Finite Element model, the method gives an576

excellent agreement with a more conventional approach, with a reduced cost of a factor 5. Finally577

the bounds on the probability of failure can be determined by minimizing/maximizing over p̃F (µt),578

which are found to be p̃F (µt) ∈ [5.62 × 10−4, 7.67 × 10−2]. From Figure 6, it can be noted that579

concerning the upper bound of p̃F (µt), a slight deviation exists with respect to the result obtained580

for that particular value of µt using conventional DIS, which is caused by the relatively big size581

of the interval in combination with the more complicated dynamical behavior of the wing.582

Finally, as a word of caution, numerical experience indicates that the performance of the583

method degrades rapidly with the number of uncertain epistemic parameters. For instance, if584

one considers all 15 thickness values of this model to be uncertain, with the same uncertainty585

model as prescribed above, and using the same augmented DIS estimator, the bounds on the586

probability of failure are found to be [1.04×10−4, 6.00×10−3], as compared to the correct interval587

[2.3 × 10−3, 1.43 × 10−2] which is obtained via a double-loop implementation. This performance588

drop is explained by the comparatively high number of samples that is required to fully explore the589

functional behaviour of a response with respect to a high-dimensional input space, and hence, to590

correctly establish the functional relationship between µt and p̃F (µt). This is a well-documented591

shortcoming of this class of methods (see e.g., [29]), and remains an open research question.592

Figure 6: Estimated p̃F (µt) as a function of the mean value µt of the thickness values t, as computed by Augmented
DIS (blue) and individual runs of DIS for selected values of µt (red).
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5. Conclusions and Outlook 593

This paper presents an efficient augmented space method to propagate parametric p-boxes to- 594

wards the bounds on the first excursion probability of a structure subjected to Gaussian excitation. 595

The method establishes a functional relationship between the interval-valued hyper-parameters of 596

the p-box valued uncertain input quantities and the first excursion probability by representing the 597

problem in an augmented space. Then, by virtue of Bayes’ theorem, an expression for the failure 598

probability as an explicit expression of the imprecise parameters from the augmented reliability 599

problem can be recovered, which ultimately allows calculating the imprecise probability by means 600

of Directional Importance Sampling. Following conclusions can be made concerning the proposed 601

approach: 602

• The method allows for a highly efficient and accurate calculation of the bounds on the 603

probability of failure for both a small-scale academic case, as for a realistic finite element 604

model 605

• In case the dimension of the input epistemic space is small, the approach is highly accu- 606

rate, however, numerical experience suggests that the accuracy of the calculated bounds 607

degrades quickly when the dimension of the input epistemic space increases. This is caused 608

by the comparatively high number of samples that is required to fully establish the required 609

functional relationship between the probability of failure and the interval-valued hyper- 610

parameters of the uncertain input quantities. This is consistent with conclusions drawn 611

by other researchers in the area of, e.g. optimal design under uncertain conditions (see, 612

e.g. [29, 27]). Further research however has to be performed in order to define a precise 613

(preferably a priori) criterion in which the augmented reliability problem does not bring 614

substantial advantages compared to double loop approaches. 615

As a last, more practical, remark, it can be noted that in both case studies the bounds of the 616

probability of failure span several orders of magnitude. As an analyst, such observation shows 617

that additional data should be gathered to reduce the epistemic uncertainty on the definition of 618

the p-boxes that represent the uncertainty on the input parameters to shrink the bounds on the 619

estimation of the probability of failure. Alternatively, in case no further data can be gathered, 620

one should consider the upper bound of the analysis and use this to base decisions on, as this is 621

the most conservative estimate given the epistemic uncertainty. 622
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A future challenge concerning the application of the framework proposed here involves includ-623

ing epistemic uncertainty in the characterization of stochastic load. Such epistemic uncertainty624

may have a large impact on the failure probability, as discussed in [21]. In addition, the applica-625

tion of the framework to problems involving structural non linearities should be explored as well.626

For that purpose, it would be necessary to consider simulation techniques which are more general627

than Directional Importance Sampling, such as Subset Simulation. Other path for future develop-628

ment consists of considering instrumental probability distributions (associated with the epistemic629

parameters) different from uniform distributions, which may eventually bring advantages for de-630

ducing the functional relationship between epistemic parameters and the failure probability. As631

a final comment, it can be noted that the principles laid out in this paper also can be applied to632

combinations of parametric p-boxes and ‘regular’ random variables. Such extension will also be633

pursued in future work.634
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Appendix A. Calculation of Structural Response641

