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Abstract13

This paper proposes a new topology optimization method to obtain super-resolution images with-14

out increasing mesh refinement by using various methods. For traditional process, low-resolution15

(LR) images are fed into the Solid Isotropic Material with Penalization (SIMP) and Optimality16

Criteria (OC) methods. Here, the trained super-resolution images are added to the inner loops17

to reconstruct the topology and used to obtain high-resolution (HR) images from the LR images18

at the end of each iteration. After finishing the reconstruction process, the main topology op-19

timization method recovers the original size images from the HR images for the next iteration.20

Several examples are presented to demonstrate the effectiveness of the proposed method. The final21

topologies provide noticeably improvement over those of typical SIMP method and create a much22

sharper and higher contrast images. Moreover, the proposed strategy using the super-resolution23

image reconstruction methods can give valuable innovation for conventional topology optimization24

process.25
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1. Introduction27

Optimization problems of structures are roughly classified into three categories: sizing, shaping,28

and topology optimization (TO) [1]. Among them, TO needs non-linear mathematical program-29

ming methods to obtain the optimal shape [2] and the first paper related to this was published30

over a century ago [3]. The main purpose is to find the optimal layout of the structure by consid-31

ering the best structural performance [4]. The first general theory of TO, which is optimal layout32

theory, was formulated by Rozvany and Prager [5]. Bendsøe and Kikuchi [6] published a landmark33

paper, which was based on the optimal material distribution in a predefined design domain by the34

homogenization method. The TO topics have been developed and innovated by many researchers35

all over the world [7].36

The density-based approach by Bendsøe [8] is prone to problems with checkerboards and mesh37

dependency if there are not any regularization schemes [9]. The solutions using that approach can38

roughly be divided into three categories, namely, filtering methods [10–14], constraint methods39

[12, 15–22], and other alternative methods [23–29]. The checkerboards can be removed through40

smoothing or inhibited methods by using higher-order finite elements [30]. Results of the density41

filtering methods have grey transition regions between solid (black) and void (white) areas as shown42

in Figure 1. The grey transition regions depend on the filter size and discretization of the problems.43

In the ‘filtered, penalized artificial material method’ [15], a density of material varies continuously44

between 1 and 0. The regions contain intermediate volume fractions along the boundary. In order45

to ensure existence of solutions in the numerical methods, multiple phase projection method [31]46

can be used as filter technique.47

Solid area (Black)

Void area (White)

Grey transition region

Figure 1: The results of the density filtering method with grey transition regions between solid (black) and void

(white) areas.
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There have been attempts to apply deep learning methods to the TO problems. Li et al. [32]48

used Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) [33] to49

construct mapping images and generate more images. Yu et al. [34] also introduced both CNNs and50

GANs into a near-optimal topological design to reduce computational cost dramatically. Sasaki51

and Igarashi [35] reduced the computing costs by using CNNs in the learning phase prior to the52

optimization step. Rawat and Shen [36] introduced another GAN method, namely, Conditional53

Wasserstein Generative Adversarial Networks (CWGANs) to replicate the conventional TO algo-54

rithms in an extremely computationally inexpensive way. Sosnovik and Oseledets [37] proposed a55

new TO method by using the CNNs and an encoder-decoder algorithm to enhance the image reso-56

lution. However, only few studies have applied super-resolution (SR) techniques as the filter of TO57

problems. Li et al. [38] proposed a Super-Resolution Generative Adversarial Network (SRGAN)58

for predicting the refined structure in High-Resolution (HR). They only used SRGAN as the last59

step for refining HR after typical GANs produced a Low-Resolution (LR) image. Xue et al. [39]60

used the super-resolution convolutional neural network (SRCNN) technique in the framework of61

SIMP. The pooling strategy in the CNN process is used for the image reconstruction. Wang et al.62

[40] used CNN method to obtain an accurate high-resolution structure images. A TO via neural63

reparameterization framework (TONR) was proposed to solve various problems using a inverting64

representation of image and physics-informed neural network methods [41]. However, there are few65

studies that apply the state-of-the-art SR method.66

The super-resolution (SR) image is an important class of image processing techniques in com-67

puter vision. The SR image reconstruction method aims to convert a given low-resolution (LR)68

image to a corresponding high-resolution (HR) one with refined details. Its concept is suitable69

for the TO methods, which deal with images of structural shapes. It can be broadly divided70

into two main categories: traditional and deep learning methods [42]. In recent years, with the71

rapid development of deep learning techniques, SR models have been actively explored and of-72

ten achieve the state-of-the-art performance on various benchmarks [43]. Various deep learning73

based SR methods are used to enhance LR images of optimization processes, namely, an Enhanced74

Deep Super-Resolution network (EDSR) [44], Wide-Activation Deep Super-Resolution (WDSR)75

[45], and Super-Resolution Generative Adversarial Network (SRGAN) [46], Fast Super-Resolution76

Convolutional Neural Network (FSRCNN) [47], Efficient Sub-Pixel Convolutional Neural Network77
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(ESPCN) [48], and Laplacian Pyramid Super-Resolution Network (LapSRN) [49]. New HR topol-78

ogy images can be then reconstructed from the LR images with a 4× upscaling factor.79

This paper proposes a new topology optimization approach, in which (SR) image reconstruction80

is embedded within a conventional TO process and the generated SR procedures are used as a filter81

technique. The main purpose is to reduce the compliance values in the whole processes and to82

obtain optimized designs of structures. The SR image reconstruction step is added to the TO83

process, the HR ones are then reflected back into the main process. Several methods such as84

EDSR, WDSR, SRGAN, FSRCNN, ESPCN, and LapSRN are used. In the proposed method, the85

trained SR methods are added to the inner loops of the two types of processes, namely, a single-86

material and a multi-material topology optimization methods, to upscale LR images. Several87

examples are presented to demonstrate the effectiveness of the proposed method. The proposed88

topology optimization algorithm achieves better results compared with the traditional method,89

Solid Isotropic Material with Penalization (SIMP).90

Blur and Downsampling

HR Noise

LR

Recovering HR image from its LR counterpart

Figure 2: Overview of the overall framework of SISR.

