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Abstract

The worldwide population of elderly people is growing rapidly and in the coming decades the
proportion of older people in the developed countries will change significantly. This demographic
shift will create a huge increase in demand for domestic and health-care services and this in turn has
the potential to create a major new market for domestic service robots that can assist with the care
and support of the elderly and infirm. However, unlike industrial robots, assistive service robots
are still under-developed and are not widely deployed. We analyze the nature of the requirements
for assistive robotics for the elderly and argue that traditional “industrial” robot engineering ap-
proaches are either inappropriate or inadequate to tackle the key problem areas, which we identify
as: safety, adaptivity, long-term autonomy of operation, user-friendliness and low costs.

A key issue is user acceptability and this paper explores how seemingly difficult and possibly
conflicting design requirements can be integrated in a human-centred approach. We develop an
approach to the design of autonomous assistive robots for the home, with emphasis on the user
and the tasks to be performed. We then introduce some design principles and apply these to a
simplified case study. The case study was implemented as a concrete illustration, and a series of
experiments are reported.

The demonstration shows, (a) how existing software techniques can be combined in a synthesis
that satisfies several key design ideas, (b) how a software architecture can provide a flexible and
extensible substrate for the integration of the design, and (c) how this approach can be sensitive
to the concept of user “empathy” that is characteristic of these applications.

By highlighting significant design issues and suggesting different approaches, we hope assistive
robotics will be better able to address the novel demands of assistive applications in health-care
situations.

Keywords: Assistive Devices, Service Robotics, Autonomous Error Recovery, Human-centred De-
sign.

1 Introduction and Motivation

In this paper we discuss some of the special difficulties that face engineers when developing new
technologies for enhancing the quality of life of the elderly and infirm. Such technologies can aid both
physical and cognitive function and are being intensively researched worldwide. Our aim is not to
present a solution to a specific incapacity problem but to explore the special requirements that assistive
devices impose, in order to highlight these issues for the benefit of future projects. Early experiments
have shown that established industrial robotics techniques are simply not sufficient for transfer directly
into the world of domestic and health-care robotics without extensive rethinking. The motivation of
this paper is to explore some of this necessary rethinking, to highlight significant design issues, and
to suggest how different approaches may be developed. We illustrate our approach through a case
study that implements a simple reaching task. However, this assistive robot model is not intended
as an actual prototype of a future device; hence we do not cover user trials, usability assessments,
psychosocial aspects and many other factors that come into play during full product development.
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Rather, our goal is to provide a concrete illustration of how seemingly difficult and possibly conflicting
design requirements can be integrated in a human-centred approach. Although somewhat artificial,
the example system does show (a) how existing software techniques can be combined in a synthesis
that satisfies several key design ideas, (b) how a particular architecture, the behaviors model, can
provide a flexible and extensible substrate for the integration of the design, and (c) how this approach
can be sensitive to the concept of user “empathy” that is characteristic of these applications.

2 The Current State of the Art

Over the last few decades, industrial robotics has become a significant commercial success. Domestic
and service robotics are also now becoming accepted, particularly in the entertainment sectors. In this
paper we are interested in assistive devices for the home-care of the elderly and infirm — a field in
which robotics should have a potentially major contribution to make. First, we define our terms; we
consider an assistive robot is a device that cooperates with a user through physical activity in the user’s
environment. We assume the term “robot” does not properly apply to purely electronic devices that
are unable to alter the physical world and “cooperation” implies the need for some physical contact
with the user. Thus we find it useful to separate out areas such as medical telematics. It is rewarding
to examine these distinctions further and so we now explore different kinds of assistive scenario.

Recent years have witnessed considerable progress with autonomous mobile robots that clean floors,
cut grass, or act as guides, couriers or security guards [22]. These robots are usually based on mobile
platforms that have to navigate through human environments and communicate with humans during
operation. They can carry objects or perform some function with a tool or accessory but their physical
interactions with the world are bounded or controlled by the task specification. The significant feature
of these devices is that the user interactions are not normally physical but purely communicative [18].
Those systems that do have requirements for physical contact with users, even if indirect, entail
additional major challenges for assistive technologies. We can distinguish the different types in terms
of levels of physical interaction with users as follows:

Level 0 This level has no physical interactions other than communications. Examples include timers,
medication reminders, monitors, alarms and tele-links. Such devices have no robotic features,
i.e. no spatial machinery, and there are no special safety concerns, other than those of any
electrical or computerized home appliance. This level has recently been a popular application
area for intelligent agent technology.

Level 1 Devices at this level are able to move within the user’s environment but should generally avoid
physical contact with users and even avoid the user’s personal space where possible. Examples are
autonomous vacuum cleaners, lawn mowers, tour guides and couriers. Extra safety considerations
must be given to events such as the user accidently colliding with or falling over the robot.

Level 2 This level covers devices that can intimately share the same operating space as the user.
Examples would be robot devices that fetch or retrieve objects, assist with domestic tasks such
as cooking or ironing, or perform specific manipulation tasks on a desk top or work area. Some
form of cooperation between user and robot is necessary for normal operation and extra safety
issues include the specific hazards caused by powered kinematic devices operating near human
users.

Level 3 The highest level of physical interaction occurs when the device is in frequent contact with
the user during operation. Examples include rehabilitation devices that exercise the user’s limbs,
powered walking aids, and motorized wheelchairs. Safety is very important because of the close-
coupling with the user and failures could easily lead to injury.

Table 1 lists some characteristics of these levels. On this scale, service devices are those at levels 0 and
1, and assistive robotics proper only exist at levels 2 and 3. It is interesting to note that levels 0 and 1
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level Example Physical interactions Degree of
contact

Spatial
world

Workspace Safety

0 Medication
monitor

Only communication None None Not relevant As for normal (sta-
tic) domestic appli-
ances

1 Floor clean-
ing robot

Accidental collisions Slight 2D Shares access ar-
eas with user but
contact normally
avoided

As for powered
tools and vehicles

2 Object re-
trieval robot

Transfer of objects,
Holding tools or
objects, Providing
reactive forces

Frequent 3D Shares user’s work-
ing envelope and
contact expected

Additional user
protection required

3 Wheelchair
robot

Active movement of
user’s whole body or
parts of body

Almost
constant

3D Shares user’s body
space and main-
tains contact for
long periods

Safety critical de-
sign essential

Table 1: Levels of interaction in assistive robotics

are distinguished by less control coupling as well as less physical coupling with their users, i.e. they can
usefully operate without the user for long periods. Level 0 has received the most research attention
but this has tended to concentrate on patient monitoring, tele-diagnosis and remote care delivery.
While this focus on social and organizational management is welcome there has been relatively little
work on direct user quality of life [4]. Research on level 1 devices is also very active, especially on
mobile robotics, but most of this does not address any particular needs of the elderly [19]. We note
that mobile robots usually operate at floor level and their operating space can often be considered
as two dimensional, thus greatly simplifying their design problems. Level 3 is a very active research
area, covering mobility issues, especially autonomous wheelchairs, and also rehabilitation and exercise
robots [21, 6]. In this paper we address issues concerning devices on level 2, which has seen relatively
less research activity than the other levels.