In view of the linearity of the structural system, the responses of interest are calculated by642

means of a convolution, that is:643

ηi(t,y, z) =

∫ t

0

hi(t− τ,y)p(τ, z)dt, i = 1, . . . , nR (A.1)

where hi(t,y) is the unit impulse response function associated with the i-th response. For the644

case where the i-th response of interest is expressed as a linear combination of the displacement645

vector, the corresponding unit impulse response function is equal to:646

hi(t,y) =

nD∑
v=1

qTi φv(y)φv(y)Tρ(y)

φv(y)TM (y)φv(y)

e−ζv(y)ωv(y)t

ωd,v(y)
sin(ωd,v(y)t), i = 1, . . . , nR (A.2)
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where ωv, v = 1, . . . , nD are the natural frequencies; ζv, v = 1, . . . , nD are the damping ratios; 647

ωd,v = ωv
√

(1− ζ2
v ), v = 1, . . . , nD are the damped frequencies; φv, v = 1, . . . , nD are the 648

eigenvectors associated with the eigenproblem of the undamped equation of motion; and qi is a 649

vector such that ηi = qTi x, where (·)T denotes transpose. Note that while the above equation 650

applies to a unit impulse response function associated with displacement, similar expressions can 651

be deduced for other quantities such as, e.g. accelerations. 652

In view of the discrete time representation of the imprecise stochastic loading as shown in eq. (11), 653

the convolution integral in eq. (A.1) reduces to the following expression. 654

ηi(tk,y, z) =
k∑

l1=1

εl1hi(tk − tl1 ,y)p(tl1 , z)∆t

=
k∑

l1=1

εl1hi(tk − tl1 ,y)

(
nKL∑
l2=1

ψl1,l2
√
λl2zl2

)
∆t

= aik(y)z, i = 1, . . . , nη, k = 1, . . . , nT (A.3)

where ψl1,l2 is the (l1, l2)-th element of matrix Ψ; εl1 is a coefficient depending on the quadrature 655

scheme used to approximate the convolution integral; and aik is a row vector of dimension 1×nKL 656

defined as: 657

aik(y) =
[∑k

l1=1 ∆tεl1hi(y, tk − tl1)ψl1,1
√
λ1, . . . ,

∑k
l1=1 ∆tεl1hi(y, tk − tl1)ψl1,nKL

√
λnKL

]
ik = (i− 1)nT + k, i = 1, . . . , nR, k = 1, . . . , nT (A.4)

Each of the rows of matrix Ai introduced in eq. (14) contains the row vectors aik , that is: 658

Ai(y) =


ai1(y)

...

ainT (y)

 , i = 1, . . . , nR (A.5)

The coefficients εl1 are chosen following the trapezoidal rule for integration (see, e.g. [52]), yielding 659

εl1 = 1/2 in case l1 = 1 or l1 = k; otherwise, εl1 = 1. 660
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Appendix B. Sample generation of Direction Vector661

Samples u(j), j = 1, . . . , N required for evaluating the augmented failure probability in eq. (28)662

are generated by means of the following procedure [9, 32, 45].663

1. Set j = 1.664

2. Sample θ(j) from fΘ(θ).665

3. Sample y(j) from fY (y|θ(j)).666

4. Draw a pair of indices (I,K) from the set Ω = {(i, k) : i ∈ {1, . . . , nη}, k ∈ {1, . . . , nT}}667

with probability proportional to the weights wi,k
(
y(j)
)
, i = 1, . . . , nη, k = 1, . . . , nT .668

5. Generate a sample z of the random variable vectorZ and two realizations κ1 and κ2 following669

a uniform distribution between 0 and 1.670

6. Calculate α = −F−1
Z

(
(1− κ1)FZ

(
−βI,K

(
y(j)
)))

, where F−1
Z (·) is the inverse cumulative671

standard Gaussian distribution.672

7. Compute a∗IK = aIK
(
y(j)
)
/
∥∥aIK (y(j)

)∥∥. See eq. (A.4) for the calculation of aIK
(
y(j)
)
.673

8. Define z∗ as:674

z∗ =

 z + (α− zTa∗I,K)a∗IK if κ2 ≤ 1/2

−z − (α− zTa∗IK )a∗I,K otherwise
(B.1)

9. Calculate the sought sample as u(j) = z∗/ ‖z∗‖.675

10. In case j = N , stop the procedure. Otherwise, return to step 2 with j = j + 1.676
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