2. Super-resolution image reconstruction methods91

2.1. Related work92

The Single Image Super-Resolution (SISR) aims to reconstruct a HR image from a LR one [50].93

It can be categorized into nine groups ([42]), which are linear, residual and recursive networks,94

multi-branch and progressive reconstruction designs, densely connected, attention-based and mul-95

tiple degradation handling networks as well as GAN. If LR image and the corresponding HR one96

are denoted by y and x, their relationship is given as [50]:97
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y = (x⊗ k) ↓s +n (1)

where (x⊗ k) is the convolution operation between the blurring kernel k and the unknown HR98

image. The notation ↓s indicates a downsampling operation with a scaling factor s. The variable99

n denotes the independent noise term. Figure 2 shows the overview of the overall framework of100

the SISR.101

SISR using a variety of deep learning techniques have been actively explored [51]. SRCNN102

approximates the complex mapping between the LR and HR images in an end-to-end manner103

[52]. It minimizes the difference between the output reconstructed HR images and ground truth104

ones. However, deep layer structures in SRCNN make it difficult to learn the network parameters105

effectively due to vanishing gradient. In order to increase depth and width of the architectures, Very106

Deep Super-Resolution (VDSR) is the first one used in SISR [53]. To train VDSR, a relatively107

high initial learning rate and gradient clipping were used to speed up convergence and prevent108

the gradient explosion problem. However, a degradation problem has been exposed when deeper109

networks can start to converge [54]. To overcome this problem, ResNet [55] incorporates skip-110

connections between layers to avoid gradients vanishing. ResNet uses residual networks to ease111

the training networks that are substantially deeper than previous SR method. It adopts Batch112

Normalization (BN) between the convolution layer and activation functions [56]; the BN layer113

normalizes the input of activation functions. The residual networks require a residual mapping to114

restore the missing high-frequency details and make it feasible to design very deep networks [57].115

SRGAN uses the original GAN models for image SR. With two components including a generator116

and discriminator, it provides a powerful framework for generating fake images with perceptual117

quality [46].118

2.2. Enhanced Deep Super-Resolution network (EDSR)119

EDSR consists of multiple residual blocks and removes the parts in the residual structure for120

flexibility while ResNet adopts the batch normalization between the convolution layer and acti-121

vation functions to normalize the features [44]. The residual blocks have two convolutional layers122

connected with a Rectified Linear Unit activation function (ReLU) [58]. Since the inner represen-123

tation is highly abstract and can be insensitive to the shift introduced by the batch normalization124
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layers, it is better to remove from the whole architectures. Moreover, EDSR increases the number125

of output features of each layer and uses pre-training strategy to improve the final performances126

[50]. 16 residual blocks for 4× upscaling are used in this study.127

2.3. Wide-activation Deep Super-Resolution (WDSR)128

WDSR can improve EDSR with three aspects, namely, wide activation, weight normalization129

in training, and simplified global residual pathway [45]. In the SR residual network of WDSR130

architecture, it has a slim identify mapping pathway with wider channels, 2× to 4×, for WDSR-A131

models or 6× to 9× channels for WDSR-B models before activations in each residual block. In132

this study, a WDSR-B model with a 6× expansion factor and 32 residual blocks are used to train133

the architecture for 4× upscaling.134

2.4. Super-Resolution on Generative Adversarial Network (SRGAN)135

GANs, which are very effective methods for SR reconstruction, consist of a generator network,136

which attempts to generate images from smaller size images, and discriminator network, which137

determines whether the generated images are real or fake [59]. SRGAN uses an adversarial objective138

function, which promotes super-resolved output [46] and takes the architecture of GANs; the139

generator network has residual blocks, similarly to EDSR and VDSR. However, the residual blocks140

consist of two convolutional layers, two batch normalization layers, and Parametric Rectified Linear141

Unit (PReLU) activation function [60]. In this study, 16 residual blocks, each of which consists of142

convolutional layer, are used and follow the architectural guidelines of the discriminator network143

summarized by Ledig et al. [46]. The discriminator network contains eight convolutional layers.144

The final sigmoid activation function is used to obtain a probability for sample classification.145

2.5. Fast Super-Resolution Convolutional Neural Networks (FSRCNN)146

In spite of its superior performance, the original SRCNN method demands the high computa-147

tional cost. In FSRCNN method, SRCNN [61] is modified to accelerate the current method. A148

deconvolution layer is introduced at the end of the network of FSRCNN and thereby the mapping149

is learned directly from the LR image without interpolation processes. The mapping layer is re-150

formulated by shrinking the input feature dimension, and smaller filter sizes but more mapping151

layers are applied thereafter. These strategies can accelerate the original SRCNN method while152

still keeping its exceptional performance.153
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2.6. Efficient Sub-Pixel Convolutional Neural Network (ESPCN)154