3 The Demand for Assistive Technology for the Elderly

Demographic change in most developed countries is showing a burgeoning population of older people.
The continued rapid growth in the population aged 80 and over is set to continue over the coming
decades [8]. Since frailty and disability are increasingly common among the most elderly, this shift
of distribution is resulting in greater demands for high-quality supportive care provision, particularly
home-based or community care [26]. When this trend is combined with the declining numbers of
younger people, who represent the future source of care workers, an alarming scenario is presented of
a very acute mismatch of supply and demand.

Consequently, the value of augmenting community care with technological support has been widely
recognized [26]. Such technology offers great promise for tools and techniques that can allow elderly
people to compensate for physical and/or cognitive impairment and thereby reduce both handicap
and demands on caring services [28]. Importantly, the goal of health-care is to maintain or improve
quality of life, whether implemented by human or technical solutions [5].

From the published projections and our own analysis it is clear that the future health-care of the
elderly will be dominated by several factors:

Premise 1 There is a vital need to extend or supplement the available human resources required for
the care of frail elderly people at home. Future hospital and home-care services will not be able to
match the projected demand.
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Premise 2 There is an urgent corresponding need to find technological solutions to help provide ser-
vices that make up the projected shortfall in human resources.

Premise 3 To meet the predicted global demand, any successful devices or solutions must be widely
available and be relatively low-cost. For any hardware-based aids this implies large volume mass pro-
duction.

Premise 4 Assistive devices have additional challenges over those of level 0 and 1 robots, as they can
not avoid complex spatial and/or physical interactions.

4 Key Design Issues

Although a great deal of knowledge has been gained in industrial robotics, this technology has notably
failed to transfer into the assistive field. This is mainly because industrial systems concentrate on pre-
cision, accuracy and repetition, and also assume a high degree of structure in the working environment.
Together with high cost and relatively low task flexibility, these features are almost an exact inverse of
the requirements for an assistive device for the home. Domestic environments are highly unstructured
and very variable but the degree of accuracy and precision demanded can be quite low. Also, a high
degree of adaptability is essential for both task execution and for flexibility across domestic tasks and
environments.

This mismatch may explain why the early commercial offerings met with low acceptance and little
demand. Despite early work showing the positive feasibility of assistive robotics and the high esti-
mates of future markets, such systems seemed to be under-developed and have not sold well [13].
Considering the wealth of robotic technology available, this lack of penetration into the user market
seems paradoxical, as it appears to offer great promise for solutions in the assistive field. However,
there are many new factors and additional requirements that need to be taken into account.

Firstly, the needs of assistive users are often much more complex than those for industrial tasks.
This is not always recognized by technologists and engineers who concentrate on product design but
tend to ignore social and human aspects [23]. Secondly, it is quite common for new hi-tech products
to be rejected or abandoned by users, for a wide variety of reasons. For every successful product there
are many apparently attractive and desirable devices that are never taken up. This phenomenon is
well known and the failure of early assistive robotics to penetrate the commercial health-care market is
being examined [14]. However it is clear that many failures occurred because their designers attempted
to adapt existing engineering solutions, designed for other purposes, to narrowly defined health-care
problems [7]. Another factor is that the aim is not to replace an existing human or a human task, as
is often the case with industrial robotics, but rather to support and enhance the user’s abilities [9].
This is a much more complex situation and means that careful balances must be struck between the
roles of users and devices [16].

Current research has shown that acceptance of assistive technology will require much more attention
to user preferences than previously thought. Perhaps this concept of user empathy is the significant
difference from industrial robotics [20]. Models of acceptability and socio-dynamic factors are now
being developed [5] and one respected acceptability model argues that users’ “felt needs” for aid
or enhancement must be matched to the “quality” of the solution or device offered [16]. In this
context, quality is defined in terms of efficiency, reliability, simplicity, safety, and cost. In addition,
user variability is very high: “The heterogeneity of older people and the diversity of their living
circumstances mean that individual preferences will play a strong part in people’s attitudes” [16].

From such research we can observe further:

Premise 5 Top design priority must be given to user preferences with emphasis on perceived quality
and accurate understanding of needs. All technology issues are of secondary importance.
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Premise 6 This implies that level 2 devices for the elderly must be customizable to accommodate
different levels of task requirement and user abilities, and widely different personal environments.
Such customization may involve the care givers whose needs must also be included.

Premise 7 Notwithstanding premise 6, such devices will also need to autonomously adapt in situ to
environmental and task changes, including error events.

5 Needs and Requirements

Consideration of assistive device scenarios show several very significant differences from other robotics
applications. These include the following:

Safety – Assistive robots work in close proximity to humans, even sharing their operating envelopes.
Thus, safety features must include collision avoidance and detection, and suitable analysis of user
hazards and failure modes. System designs must cover issues such as: structural measures, e.g.
support strength and low inertia components; safe operating regimes and fail-safe behavior; and
dynamic sensing for proximity detection and environmental changes. We believe that software
has a major role to play by contributing to overall system safety in all areas.

Costs – Acceptable costs are essential for global markets and low costs can be achieved by (a)
using readily available components, (b) trading precision for robustness, and (c) reducing the
complexity of mechanical design by transferring more functionality to sensors and software. Cost
reduction is a design priority, and must be reconciled with any hi-tech solutions.

Autonomy – Robustness and high reliability are very important in systems that must run without
technical support for long periods. However, assistive applications have so many uncertainties
and variables that any given action can not be guaranteed to achieve its expected outcome or
effect. Consequently, some errors and action failures are unavoidable. Hence robustness implies
that errors should be accepted as events to be accommodated and so some form of automatic
error recovery is essential for autonomous operation. This also introduces a need for the system
to self-improve, so that repeated errors are detected and eventually anticipated and avoided.

Flexibility – Mass produced systems can be built to provide tools to help with configuration for
each user’s environment, but some customization by the user and/or carer will have to take place
in the user’s home after delivery. This means that such systems must be designed so that they
can be personalized for each user’s needs.