In ESPCN method, an efficient sub-pixel convolution layer is added to learn the upscaling155

operation for images. The upscaling layer is only located at the last of the network. It indicates156

that each LR image is directly fed into the network and feature extraction is then occurred in LR157

spaces. In other words, the process of the ESPCN ensures that the previous convolution operations158

are performed on LR images, which improves image reconstruction efficiency. By doing so, a smaller159

size filter can be used to integrate the same information while maintaining a given contextual area.160

Finally, the computational complexity of the overall SR operation can be reduced.161

2.7. Laplacian Pyramid Super-Resolution Network (LapSRN)162

LapSRN consists of a feature extraction branch which uses convolutional layers to extract163

non-linear feature maps from LR input images, and an image reconstruction branch which takes164

the sub-band residuals from the feature extraction branch. In the feature extraction process, two165

convolutional layers are used to upsample the feature maps and to predict the sub-band residuals,166

respectively. Then the image reconstruction process takes the sub-band residuals to reconstruct167

HR images through element-wise addition. Because the LapSRN directly extracts features from168

the LR input images, the computational complexity can be reduced.169

3. Performance evaluation of super-resolution reconstruction methods170

The average pixels from variety of datasets available, which are sets of animal, building, food,171

landscape, people, plant, etc., have wide ranges from 58, 853 of T91 dataset [62] to 11, 577, 492 of172

L20 dataset [63]. Because the pixel size of LR topology image dealt with in this paper is quite small173

compared to those image dataset mentioned above, various SR reconstruction methods should be174

tried to find the most efficient one for this proposed approach. Prior to applying the pre-trained175

six SR reconstruction methods, one of the public image datasets and two samples of the topology176

examples were evaluated using Image Quaility Assessment (IQA) methods.177

3.1. Image Quality Assessment (IQA)178

The SR techniques need IQA methods to assign perceptual quality scores to the tested images.179

In general, they can be divided into two parts, namely, subjective and objective methods [64].180

The subjective methods are based on human perception and operate without reference to explicit181
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criteria. On the other hand, the objective methods are based on comparisons using explicit nu-182

merical criteria [65]. The subjective methods are usually time-consuming and expensive, while the183

objective ones are often unable to capture the human visual perception.184

The objective IQA can be divided into three types: full-reference, reduced-reference, and no-185

reference [64]. In the full-reference type, a complete reference image is assumed to be known, while186

the no-reference methods do not use any reference images. The reduced-reference type requires a187

limited number features extracted from the reference for the IQA task. In this paper, two well-188

known full-reference quality metrics are used, namely, Peak Signal-to-Noise Ratio (PSNR) and189

Structure Similarity Index Method (SSIM).190

3.1.1. Peak Signal-to-Noise Ratio (PSNR)191

PSNR is one of the most popular reconstruction quality measurement. It is defined via the192

maximum pixel value, L, and the Mean-Squared Error (MSE) between two images. Given a193

reference image I with N pixels and a reconstruction image Î, the PSNR between two images are194

defined as follows:195

PSNR(I, Î) = 10 log10

(
L2

MSE(I, Î)

)
(2)

MSE(I, Î) =
1

N

N∑
i=1

(
I(i)− Î(i)

)2
(3)

where L equals to 255 in general cases using 8-bit representations. The notation I(i) represents196

the intensity of the i-th pixel of image I.197

The PSNR value approaches infinity as the MSE approaches zero, which implies that a higher198

PSNR value indicates a higher image quality [65]. In image compression quality degradation, the199

PSNR value varies from 30 to 50 dB for 8-bit data representation.200

3.1.2. Structure Similarity Index Method (SSIM)201

SSIM proposed by Wang et al. [64] measures the structural similarity between images, based on202

independent comparisons in terms of luminance masking, contrast masking, and structures. The203

luminance masking and contrast masking are terms where the distortion is less visible in the edges204
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and texture of images, respectively. The structure comparison function measures the correlation205

coefficient between two images. Given a reference image I with N pixels, the mean luminance (µI)206

and the standard deviation of the image intensity (σI) are defined as follows [28]:207

µI =
1

N

N∑
i=1

I(i) (4)

σI =

√√√√ 1

N − 1

N∑
i=1

(I(i)− µI)
2 (5)

By using the two equations, the SSIM is defined as:208

SSIM(I, Î) = l(I, Î)c(I, Î)s(I, Î) (6)

where209

l(I, Î) =
2µIµÎ + C1

µ2
I + µ2

Î
+ C1

(7)

c(I, Î) =
2σIσÎ + C2

σ2
I + σ2

Î
+ C2

(8)

s(I, Î) =
σIÎ + C3

σIσÎ + C3
(9)

The term l(I, Î), c(I, Î), and s(I, Î) represent the luminance, contrast, and structure comparison210

functions, respectively. Note that σIÎ is the covariance between I and Î. The positive constants211

C1, C2, and C3 are used to avoid a null denominator. The SSIM index varies from 0 to 1. A value212

of 0 and 1 indicate no correlation between two images and I = Î, respectively.213
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3.2. ×4 Super-resolution results with six algorithms214

Figure 3 shows the ×4 SR results of the “Zebra” example from Set14 dataset [66]. Most SR215

methods evaluate their models on the standard benchmark datasets. For comparing the PSNR and216