Usability – User requirements for the elderly are very demanding with very constrained modes
of communication [2]. Any complexity must be hidden and systems must have very acceptable
controls and operational modes. Any “user interfaces” must be minimal and inputs should be
intuitive and responsive.

These requirements are very severe and more demanding than those found in previous robotics
application areas. Much more research and innovation is needed before all the issues are solved and
effective products are available and widely accepted. We can expect future advances in many areas
but we believe the fundamental reconciliation of the engineering and economic requirements for high-
volume production with the essential need for personal, customizable systems will be best achieved
through intelligent software techniques, and this will be a vital factor for success in the high-volume
markets of the future.
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6 Addressing the Requirements

In order to investigate ways of tackling some of the above requirements we have experimented with
robot control architectures and learning algorithms. Following the above observations, our approach
is based on trying to satisfy the following:

Design Principle 1 To keep costs low, much of the functionality of assistive robotics should be
achieved through advanced software rather than hardware or mechanical systems. Software can com-
pensate for low accuracy, coarse grained components, and other mechanical limitations, thus greatly
simplifying the mechanical and hardware design of a system.

Design Principle 2 Software can also provide the added functionality demanded by these applica-
tions, particularly ease of use, robustness and adaptability.

Design Principle 3 Learning during use is essential. This will be necessary for customization, self-
improvement during task execution, learning new tasks and learning about errors.

Design Principle 4 Robust operation in terms of tolerance of both environmental variations and
action variability is essential. This means effective error treatment methods must be incorporated to
allow autonomous operation and long periods of service without breakdown.

Design Principle 5 User communications for control or training must be very simple and direct.
For example, very few keywords should be allowed and any tokens should closely relate to the objects
in the task environment.

Design Principle 6 Any configuration and set-up stages may be performed by carers or users, and
so any form of conventional programming input must be avoided. The input of data for configuration
and/or new task variation could be by “teaching”, by showing examples of what is required.

We envisage a successful device that satisfies the needs of its elderly users will gradually accumulate
experience over its life-time through incremental learning, and will adapt to the individuality of its
user and to a variety of tasks to some degree. Assuming that there may be long intervals between
carers’ home visits implies that the system must not fail in an abrupt or catastrophic manner but
should degrade gracefully. On error, it should try repeated attempts as the inherent variance in
domestic environments means that key parameters are often not fixed and a second attempt may find
more favorable conditions. Indeed, the experience of repeating a task gives valuable information for
learning. Thus, error recovery is not an extra feature but a basic requirement and the experience
captured, during all operations, should be utilized and made available for transfer to other tasks if at
all possible.

6.1 Methodology

We have argued that future assistive devices, of level 2, will often have demanding general requirements,
including long-term viability, low costs, ease of use, and flexible performance. Many such systems
will be sufficiently complex that software will be the means to efficiently implement much of the
functionality. We also argue that the human aspects are the overriding design concern (and a key
distinction with conventional robotics) and so we propose a user-first, technology-next approach. In
order to guide our case-study we used the following tentative methodology, summarized as a series of
stages:

User situation analysis First, an analysis of the class of of tasks to be covered is needed, together
with cost limits, the level of task support needed, and the level and nature of appropriate
communication.
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Task analysis This covers the design and analysis of a basic task set, defining the objects and/or ac-
tions involved, the variables to be sensed, any significant conditions, and maybe some indications
of the main control functionality required.

Initial hardware design The identification of low-cost but effective sensors, actuators and other
components then follows, taking account of the design requirements and associated error costs,
performance and safety limitations. The software functionality will be broadly determined by
the processing required by the sensors and other hardware.

Control function engineering This includes the analysis and design of the software functionality
needed to control the sensors and hardware. The overall system architecture is designed, together
with any special compensation software. Such compensation functions, e.g. self-calibration,
should be self-contained, fast, and have any-time availability, so that they can be used on-
demand and as frequently as necessary.

System design This stage covers iterations and walk-throughs with emphasis on finer detail and
refinement. Experiments and prototypes help to evaluate designs and lead to further iterations
around these stages.

Of course, to produce fully developed products for the future, all design stages will need multidis-
ciplinary cooperation and input, combining expertise from across fields such as robotics, ergonomics,
therapy and gerontology.

7 An Experimental Case-Study

In order to further examine and test the above design approach, a simulated case-study scenario was
investigated and implemented. It is important to note that this was not a complete prototype imple-
mentation, with extensive user trials and full performance analysis. It is intended as an illustration of
our approach and shows how it may be developed.

7.1 The acquisition task

First, a particular type of assistive home-care task has to be selected. Various studies of human
analysis have dealt with different aspects of impairment but these tend to fall into broad categories as
indicated in table 2. The area most demanding of assistance is stair climbing and descending. This
is a level 3 task and stair-lifts and other such aids are now well developed. The next most pressing
area is in help for reaching and bending activities [27]. This is mainly for accessing shelves and floors
and has been rated highly by surveys [24]. We decided to implement an assistive task from this

1 Stairs
2 Reaching and bending
3 Sitting and walking
4 General mobility
5 Aids and adaptations
6 Domestic appliances
7 Care management

Table 2: Task areas in the home

general area and selected personal object localization and retrieval. The task consisted of transferring
small domestic items between tables or other horizontal storage places as requested by the user. This
task has wide applicability, it can be extended in scope and applicability, and it embodies typical
human-centred design issues.
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7.2 Design factors

The next step is to analyze the task and look for simplifications and extract the essential core require-
ments. The objects are to be small personal items, unidentified beforehand and of various shapes and
sizes. The user wishes to identify desired objects by some means and the system should then find the
desired item from various possible storage places, pick it up and transport it to a target location near
the user. We notice that only one storage region need be implemented, as any other surfaces will only
differ in their location. Also, we can assume, again without loss of generality, that the user will accept
retrieved objects at a single prescribed target location. The required spatial movements of objects is
thus the familiar “pick and place” operation with the user selecting the object. However, there are
two key problems: which object is to be retrieved, and where is it located. Thus, we need a means of
distinguishing objects and a means of determining their locations.

For the first problem, the user must communicate with the robot but there are many methods
and modalities for verbal and non-verbal communication with the elderly. This is a cross-disciplinary
area with much valuable input from human factors, ergonomics and health-care experts. However, it
is clear that human-robot communication must be simple, natural and effective. Any tokens used in
communication must not place any cognitive burdens on users and need to be unambiguously grounded
in the application task. Following design principle 5, that user commands should be simple and
minimal, a basic design could consist of tokens for <action, object> with optional <adjective> tokens
for describing the object. For example, a user might request “Fetch Red Pen”. The choice of action
is simply either “Fetch” or “Save”, corresponding to retrieval from or transport to the storage place.
The object names are identifiers associated with particular objects by the user. For the adjectives we
have selected color and shape as widely-used and accepted means of differentiating objects.

All the tokens in these commands could be input by many means, for example they might be spoken
into a speech input device, or they could be entered by pointing at a touch sensitive screen.

For the second problem, finding where objects are located, we note that their general storage region
is known but not their exact positions. As the objects may be of novel size and shape, there is no
prior knowledge to simplify this task and so all the required object parameters must be sensed by the
system. However, as the objects lie on horizontal 2D surfaces, we do not need six degrees of freedom to
specify their position, but 3 variables, X, Y, θ, will suffice. These define the 2D position of an object’s
centeroid and its angular orientation, and need to be sensed for each object. These three variables
will also be suitable to define locations for the start and end of robot actions. In fact, this spatial
representation should include the height of objects (above the surface), i.e. a 2.5D space, but this is
covered by a sensor as described in section 7.3.

Another design issue is safety. The robot needs to be protected from collisions with (a) other
objects, and (b) with users. We do not address the full safety case for home-care robotics here but
we made provision for a sensor to detect the height of objects to avoid collisions when approaching
objects, and an emergency stop interrupt to prevent operation when users were too near the moving
parts.

Table 3 summarizes the basic task specification in general terms.

7.3 Hardware aspects

The next step is to select some potential sensors and other devices that may satisfy the task needs.
From the task description it is clear that vision sensing would be appropriate to determine the location,
color, and size or shape of objects. Also, the required physical actions to be performed on the objects
consists of acquisition and transport, to move the objects through space from one location to another.
We used existing laboratory equipment to make up a testbed assistive robot to achieve these goals.
All the hardware components were arranged to be coarse grained or of low precision. This is to test
design principle 1 and to ensure that our results properly reflect the benefits of intelligent software
compensating for the mechanical limitations of inexpensive (mass produced) hardware.

A Puma 500 manipulator arm was fitted with a two-fingered electrical gripper mounted via a flexibly
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Type Requirement Comments

Objects
color, Size, Shape,
Location(X,Y, θ)

}

All these must be sensed,
(and vision can sense them all)

Name Given by user
Actions Grasp object at (X1, Y1, θ1) Vertical approach to surfaces

Move to (X2, Y2, θ2) Assume free space above surfaces
Ungrasp Low snatch required

Conditions Avoid collisions — with objects: Height sensing
and people: User interrupt

Objects held fast during move Sense object in gripper

Table 3: Main task elements

compliant wrist. A small, cheap, color CCD camera was mounted between the two gripper fingers,
as can be seen in figure 1. In order to acquire objects the camera was arranged so that it viewed

Figure 1: The gripper and sensors used in experiments

downwards towards the target region approached by the fingers when the gripper was lowered onto a
table surface. Image analysis software then separated any small object in view from the background
and computed the object centroid and the principal and minor axis directions. The center of the two
fingers can then be aligned with the object centroid and rotated so that the finger axis is aligned
with the object’s minor axis. Because the camera focal point was coaxial with the gripper centre, this
simplifies the grasping process enormously: when the object is centred in the image it is also centred
in the gripper.

Also visible in figure 1 is a laser pointer which was used to determine the heights of objects above
the supporting surfaces. The laser shines a spot of red light, at an angle, down onto the table. The
position of the red spot in the camera image is related to the height at which it is reflected and this
parallax displacement can be easily measured by a simple calibration routine. This additional sensor,
which is necessary to detect large objects and obstructions, is thus created by gaining additional
functionality from the existing vision sensor. Figure 2 shows this principle of height sensing

Any particular sensors or actuators will have software implications, for example, using images to
measure object properties requires image processing software. We employed a commercial package
for this purpose, and the robot and gripper were controlled by their respective propriety controllers.
Other software demands are made by the task requirements and the design principles. These stipulate
that the system must be driven by the user’s requests, it must be adaptive in that it can recover from
errors and learn from experience.

A summary of the decisions regarding the sensory-motor aspects and the consequent control and
software requirements is shown in table 4.
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Figure 2: Object height measurement by laser pointer

Variable/Action Sensor/Actuator/Features Processing

color Vision color patch extraction
Shape Vision Extract axes, features and moments

Location Vision Extract centeroid and angle (X,Y, θ)
Name Given by user Database

Grasp object at (X1, Y1, θ1) 2-fingered gripper Vision aligned
Move to (X2, Y2, θ2) Manipulator arm Low accuracy: ±1mm

Ungrasp Electric gripper for low snatch Conventional controller
Avoid collisions Height sensor Vision via laser spot

User interrupt Simulated, by experimenter interrupt
Detect dropped objects Gripper sensor Simulated, by experimenter interrupt

Control Demand driven Depends on: user request, current
state, relevant experience

Error recovery (repeat actions) Requires experiential learning
User tolerance Allow variance in commands
Environmental tolerance Allow variation in objects
Extensions to new tasks Teaching by showing

Table 4: Proposed hardware and associated processing
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7.4 Control features

The effect of design principles 1 and 2 on the analysis is now seen in the simplicity of the hardware and
the demands made in the software requirements. Further analysis of the software identified several
separate areas of functionality, as follows: color processing, the integration of user and vision data
to locate target objects, the design of the main control architecture, the use of virtual movement
simulation in image space, and the means of action selection and error recovery. We now explain each
of these in turn.

7.4.1 color processing

Unfortunately, humans can only provide naive color names rather than precise color specifications, so
some form of conversion is needed to convert human perceived object color names into a color space
which robots can understand. Although a form of color histogram may be the most accurate way of
describing a color distribution, it is not practical to ask human users to input this kind of information
in real applications. A mapping between natural color names and a specific color space is therefore
needed. There are many possible color spaces, for example, RGB (Red, Green, Blue), HSV (Hue,
Saturation, Value), Munsell, YUV, etc. We selected the HSV color space since this space is nearly
perceptually uniform, i.e. the similarity of two colors is closely related to their proximity in the HSV
color space.

The image captured from our camera was coded in the RGB color space, so the first step was to
implement a conversion algorithm to map RGB into HSV. Next, we derived color names from the
ISCC-NBS color system [11] which uses a standard set of base hue names together with a set of hue
modifiers. Our implementation mapped the incoming color space into a large number of bins, each
of which were assigned a color name in the ISCC-NBS color system according to a nearest distance
criteria in the space. After creating the mapping relationship, this can then be used as a look-up table
to convert new data.