SSIM values, the original image is 48× 16 pixels in size which is resized to 192× 64 pixels by using217

bi-cubic interpolation. The result of FSRCNN shows the highest PSNR value and ESPCN and218

LapSRN give the best SSIM value. However, because structural images are used in this paper to219

enhance the TO work, two images of single- and multi-material topologies are compared Figures 4220

and 5. For single-material topology image sample, ESPCN provides a sharper and higher contrast221

image over others methods as shown in Figure 4. By comparison, FSRCNN shows the highest222

PSNR value on the multi-material topology image sample, while ESPCN produces the highest223

value of SSIM as shown in Figure 5. The two IQA values indicate the higher image quality and224

the similarity between two images. However, in this study, the SR methods are used as the filter225

techniques in TO process. Moreover, the topology shapes are special types of image datasets. The226

low PSNR or SSIM values should not be interpreted to mean that those SR methods are not able227

to achieve good results. The TO process aims to minimize the objective function, which is the228

value of compliance. In this study, comparison of SR methods are investigated to find which one229

is more effective to the topology process than others.230

4. Proposed method231

4.1. Solid Isotropic Material with Penalization (SIMP) method232

For density-based approach, SIMP is the most popular finite element-based TO method [67].233

Material properties are uniformly distributed in the design domain, thus the densities in all finite234

elements become design variables [68]. Once the maximum structural stiffness is achieved, the235

minimum compliance C of the system can be obtained [69]. The objective function of C is as236

follows [70]:237
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(a) Ground Truth

(PSNR/SSIM)

(b) EDSR (32.42 dB/0.87) (c) WDSR (32.51 dB/0.87) (d) SRGAN (29.73 dB/0.67)

(e) FSRCNN (34.23 dB/0.93) (f) ESPCN (34.11 dB/0.94) (g) LapSRN (34.06 dB/0.94)

Figure 3: ×4 Super-resolution results for the “Zebra” example from Set14 dataset using six super-resolution

methods.
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(a) Ground Truth

(PSNR/SSIM)

(b) EDSR (31.68 dB/0.48) (c) WDSR (31.55 dB/0.46) (d) SRGAN (28.94 dB/0.71)

(e) FSRCNN (32.77 dB/0.56) (f) ESPCN (32.91 dB/0.94) (g) LapSRN (32.39 dB/0.63)

Figure 4: ×4 Super-resolution results for a single-material TO example using six super-resolution methods.

Minimize
ρ

: C(ρ) =
1

2
UTKU =

N∑
e=1

1

2
(ue)

Tke (ρe)
p ue

Subject to :

N∑
e=1

Ve (ρe)

V0
= Vf

: K (ρe)U = F

: 0 < ρe ≤ 1



(10)

where ke and K (ρe) is the eth element and global stiffness matrix; ue, U indicate the eth element238

and global displacement and F is force vector, respectively. The ρe denoted the element density239

variable. V (ρe) and V0 in the volume constraints of the eth element and whole design domain,240

respectively; Vf is the volume constraint fraction. N, which is the number of elements, can be241

calculated as (nelx × nely). p is penalization parameter, which is usually set as 3 to force the242

intermediate design density variables to achieve either 0 (void) or 1 (solid) solutions.243

In this paper, a density-based method [13, 14] is used as a basic filtering for the main process.244

Each element density is redefined as a weighted average of the densities before calling the finite245

element solver.246

12

This is the Accepted manuscript. Seunghye Lee, Qui X. Lieu, Thuc P. Vo, Joowon Kang, Jaehong Lee, Topology optimization using super-resolution image reconstruction methods, Advances in Engineering Software, Volume 177, 2023, 103413, ISSN 0965-9978, https://doi.org/10.1016/j.advengsoft.2023.103413.



(a) Ground Truth (PSNR/SSIM)

(b) EDSR (30.20

dB/0.32)

(c) WDSR (30.17

dB/0.33)

(d) SRGAN (28.64

dB/0.61)

(e) FSRCNN (31.28

dB/0.55)

(f) ESPCN (30.92

dB/0.62)

(g) LapSRN (30.71

dB/0.55)

Figure 5: ×4 Super-resolution results for a multi-material TO example using six super-resolution methods.
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4.2. Optimality Criteria (OC)247

OC is very popular in structural TO, in which minimum compliance is sought, subjected to a248

linear constraint on volume. It is an indirect method that first derives the stationary conditions249

at the optimum and then searches for the final design by applying recursive algorithms. Thus it is250

very efficient for problems with large number of design variables. Following a heuristic updating251

scheme [17] to update new solutions in optimization process can be formulated as:252

ρe
new =


max(ρmin, ρe − φ) if ρeBe

η ≤ max(ρmin, ρe − φ)

ρeBe
η if max(ρmin, ρe − φ) < ρeBe

η < min(1, ρe + φ)

min(1, ρe + φ) if min(1, ρe + φ) ≤ ρeBe
η

(11)

where φ and η, which can vary from zero to one, are a positive move limit and numerical damping253

coefficient. Here, φ = 0.2 and η = 0.5, which are typical useful values [70], help to stabilize the254

iteration. Be is obtained from the optimality condition as follows:255

Be =

− ∂C

∂ρe

λ
∂V

∂ρe

(12)

where λ denotes the Lagrangian multiplier. The iterative process of OC algorithm is stopped256

when (
∣∣ρenew − ρe

old
∣∣) is smaller than a prescribed tolerance ϵ between two consecutive iterations.257

Otherwise, it will be continued until the convergence criterion is met.258

4.3. Measure of discreteness259

In order to measure the discreteness of design density variables in optimized designs, Sigmund260

[9] proposed a indicator M(%) as follows:261

M(%) =

N∑
e=1

4ρe (1− ρe)

N
× 100% (13)

If there are no regions with intermediate design variable values, M = 0 (%). When the final262

design is totally grey, M = 100(%). It should be noted that all parameters and calculations are263

assumed to be non-dimensional, unless otherwise specified.264
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Boundary condition

Force

Ω0

V0, V1, …, VS

Figure 6: Schematic diagram of the multi-material TO design.