During object recognition, we use both the color names provided by users and their variants in the
ISCC-NBS color system. For example, if a user wants a green object, the system will search not only
green, but also light green, moderate green, deep green, vivid green, etc. Each image pixel is converted
and compared with the color bins of the target color and its variants to see whether this pixel belongs
to the target object. If the percentage of the number of pixels with the target color, or its variants,
in the overall number of object pixels is greater than a threshold, then this object is regarded as the
target object by the color checking process.

7.4.2 Integration of user and vision data to locate target objects

Vision can be a very powerful sensing modality, but often incurs high costs associated with high
bandwidth data and complex computations. In line with our design philosophy, we employed a low
performance sensor and must therefore allow for low quality in our visual data. Consider the typical
user request example “Fetch Red Pen”, where Pen is an arbitrary name, that may have been previously
assigned to an object or object class. Note that if the pen is already known to the system its location
is also likely to be known (recorded) and the robot can proceed immediately to retrieve the object.
However, if the object’s location is unknown then we require some search and recognition algorithms
to find it. Furthermore, if a red pen is unknown but other pens have been seen then the system can
use any existing shape descriptors for Pen together with the specified color to guide the search for
a matching object. Finally, if the word Pen is unknown then the system searches for items whose
color matches Red; the closest matching item is presented to the user, which, if accepted, allows the
name Pen to be associated and stored with the shape and location data. A simple database was used
to record the known data on objects with entries for <object name, color, shape features, location
coordinates>.
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In designing an appropriate visual object recognition system we examined various feature extrac-
tion methods. We rejected local salient point based methods in favor of global feature methods,
mainly because global features are more useful as general descriptors of new objects. We combined
simple object shape features with user color information to provide a fast and effective object recog-
nition scheme. The shape features used are, eccentricity, compactness and moment invariants. We
examined two image segmentation techniques, an edge-based method and a histogram-based method.
All segmentation methods have their own various advantages and disadvantages, and we found the
histogram-based method to be superior in its tolerance to lighting variation and this was used in all
our experiments.

A specific behavior module (section 7.4.3 describes behaviors) was developed to perform the data
acquisition and object recognition process described here. This method relates the shape information
derived from observation with the user’s declared color and name for an object. Consider the “Fetch
Red Pen” scenario again. The first time an object is seen the system will save its shape descriptors
in the database. If a color can be associated with the object then this will be saved too, as will
a user given name, e.g. “Pen”, if possible. Then in later searches for a given object, if the object
is known, the name, color and shape entries can be used to match and locate the desired item.
When the robot is asked to search for a target object, if the object’s position is known from previous
operations then this positional information is used directly to locate the target object, otherwise, a
search process is triggered. For each image taken at each camera position, objects are first separated
from the background, and then, for each object, its color information is checked to see whether this
object satisfies the color criteria of the target. In this way, user provided information is given a higher
priority than information obtained from the vision system. Thus, if there are no objects in the current
scene that match the features provided by the user, then other feature processing will be inhibited
and attention will move to other areas to search. Figure 3 illustrates this scheme.
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Figure 3: Part of the Search Object behavior

When searching for objects on a surface the robot coordinates need to be correlated with the image
coordinates. In the general case, this is a difficult issue because robot space is 3D and image space
is not only 2D but usually has perspective and other distortion effects. We simplified this problem
by noting that the camera is only used to take images vertically downwards onto the work surface.
This means we can map the 2D image space onto the 2D coordinates of the surface as known to the
robot. This was done by implementing an auto-calibration process which operated by tracking certain
points in the image and observing the changes produced by small movements of the camera (robot).
A coordination coefficient matrix is then produced from this data by a standard algorithm. This
process produces only an approximate image-robot mapping matrix but it has various advantages:
the method is simple, efficient and fast, and this allows it to be executed at any stage during a task.
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If the robot moves to a new surface or other non-local changes occur then the auto-calibration routine
can be quickly executed again to refresh the coordination mapping.

7.4.3 The behavior-based architecture

Reactive systems give some attractive advantages, including robustness and real-time performance. In
particular, the behavior-based approach [1] maps sensor information directly to actions and so avoids
the overheads and complexity concomitant with planning, world models and representations. But
pure behavior-based systems have inherent limitations that rule out learning and planning and so such
systems are usually not able to accomplish complex tasks, find it difficult to conduct tasks different
from those in-built, and can not assimilate data learned from experience. A different approach,
which we favor, is to embed representation into a behavior-based system, as in the method presented
by Matarić [15]. Our system builds on this successful approach for integrating representation into
behavior-based systems.

Rather than apply learning to the lower level of behaviors, i.e. perform modification of the condi-
tion/action relationships, we focus on a higher level, that of learning how to use existing behaviors.
The aim is to allow behaviors to be used in new ways, to reuse the knowledge inherent in one task in
other later tasks, and to allow tasks to be completed more efficiently by learning different action se-
quences. We provide behaviors with high level descriptions modeled in a preconditions-behavior-effects
form. This is to support reasoning about the results of behaviors without their actual execution, and
to facilitate the features described above. Figure 4 illustrates this structure. In addition to the basic
behavior module, which couples sensory inputs to action, information is held about the behavior’s
preconditions and expected results, its previous experience, and a pointer to an automatic error recov-
ery module. The error recovery module is triggered when the behavior has not achieved the expected
effects.

Trigger

Error recovery generation

Enable

Return states

situation trial success success rate

Precond1

Precond2

PrecondN

Effect2

Effect1

EffectN

Action Sensor

Figure 4: The structure of behaviors

Whenever a behavior is used or reused the experience embedded within it will be accessed and
updated according to the result of execution. Experience records are designed to be context related, so
the same behavior may have different experiences for different situations. This distributed embedding
of previous experience is a key feature for action selection and learning in our system. Table 5 shows
an example of some experience records used in our experiments. An experience entry has five elements:
the behavior name, the conditions under which the experience was gained, the number of times it has
been tried, the number of successes, S, and the success rates. In this example the conditions refer to
possible obstructions near an object about to be moved.

The method of computing success rates from the raw data needs careful design — simple suc-
cess/failure ratios will not suffice. We selected a tried and tested confidence interval estimation
algorithm from the literature [10] that produces a success rate measure, given a set of trials and their
successes. This method can give a behavior a high success rate either because it is known to be a good
behavior to take under the current situation or because very few trials have been executed under the
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behavior Constraint conditions Trials S S rate

Put Object
Clear 85 85 100%

Not clear 5 0 43.45%

Clear 0 0 100%
One-sided constraint 17 17 100%
Bilateral constraints 24 2 25.85%

Side Push Two-sided constraints
17 15 96.71%(not bilateral)

Three-sided constraints 13 1 33.31%
Four-sided constraints 0 0 100%

Table 5: Examples of experience records

context, (before any trials have been performed the success rate = 1). In this way, the system can rule
out actions with very low likelihood of success and try other behaviors. A parameter, α, affects how
many trials are needed before estimating whether a behavior is good or not in the current situation.
Intuitively, the smaller α is chosen, the more trials are needed to explore, since more experiences are
required to drive the success rate down. In the limit, when α → 0, the system becomes completely ex-
ploratory and all behaviors are treated as equally good. At the other extreme, when α → 1, the system
becomes completely exploitational, since the success rate approaches the raw empirical probability of
the behavior success. In our experiments, we chose α = 0.05.

We now list the behavior set used in the experiments. Some of the behaviors are basic behaviors,
while others are compound behaviors which encapsulate other basic behaviors and their dependencies.
Table 6 gives the name and index number of each behavior together with the preconditions and effects
used for higher level control.
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Index Name Preconditions Behavior Effects

0 Center Object Object is in
the current
image

Align center of object
with center of image

Object centered

1 Approach Object Object cen-
tered

Descend towards object
taking account of height
from laser

Object is between the
gripper fingers

2 Move Object Object in
gripper and
at free height

Move object to defined
location, error recovery
procedure triggered if
object leaves gripper

Object is above the
target location

3 Open Gripper Gripper is
closed

Open gripper Gripper is open and no
object in gripper

4 Close Gripper Gripper is
open

Close gripper Gripper is closed

5 To Free Height Not at free
height

Robot moves to the ta-
ble clearance height

Gripper at free height

6 Move To None Robot moves to a given
location

The gripper is at the
target location

7 Search Last At free
height

Search for similar object
in last used area

Object is in the current
image

8 Search Object At free
height

Search for object with
desired color and shape

Object is in the current
image

9 Lift Object Object in the
gripper

Lift the grasped object
to free height

Object at the free
height

10 Put Object Object in the
gripper

Place object at the tar-
get location

Object at the target lo-
cation

11 Grasp Object Object is
between the
fingers

Close the gripper fingers
to grasp an object

Object in the gripper

12 Side Push Object in the
gripper

Place object beside
other(s), put fingers
near one side and push
towards target location

Object at the target lo-
cation

13 Observe Pattern None Observe user’s object
pattern, extract and
store relevant informa-
tion

Example observed

14 Check Result Example ob-
served

Checks the effects
of Put Object and
Side Push for success

Obtain discrepancy be-
tween action result and
desired

15 Imitation Example ob-
served

Imitates the object pat-
tern shown by the user
or previously stored

Demonstrated exam-
ple is reproduced

Table 6: The Behaviors Repertoire
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Figure 5: Virtual movements find proximity constraints

7.4.4 Object constraints from virtual movement in image space

When the robot gripper is to approach an object it is important that there is enough clearance to avoid
collision with other nearby objects. We devised a method based on virtual movement in the image
space to extract data on any action constraints imposed by the proximity of nearby objects. Figure 5
illustrates this process. For each object to be moved, we shift the object, in image space, along its
principal short and long axes while keeping other objects fixed, and check whether this object collides
with other objects. The existence of a constraint is decided according to how many pixels are in the
overlay area of two objects after the virtual movement. Allowing for noise at the edges, a threshold is
used to judge whether a constraint really exists. Virtual movements in image space usefully identify
objects that may constrain a behavior and determine the direction in which the constraint operates.
This algorithm provides conditional data that is used in planning and selecting appropriate actions.

7.4.5 Action selection and error recovery

The method of action selection, illustrated in figure 6, is based on Maes’s activation spreading network
[12] modified by the inclusion of experiential data and a behavior “difficulty” factor. This module
generates an action by backtracking from the behavior whose effect is the goal to be achieved to a
behavior whose effects match the preconditions. Only one behavior is backtracked at each step, so we
can always find the nearest behavior to the goal. By avoiding planning and executing multiple actions
as a group, the system is able to handle failures or unexpected events that occur at any stage during
the execution process.

1: Find the behavior(s) whose effect is the goal,
and set activation level.

2: If the behavior’s preconditions are not met,
spread activation back to behaviors whose
effect(s) are the preconditions.

3: Multiply this activation level by the success
rate and the difficulty factor of the behavior.

4: Check if the current behaviors’ preconditions
are met, and the activation level is higher
than a threshold, if yes, go to step 5; if not,
go to step 2.

5: Return the behavior with the maximum
activation value.

Figure 6: The automatic action selection process

In order to incorporate both the history of the success of the behavior and choose a relative low
cost action, the spreading activation level is multiplied by the behavior’s success rate and its difficulty
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factor. Difficulty factors for each behavior are entered at design time according to knowledge of the
activities involved. For example, in our system, behavior Side Push and behavior Put Object have
the same preconditions and effects, but Side Push has a higher cost because it is more complex to
perform, see figure 7.

BA

B B

A
A AB

(a) (b) (c) (d)

Figure 7: Illustration of behavior Side Push

If one behavior’s success rate is low, then successor behaviors on the same activation path will only
get a small activation level, so the final action selected may be one on another path which is more
reliable. However, in that case, the robot may then need to perform more actions before achieving
the final goal than with the lower reliability path. Thus, action selection involves a tradeoff between
cost and reliability.

Behavior-based approaches have difficulty with complex error situations, i.e. those where a sequence
of several actions are needed for recovery. Such situations are often handled by the planning modules
in hybrid deliberative/reactive systems. By embedding error recovery strategies into each behavior,
our system generates appropriate recovery action only when required and as governed by current
circumstances. The experience gained in error recovery is also stored in relevant behaviors, and
thus future error recovery action selection is adjusted by this experience. For example, in executing
Move Object, the robot will stop immediately when the object is dropped from the gripper and
the error recovery module is triggered. If the dropped object is still in the center of the image, the
first error recovery action to be performed is to approach the object, using Approach Object; if the
object is in the image, but not centered, then the error recovery action will be Center Object; and
if the object is not in the current scene of the camera, then behavior Search Object will be selected.

8 Experiments and Results

8.1 Single object retrieval

The first experiment tests the basic object retrieval process using single items recognized and retrieved
by their color and shape. A range of objects were shown to the system in a designated search area, as
seen in figure 8.

We asked the robot to find an object by giving the command: “Fetch Pink Pencil”. The pencil
in the center-right of the image in figure 8 is pink. This experiment was implemented as the highest
level behavior Fetch Object (not listed) which passes the key words “Pink” and “Pencil” to behavior
Search Object which, if successful in locating a specific object, then calls a sequence of Move To,
Center Object, Approach Object, Grasp Object, and Move Object behaviors to deliver the
object to a designated user receiving location.