4.4. Multi-material topology optimization265

Consider the multi-material problem illustrated in Figure 5. The aim is to search the optimal266

distribution of different types of materials with a given design domain Ω0. Here, a set of S + 1267

materials including void is specified and the compliance must be minimized under subject to a268

total mass constraint. The relative density of material i is ρie ∈ (0, 1) at an element e. The sum269

of the density of all phases at any arbitrary points x = {x, y} within the design domain Ω must270

conform to the following constraint [11]271

S∑
i=0

ρi = 1 (14)

Thus, the multi-material problems using the SIMP method can be expressed by:272

Minimize
ρ

: C(ρ) =
1

2
UTKU

Subject to :

S∑
i=0

N∑
e=1

V i
e

(
ρie
)

V0
= Vf

: K (ρe)U = F

: 0 < ρe ≤ 1



(15)

where ρ =
{
ρ1, · · · , ρi, · · · , ρS

}
stands for the density vector including all phases, in which ρi =273 {

ρi1, · · · , ρie, · · · , ρiN
}
is the vector of all element density of the ith phase, and ρie is the eth element274
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analysis density with respect to the ith phase. The density constraints in Eq. (14) lead the following275

equation to be satisfied naturally,276

S∑
i=0

V i
e =

∫
Ωe

dΩe (16)

4.5. Alternating active-phase algorithm for multi-material277

The purpose of the alternating active-phase algorithm is to divide a multi-phase problem into278

several single-material sub-problems with only one constraint [71]. The algorithm has an outer279

iteration in which a total number of S(S − 1)/2 sub-problems are solved partially. A sequential280

chain of different material phases is partially performed using a binary phase based-TO method.281

During the process of every sub-problem, the topologies of S − 2 phases are fixed and only two282

active phases are considered to update. If the two active phases are denoted by a and b, the283

density values of each phase could be altered in a single loop and their relationship must satisfy284

the following condition:285

ρa + ρb = 1−
S∑

i=1,i̸=(a,b)

ρi (17)

For binary phase sub-problem, the only density values of phase a are considered as design286

variables. After attaining ρa, the density value of phase b can be computed by287

ρb =
∑
j=a,b

ρj − ρa (18)

It is clear from Eq. (17) that the corresponding upper bound for both phases a and b has been288

replaced 1 with
∑

j=a,b ρ
j while the lower bound is fixed as 1 < ρa,b,min < ρa,b <

∑
j=a,b ρ

j .289

4.6. Multi-material interpolation scheme290

A large number of interpolation schemes for the multi-material problems has been introduced.291

Young’s modulus and density variables of the material phases are proposed using a penalization292

parameter. In this study, Zhou and Wang’s [72] multi-material interpolation scheme is adopted.293

The methods can obtain partial material properties from the set of input material data. Its explicit294

mathematical expression for the eth element is given as295
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E
(
ρie
)
=

S∑
i=1

(
ρie
)p

Ei (19)

where Ei is the Young’s modulus of the ith material phase (i = 1, 2, · · · , S), and p indicates the296

penalization parameter, which is is usually set as 3 to impose the intermediate density variables297

approaching either 0 (void) and 1 (solid).298

4.7. Super-resolution topology optimization (SRTO) method299

The proposed method, namely, SRTO, which is provided in Algorithm 1, uses the trained SR300

image reconstruction methods. The trained SR is added to the inner loops to reconstruct the301

topology images. In the main iteration, the element densities are computed using the typical TO302

method mentioned above. However, the trained SR networks are used to obtain HR images from303

the LR images at the end of each iteration. After finishing the reconstruction process, the main304

TO method recovers the original size images from the HR images for the next iteration. Figure 7305

shows the flowchart of the proposed method using trained SR network in inner loop. In the typical306

TO process, LR images are fed into the SIMP and OC methods. After updating the LR image,307

the updated design variables are reconstructed using the trained SR methods at each iteration.308

The obtained ×4 SR results are then resized back to the original discretized size for the next309

iteration. The trained SR methods are used as filter techniques to enhance the topology images.310

The grey transition regions can be removed using the trained SR methods and compliance values311

are improved. After termination, the final LR image can be converted into ×4 HR one using the312

trained SR methods. In the next section, the results obtained from the proposed model will be313

compared with those of the typical TO process.314
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Algorithm 1: SRTO

Input: Domain, nelx, nely, Vf (prescribed volume fraction), E (Young’s modulus), ν (Poisson

ratio)

Output: Optimized structural topology

1 do

2 for each e to N do

3 Compute compliance by using FEA:
N∑
e=1

1

2
(ue)