Although several pixels of other objects were also regarded as pink their number was very small
and only one object gave a good match (1134 pixels out of 1254, giving 90%). The color matching
candidates are then tested against any stored shape measures for “Pencil”. In the case illustrated the
shape match is 88% and the pink pencil is correctly identified and located. Notice that color has a
higher priority than shape so that failure to match color prevents any computational effort on shape
analysis. Over a series of trials, the success rates averaged 96% for complete retrieval of the selected
items.

The object database contains records with entries for <object name, color, shape features, location
coordinates>. If a name, e.g. “Pen”, has not been encountered before then, provided the selected
object is accepted by the user, a new record will be created containing the name value, color, shape

17



Figure 8: A range of objects in the search area

and location data. Thus, on future occasions the object may be retrieved directly by name. In this
way it is easy to teach the system new objects at any stage, even if other objects are visible in the
search area.

The system still functions usefully if some of the database records are incomplete because entries
are made whenever missing data are discovered. For example, if an object has a distinguishing color
then the user need not even mention a name; “Fetch Pink” will be sufficient to select the object
dominant in that color. The shape and location parameters will be computed and entered, and the
user can be asked to supply a name. Alternatively, shape features can also be used to select objects
by commands like “Fetch Pencil” if the name has already been used. A shape matching threshold is
needed (we found that our pencils matched a pen model with a similarity comparison of 70%) and if
several candidates are produced then color can be used to select further.

Our system uses a mixture of user provided information, names and colors, with extracted visual
properties, color, shape, location. We have seen that color should have a high priority in object descrip-
tion, because (a) this can reduce the computational costs involved in object search and recognition,
(b) it is simple and natural for users, and (c) it is a relatively robust measure.

8.2 Error recovery

In the second set of experiments, we tested the ability of the system to automatically recover from
errors using existing behaviors and demonstrate how learned experience can influence the activation
spreading mechanism to adjust the error recovery process.

All the following experiments used a common framework in which users communicate with the robot
by showing examples of desired objects or locations. This framework subsumes the “Fetch Red Pen”
task and shows how error recovery was performed in such tasks. It also extends the scope to include
problems with local proximity of objects and spatial patterns of object configurations.

The test scenario is as follows. The workspace had three general work areas which were made
known to the robot: a search area where a range of objects might be found, a demonstration area
where arrangements of objects were created by the user and then observed by the robot, and an
imitation area where the robot was to reproduce the arrangements seen in the demonstration area.
To begin, a user arranges a pattern of colored objects in the demonstration area and then the robot
moves to this area to observe the pattern. Data is extracted on object shape and color, spatial relations
between objects in terms of their relative positions and orientations (using their centroids), and also
any constraints on physical proximity as described in section 7.4.4. The robot then moves to the search
area to find matching objects of appropriate shape and color. A suitable object is then grasped, moved
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to the imitation area and placed according to the pattern seen during the observation phase. Finally,
the created pattern is checked to see if all the objects have been copied; if not then further objects
are found and placed.

On one table, a human showed the robot a two object pattern as seen in the left corner of figure 9(a),
(green object A and red object B). After observing, extracting and analyzing information, the robot
imitated the pattern on a second table as seen in figure 9. During the imitation process, the robot first
searched on table 1 for a target object with the same color and shape as the object in the demonstrated
pattern (object C ), then grasped it and moved it towards the other table. During transport, the object
dropped from the robot gripper when the gripper was either above one of the tables or between the
two tables and an automatic error recovery process was triggered.

(a) Initial state (b) Re-grasp the dropped object

(c) Final state

Figure 9: Automatic error recovery action generation

Without any relevant experience, the robot searched the area where the loss had occurred and
could not successfully re-grasp the dropped object either because it could not find it or it could not
approach it for grasping. During the next phase of the error recovery process, behavior Search Last

was automatically selected by the activation spreading module, and used to search for a similar object
from the place where the robot had acquired the object. The robot found and grasped another red
object and then moved this, object E, to the target location. While the robot was moving, it dropped

19



the object again, but this time above table 1 rather than between the two tables. The robot searched
again, and retrieved the dropped object — figure 9(b) shows the moment of retrieving object E. This
was successfully grasped and placed on table 2 and then, finally, actions were selected automatically
for the second object, which was not dropped from the gripper. Figure 9(c) shows the final result with
the robot’s constructed pattern on table 2 being similar to the shown example on table 1.

We see that action selection is not only related to the goal to be achieved, but also depends upon
the current situations and the available experience. To be selected, a behavior must both have its
preconditions satisfied, and have the highest activation level due to its combination of previous success
and relative difficulty or cost.

8.3 Experience learning and reuse

Some further experiments explored how behaviors may reuse experience gleaned from previous tasks.
There are two behaviors that can be used to place an object, Put Object and Side Push, which
both have the same preconditions and effects. However, in the absence of any experience Put Object

will be preferred as it has been given a better difficulty rating. Given enough free space, the robot will
successfully place objects using Put Object. But if a collision occurs while using Put Object then
an error is raised and triggers the automatic error recovery procedure, which then selects the behaviors
Lift Object, Move Object and Side Push to recover from the error state. After the collision, the
activation level of Put Object changes to be lower than that of Side Push, which is then selected
for the error recovery second attempt. We note that Move Object was selected because one of the
preconditions of Side Push is that the object is above the target location, this automatically chosen
action ensures that the object is in the correct position before the placement.

The trials immediately following showed the benefits of this learning: when a second object is
in close proximity to the first placed object, the activation spreading module selects the Side Push

behavior directly instead of trying to repeat the same error as in the first trial. Note that the difficulty
factors for competing behaviors, such as Side Push and Put Object, influence how many times the
system will try one before choosing the other.

Further experiments explored the reuse of experience to determine action sequencing. In single
object retrieval there will often be plenty of clear space available, but in general the sequence in which
a series of objects are placed may affect the overall success rate. These experiments investigate how
experience can be used to select the best sequence for imitating a task. For full details of all the
experiments described here see [17].

9 Discussion

Our work has integrated a number of techniques into a system that directly addresses a specific user
task scenario. The reasons for our selection of particular software methods and techniques should now
be clear — they emerge as a consequence of the requirements, which in turn, are grounded in the
premises and design principles which we argue are important for assistive devices for the elderly. We
have demonstrated how task analysis has led to an experimental system with a wide range of features.
Perhaps the most notable aspects of the system are that it integrates a number of functions to achieve
flexibility, and it uses learning technology to gradually learn from errors and experience and then reuse
its experience later in other tasks.