Tke (ρe)
p
ue

4 Sensitivity anlaysis

5 Density-based filtering

6 Update ρ using OC method

7 Upscale resolution using SR method

8 Downscale resolution for the next step

9 Replace ρ by the new image from the previous step

10 Constraints:

N∑
e=1

Ve (ρe)

V0
= Vf , K (ρe)U = F, 0 < ρe ≤ 1

11 end

12 while Any of the stopping criteria is satisfied

13 return

315

5. Numerical examples316

In this section, various benchmark TO problems for both single and multiple-materials are317

performed to illustrate the effectiveness of the proposed SRTO methods. A scale factor of ×4318

between LR and HR images is used. The maximum allowed iteration number is defined as 50319

and the parameter penalization of 3 is used. The trained SR methods are used to reconstruct320

the LR topology shapes to SR images at each iteration. The LR image at every generation is321

fed into the trained SR methods; the SR methods then gave the reconstructed image back for322

the next generation. Moreover, the proposed methods use the SR image reconstruction strategy323

as post-process tools to refine the LR image into HR results at the end of the last iteration. All324

final topologies are taken from the 50th iteration step. The pre-trained networks and weights of325
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Initialize design variables

Finite element analysis

Evaluate objective function

START

SIMP interpolation scheme

Update design variables

Convergence?

END

NO

YES

OC

Trained SR methods x4

Resize x1/4

Trained SR methods x4

Figure 7: Flowchart of the proposed method using trained SR networks in inner loop.

EDSR1, WDSR2, and SRGAN3 are obtained from online material supplementaries4 and those for326

FSRCNN5, ESPCN6, and LapSRN7 from GitHub. All early-stage SIMP results are compared with327

1https://github.com/LimBee/NTIRE2017
2https://github.com/JiahuiYu/wdsr ntire2018
3https://github.com/david-gpu/srez
4https://github.com/krasserm/super-resolution
5https://github.com/Saafke/FSRCNN Tensorflow/tree/master/models
6https://github.com/fannymonori/TF-ESPCN
7https://github.com/fannymonori/TF-LapSRN/tree/master/export

19

This is the Accepted manuscript. Seunghye Lee, Qui X. Lieu, Thuc P. Vo, Joowon Kang, Jaehong Lee, Topology optimization using super-resolution image reconstruction methods, Advances in Engineering Software, Volume 177, 2023, 103413, ISSN 0965-9978, https://doi.org/10.1016/j.advengsoft.2023.103413.



those obtained by the proposed method at the same resolution. After the iteration is terminated328

(Figure 7), the final topologies can be obtained with ×4 resolution. The problems are solved for329

various discretizations, sensitivity filtering radius R and specific conditions.330

5.1. Single-material examples331

Three examples as shown in Figure 8 including MBB beam [73] and L-shaped beam [74] with332

rectangular finite elements discretization as well as curved beam, which is discretized to form a333

grid in polar coordinates, are considered. The goal is to minimize the compliance of these beams334

subjected to a volume fraction constraint and other conditions. The Young’s modulus, Poisson’s335

ratio and thickness of the beam are E = 1.0, ν = 0.3 and 1, respectively. The volume fraction336

constraint is chosen to be 0.5. The sensitivity filtering radius R = 2 for MBB beam and R = 1.5337

for L-shaped and curved beam.338

5.1.1. MBB beam339

Due to symmetry, only half design domain of simply-supported MBB beam under concentrated340

load P = 1 which has a length-to-height ratio, 3 : 1 with L = 20 (Figure 8(a)) is analysed. It is341

discretized with 48×16 bi-linear quadrilaterals for the iteration of the SRTO methods. Figure 9(a)342

shows the compliance convergence history using the SIMP and six SRTO methods. They converge343

rapidly within 20−30 iterations and become steadily afterwards. The typical SIMP method reaches344

its optimum faster than the SRTO ones. However, the optimum values of SRTO-edsr and -wdsr345

are lower than those of SIMP. Their effectiveness can be compared with the values of compliance346

and measure of discreteness presented in Table 1. The proposed SRTO method using WDSR shows347

the lowest values of compliance and measure of discreteness.348

The topology images of several iteration steps can be identified via the compliance convergence349

history in Figure 10(a) and the final ones obtained by all methods are shown in Figure 11. The350

SRTO-srgan tends to produce grey blur parts on the white void region, while the result of SRTO-351

wdsr has higher contrast image. Moreover, those of SRTO-fsrcnn, SRTO-espcn, and SRTO-lapsrn352

also have less sharper and lower contrast images. The disadvantage makes the C and M values353

be higher than those of SRTO-wdsr. It is clear from Figure 11 that the proposed SRTO methods354

can enhance the topology resolution and the WDSR is suitable for the MBB topology example.355

However, because the double lines still remain near boundaries, another post-processing is needed356

to remove the transition regions.357
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(c) Curved beam

Figure 8: Geometry, boundary conditions, and applied load in the design domain of single-material examples.
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Table 1: The compliance and measure of discreteness for single-material examples with Vf = 0.5 at the 50th iteration.

Method SIMP SRTO-edsr SRTO-wdsr SRTO-srgan SRTO-frcnn SRTO-espcn SRTO-lapsrn

MBB beam

C* 210.987 208.518 205.925 219.546 216.973 217.385 221.171

M† 21.889 20.818 20.818 34.926 28.186 28.867 30.131

L-shaped beam

C* 192.932 193.028 192.296 197.548 193.788 194.015 194.437

M† 31.589 33.382 32.616 41.448 34.581 34.227 34.687

Curved beam

C* 56.369 56.463 56.287 58.951 56.694 56.802 57.076

M† 32.913 34.729 34.511 44.367 35.872 35.156 36.110

* Compliance.

† Measure of discreteness.

358

5.1.2. L-shaped cantilever beam359

A L-shaped cantilever beam with L=30 and three different discretization is subjected to a360

concentrated load P = 1 at the middle of right free edge as shown in Figure 8(b). After the 30th361

iteration, only SRTO-wdsr shows lower optimum compliance values compared to those of typical362

SIMP (Figure 9(b)). The optimum compliance of SRTO-wdsr from Table 1 is 192.296 while that363

of typical SIMP is 192.932. Similar to the MBB beam problem, the SRTO-srgan and SRTO-lapsrn364

could not achieve good results compared to other methods. Compliance convergence history using365

SRTO-wdsr is shown in Figure 10(b). In Figure 12, the zoomed images of final topologies obtained366

by all methods can be investigated in details. Except from SRTO-wdsr, the results of other SRTO367

methods does not produce clear-cut outline along the contour of the topologies. The grey blur368

parts tend to broad uncertain black region to the white void region when HR image is resized and369

fed into the topology process back.370
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Figure 9: Compliance convergence history of single-material examples using various methods.
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Figure 10: Compliance convergence history of single-material examples using SRTO-wdsr.
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(a) SIMP

(b) SRTO-edsr (c) SRTO-wdsr

(d) SRTO-srgan (e) SRTO-fsrcnn

(f) SRTO-espcn (g) SRTO-lapsrn

Figure 11: The final topologies of the MBB beam obtained by various methods in which SRTO-wdsr has the

minimum compliance.

5.1.3. Curved beam371

The geometric descriptions and boundary conditions of curved beam with R1 = L = 10 and372

R2 = 30 are shown in Figure 8(c). It is under a concentrated force P = 1 on its top-left corner. Fig-373

ure 9(c) shows the compliance convergence history using all methods. After the 20th iteration, the374

SRTO-wdsr shows lower optimum compliance values compared to those of typical SIMP method,375

which is also verified in Table 1. SRTO-wdsr produces the lowest compliance, however discreteness376

is higher than those of the SIMP method. Compliance convergence history using SRTO-wdsr and377

the topology images of five iteration steps are plotted in Figure 10(c). The zoomed images of final378

topologies obtained by all SRTO methods taken from 50th iteration step are shown in Figure 13.379
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(a) SIMP

(b) SRTO-edsr (c) SRTO-wdsr (d) SRTO-srgan

(e) SRTO-fsrcnn (f) SRTO-espcn (g) SRTO-lapsrn

Figure 12: The final topologies of the L-shaped cantilever beam obtained by various methods in which SRTO-wdsr

has the minimum compliance.
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(a) SIMP

(b) SRTO-edsr (c) SRTO-wdsr (d) SRTO-srgan

(e) SRTO-fsrcnn (f) SRTO-espcn (g) SRTO-lapsrn

Figure 13: The final topologies of the curved beam obtained by various methods in which SRTO-wdsr method has

the minimum compliance.
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Table 2: Material properties and volume fraction constraints for multi-material examples.

Test problem Material Color E† Ve
*

Compliant inverter 1 2 0.1

2 1 0.2

0(void) 10−9 0.7

Compliant gripper 1 2 0.1

2 1 0.2

0(void) 10−9 0.7

Heat 1 2 0.2

2 1 0.2

0(void) 10−9 0.6

* Volume fraction constraint of each material.

† None scale.

380

5.2. Multi-materials examples381

In order to verify the effectiveness of the proposed methods further, three examples of multi-382

materials as shown in Figure 14 including displacement inverter mechanism, compliant gripper383

mechanism and heat conduction are considered. For displacement inverter and compliant gripper384

mechanism, since the design domain is symmetric from top to bottom, its bottom half is used385

to reduce the computational cost. Unlike with previous single-material examples, because these386

multi-material examples use two colors as shown in Table 2, the ×4 SR results tend to distort387

the LR image in the early design stage. For this reason, the topology images are constructed by388

using the SIMP method until the 10 iterations, and then the SRTO methods are used to enhance389

them. The Young’s modulus of the phases, volume fraction constraints are provided in Table 2390

and Poisson’s ratio of 0.3 and thickness of 1 are used. The sensitivity filtering radius R = 1.2 for391
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displacement inverter mechanism, compliant gripper mechanism and R = 1.12 for heat conduction.392

5.2.1. Displacement inverter mechanism393

The bottom half of the design domain and boundary conditions of the displacement inverter394

mechanism with L= 40 is provided in Figure 14(b). An input force Fin = 1 is applied at the center395

of the left edge. It is discretized using a mesh of nx × ny = 40 × 20 elements. The objective is396

to maximize the output displacement Ux,out at point A. It is from Figure 15(a) that all results397

obtained by six SRTO methods show unstable pattern within 11− 40 iterations. In particular, the398

results of the SRTO-fsrcnn and SRTO-lapsrn can not converge below that of SIMP method. The399

unexpected blue lines (SRTO-espcn) lead to the higher convergence. Only result of the SRTO-400

wdsr shows the stable convergence history. The displacement convergence history obtained using401

SRTO-wdsr is shown in Figure 16(a) with the six topology images at corresponding iteration steps.402