A behavior-based architecture is ideally suited for demand-driven autonomous systems that must
respond to the needs of the environment as and when required. Fixed sequence programming is not
possible in these situations and deliberative planning has limited scope. Our approach provides support
for reasoning about actions while retaining the reactivity of a behavior-based system, but without the
sharp separation of function which often causes awkward problems for hybrid architectures. A key
feature of our architecture is its distributed, context-based design which supports the reuse of behaviors
and their exploitation in new tasks. Being embedded into the behaviors, experiential data becomes
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related to the actions/goals of the behavior and the prevailing context. Simple planning can also be
performed using the representations contained within behaviors.

The learning aspects of our system reside in the adaptation facilities, provided mainly through the
activation spreading mechanism. This underpins action selection, using cost and success factors, which
also drives both error recovery and the capture of experiential data. Action selection is automatic and
changes with experience and the properties of the behaviors available.

We have resused existing techniques wherever possible but these have often been modified as required
by the task demands. Apart from the integration aspects, the novel features of our system include:
prediction through virtual movement in image space; the use of fast, on-demand, self-calibration of
various system components; the adoption of human-centered values, namely color and shape; and the
use of similarity measures in imitation and teaching by examples.

Many low accuracy or coarse-grained components were used to illustrate how hardware costs could
be reduced and also demonstrate how software techniques can provide compensation. This showed
how quality, in terms of flexibility and reliability, can be achieved at the system level even with lower
quality, low-cost components.

9.1 Vision

We believe vision is such a powerful modality that it can be used to solve many communication
problems. Other modalities are being actively investigated for use by the elderly, e.g. voice, hand
gestures, touch controls etc, but the visual channel is particularly rich for developing new user-robot
interaction and communication techniques. For example, if an image of a work area is shown to a user
on a touch-screen then an object can be named/confirmed/selected by a simple indication, without
any use of commands or textual processing. We have shown how low-quality image processing is
quite sufficient to extract enough data and can be developed to provide a valuable communication
channel. Careful selection and utilization of low bandwidth visual data may have great value if properly
integrated into assistive devices.

Another role for vision is in “showing” new tasks or objects to a system - this can be particularly
appropriate when configuring, by a user or carer, for individual circumstances. We have previously used
such teaching methods successfully in other applications with restricted user input [29]. By highlighting
the differences between the desired and the actual results, a learning system can successively correct
its errors until the desired result is achieved.

9.2 Managing complexity

If we now review the design decisions that were made for the case-study we see how the approach
has tended to reduce or control the complexity inherent in the application task. Table 7 lists some of
these decisions and their consequences.

Feature Comments Software implications

Camera-in-Gripper Reduces coordination
complexity

Simplifies grasping cycle — no
sense-then-act sequence

Laser spot projection Saves using extra sensor Via extra software functionality
Auto-correlate image/robot space Rapid, anytime facility Fast software procedure

Experience gathering Enhances performance,
reuse and recovery

Requires cumulative learning

Virtual movement testing Prevents collisions, im-
proves planning

Via image processing

behavior architecture Robust, demand/goal
driven

Additions for error recovery and
learning

Table 7: The role of software and other methods in reducing complexity

21



Some apparently simple choices can have significant implications. For example, the location of a
camera is likely to influence the difficulty of the required image processing, as corrections for perspec-
tive, distortion, registration etc may be required. But by using the camera-in-hand technique much
of this is eliminated as the two spatial frames of reference (camera and robot) are permanently fixed
and aligned.

The use of simple and well-tried sensors and other equipment is also beneficial and many perfor-
mance improvements can be made in software. The trade-off between hardware and software must
be decided for individual situations but modern software can be made very powerful, very reliable,
and cheap to reproduce. Software can also offer extensive functionality. Thus, when a choice exists
between mechanical or software design, the latter now offers a real alternative and deserves serious
consideration.

We believe this complexity reduction is one of the main benefits of our approach and will become
increasingly important in the design of assistive systems. Many alternative choices could be made
in our case-study but the main principles and resultant outputs would still cover the significant task
requirements. For example, our grasping technique for acquiring objects is very simple and we could
have implemented one of the many complex grasping methods on offer [25]. However, all such meth-
ods are prone to fail occasionally (with widely varying personal objects) and so the requirements
dictate that computational effort is better spent on error treatment. Thus, there will be many such
(technological) variations but these must be driven by the human requirements, not the other way
round.

10 Conclusions

This study has argued that conventional robot technology will not be sufficient for new assistive
robotic applications unless user acceptability is given top design priority. This is different from the
usual objective models of requirements seen in, for example, industrial robotics, because human roles
or functions are not replaced by assistive devices but are enhanced or supplemented. Assistive robots
will work in close cooperation with their human users and care givers. This means new design factors
such as user preferences and subjective perceptions, in short empathy, must be considered as important
and highly influential.

Many new social models of acceptability in assistive technology are now being developed [16] and
these examine the interactions between user’s physical and mental capacities and their environments.
The aim of such models is to improve and understand acceptability by matching subjective felt needs
to more objective qualities such as efficiency, reliability, simplicity, safety, and cost. These are exactly
the attributes that have been raised through our needs analysis.

Clearly, our laboratory testbed does not constitute a full prototype for an assistive device — but
that was not its purpose. The experiments demonstrate how the design objectives may be realized in
functioning systems that satisfy key criteria, and show the way forward. It should be noted that the
behavioral library can be expanded to cater for other tasks and the design will scale up easily as the
behaviors are designed for particular actions and contexts. Two main aspects of the implementation
are the combination and integration of a range of existing techniques, which did not involve any new
technology although several novel modifications were produced; and the use of an architecture that
provided the right level of complexity to support the integration in an extensible and flexible substrate.
Any future continuation of robotic reaching aids will need to examine further issues including dynamic
performance, effect on social dynamics, psychosocial issues, trials with user groups, and full economic
assessments.

Autonomous systems, by definition, must have their own goals, but we view the user as the focus
of those goals — that is, the user can set, modify and alter the system’s goals at the top level. Taking
this mixed approach leads to systems that should prove more acceptable to frail or impaired users
without compromising on functionality. We have seen that learning is crucial for such robots because
they must adapt to different tasks and environments. Consequently, learning technology and other
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Artificial Intelligence methods are likely to have a major role to play in the future of assistive robotics.
In response to the impending need, we see that assistive robotics offers real promise of new devices

that will support and increase the independence of frail elderly people living at home.
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