Figure 17 shows the final topologies of all methods. The results obtained from the SRTO-fsrcnn403

and SRTO-lapsrn give different topologies as compared to those of other methods. Moreover, the404

topology results of the SRTO-edsr, SRTO-srgan, and SRTO-espcn obtain distorted connection405

parts (blue color). In contrast, the SRTO-wdsr can improve topology image as shown in Figure406

17(c).407

5.2.2. Compliant gripper mechanism408

The design domain and boundary conditions of compliant gripper mechanism are given in Figure409

14(d). Both top and bottom corners on the left edge are fixed, and the input force Fin = 1N410

is loaded at the midpoint of the left side with the input spring with stiffness kin = 0.1. The411

objective of the compliant mechanism gripper is to obtain the optimized topology design so that412

the mechanism can lead to the expected output displacement Uy,out with constant output spring413

with stiffness kout = 0.1. The objective is to maximize the output displacement Uy,out at point A.414

Figure 15(b) shows the displacement convergence history obtained using the six SRTO methods.415

Compared with the result of SIMP, the only one of the SRTO-wdsr is higher, while the rest are416

the lower. The convergence history of the SRTO-wdsr with six topologies of arbitrary iteration417

steps is shown in Figure 16(b). The final topologies are given in Figure 18. The five topology418

images obtained by SRTO-edsr, -srgan, -fsrcnn, -espcn, and -lapsrn exhibit blurry outline along419

the contour. In particular, the SRTO-srgan tends to make the ivory-coloured background. The420
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Figure 14: Design domain and boundary conditions of the displacement inverter mechanism, compliant gripper

mechanism and heat conduction.
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(b) Compliant gripper mechanism

Figure 15: Convergence history of the displacement inverter mechanism and compliant gripper mechanism obtained

using various methods.
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Figure 16: Convergence history of the displacement inverter mechanism and compliant gripper mechanism using

SRTO-wdsr.
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(a) SIMP

(b) SRTO-edsr (c) SRTO-wdsr

(d) SRTO-srgan (e) SRTO-fsrcnn

(f) SRTO-espcn (g) SRTO-lapsrn

Figure 17: The final topologies of the displacement inverter mechanism obtained by various methods in which the

result of SRTO-wdsr has the absolute maximum displacement.
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(a) SIMP

(b) SRTO-edsr (c) SRTO-wdsr

(d) SRTO-srgan (e) SRTO-fsrcnn

(f) SRTO-espcn (g) SRTO-lapsrn

Figure 18: The final topologies of the compliant gripper mechanism obtained by various methods in which the result

of SRTO-wdsr has the maximum value of displacement.
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topology result of the SRTO-wdsr is a much sharper and higher contrast images.421

5.2.3. Heat conduction problem422

The design domain and boundary conditions of 2D heat conduction model are provided in423

Figure 14(e). At nodes, heat flow is conducted into the system. The heat conductivity coefficient424

kx = ky = 1 and internal heat supply Q = 1 is assumed to be uniformly distributed over model. The425

objective is to minimize the compliance computed by the formula c = 1/2TTF thus the optimized426

model can have the optimal thermal conductivity. The compliance convergence history is shown in427

Figure 19(a). It is clear that the result obtained using SRTO-edsr shows the minimum curve. The428

result of SRTO-fsrcnn also has lower convergence history line compared to that of SIMP method.429

The convergence history of the SRTO-edsr with six topologies of arbitrary iteration steps is shown430

in Figure 19(b). It can be seen that all topology images are different from each other and those of431

SRTO-fsrcnn, -espcn, and -lapsrn show blurry images. However, the final topology of SRTO-edsr432

gives a much higher contrast image compared to others as shown in Figure 20.433

6. Conclusion434

This study proposes a new topology optimization method to enhance the topology images using435

six different super-resolution methods, namely, EDSR, WDSR, SRGAN, FSRCNN, ESPCN, and436

LapSRN. The trained SR methods are added to the inner loops of the TO process to upscale437

from the course mesh topology to High-Resolution image (×4). Six well-known single- and multi-438

material TO examples are examined to demonstrate the effectiveness of the proposed method. The439

SRTO-wdsr achieves the good results in all cases except for the heat conduction problem, in which440

the SRTO-edsr obtains the best one. Their final topologies provide noticeably improvement over441

those of typical SIMP method and create a much sharper and higher contrast images. Moreover, the442

proposed TO strategy using the super-resolution image reconstruction methods can give valuable443

innovation for conventional TO process.444

7. Limitations and future work445

The proposed procedure seems particularly effective when the original mesh is quite coarse446

and requires high computation cost. There are some limitations associated with the application447
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Figure 19: Compliance convergence history of the heat conduction model obtained using various methods.
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(a) SIMP

(b) SRTO-edsr (c) SRTO-wdsr (d) SRTO-srgan

(e) SRTO-fsrcnn (f) SRTO-espcn (g) SRTO-lapsrn

Figure 20: The final topologies of the heat conduction model obtained by various methods in which the result of

SRTO-edsr has the minimum value of displacement.
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of proposed method to the original TO process directly, due primarily to the characteristics of448

the method in which the SR step does not adjust the sensitivity analysis or the OC process.449

Furthermore, if the filter size does not meet special constraints, then the obtained solutions might450

not be applicable to the practical problems. The next topic can be a direct method to adjust the451

sensitivity filter or the objective function by using the resolution colour value from the SR methods.452
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