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A language for functional interpretation of model based simulation

Jonathan Bell a Neal Snooke a,∗ Chris Price a

aDepartment of Computer Science, University of Wales Aberystwyth, Penglais, Aberystwyth, Ceredigion, SY23 3DB, U. K.

Abstract

Functional modelling has been in use for a number of years for the interpretation of the results of model based
simulation of engineered systems. Its use enables the automatic generation of a textual design analysis report that
interprets the results of qualitative (or numerical) simulation in terms of the system’s purpose. We present a novel
functional description language that increases the expressiveness of this approach, increasing the range both of
systems and design analysis tasks for which the approach can be used. The language also allows closer integration
of functional modelling into the design process. The language allows a device function to be decomposed either in
terms of subsidiary functions or required effects. We discuss the use of such alternative decompositions and propose
a logic of functional description that is used to underpin the proposed language. The language has been used in the
interpretation of electro-mechanical, hydraulic and fluid transfer systems in the automotive and aerospace industries
to support tasks Failure Modes and Effects Analysis, Sneak Circuit Analysis, and Diagnosis. The language is not
inherently restricted to these applications and the paper makes use of indicative examples from other domains.

Key words: Functional reasoning, Automated design analysis, FMEA, Model based simulation.

1. Introduction

The automation of the design analysis of engi-
neered systems requires both the ability to simulate
the behaviour of the system, and also the ability
to interpret the results of the simulation. The au-
tomation of design analysis tasks at the focus of this
work employs a functional model to provide inter-
pretation. Examples of typical tasks include Failure
Modes and Effects Analysis (FMEA), Sneak Circuit
Analysis (SCA), simulation explanation, Fault Tree
Analysis(FTA), and diagnosis.

While simulation of an engineered system reduces
the work of building actual prototypes of the sys-
tem, the interpretation of the results of the simula-
tion remains a labour intensive process. Where the
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interpretation can also be automated, the resulting
design analysis report can be generated automati-
cally for several design analysis techniques. Design
analysis tasks can also be undertaken early in the
design lifecycle and it is feasible to repeat analysis as
necessary in response to changes in the system’s de-
sign. The consistent interpretation of results make it
easy to automatically compare these results allow-
ing engineers to focus on the significant impacts of
design changes. A design analysis report will often
be couched in terms of the achievement or otherwise
of a system’s intended purpose(s) together with the
consequences of it failing.

This paper proposes a functional description of
a system, where a system’s function is viewed as a
relationship between its behaviour and its purpose.
A Functional Interpretation Language (FIL), is pre-
sented to support the description of device func-
tion. The FIL increases the expressive power of the
functional labeling approach [1] by allowing partial
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achievement of a system’s purpose to be described.
Functional modelling [2,3] has been in use for a

number of years, both for deriving the behaviour of
a system from knowledge of its structure and com-
ponent function, and also for interpreting system
behaviour. System behaviour is typically derived by
simulation from the system’s structure, component
behaviour and domain rules. For example, an electri-
cal circuit component list and connection diagram,
may be combined with component behaviour mod-
els and the laws of circuit analysis to predict overall
circuit behaviour.

The automation of design analysis is particularly
valuable in the case of FMEA [4,5], in which the ef-
fects of component failures on the behaviour of the
whole system are traced. As a wide variety of failures
are included in the FMEA, this is an extremely la-
borious process. This, combined with the fact that it
requires an engineer’s knowledge, means that FMEA
is an excellent candidate for automation. Automa-
tion of FMEA through model based analysis has
been demonstrated in a commercial design tool [6]
and Automated Sneak Circuit Analysis (SCA) is de-
scribed in [7]. These analyses differ in that FMEA is
a failure analysis, and can be carried out by compar-
ing the behaviour of the system when it is working
correctly with that when there is a component fail-
ure, whereas SCA is a form of design verification in
which the basis of the comparison is some represen-
tation of the relations between the intended inputs
and outputs of the system with which the results of
the simulation can be compared.

A pragmatic approach to the interpretation of be-
haviour for the above tasks is undertaken by at-
taching functional labels to significant system be-
haviours [1]. These labels identify which outputs (or
goal states) of a system are required for it to fulfil
some intended purpose. The system behaviour is as-
sumed to be derived from a connected-component
simulation environment where the component be-
haviour is considered to be reusable within the as-
sumptions of the simulation system and is inde-
pendent of its function within the system. No be-
havioural causality is specified or required by the
functional model, allowing it to concentrate on inter-
preting the achievement of purpose without regard
to the identification of causal propagation that can
be problematic, for example in electrical analysis.
This allows a wide range of simulators to be used to
generate system input-output behaviour and these
may or may not be based on causal propagation [8].

The approach was successfully used for several

commercially deployed tools exploiting the advan-
tages that the modelling is easy for users (engineers)
to understand, and the models allow simulation re-
sults to be automatically processed at a high level
of abstraction. The widespread use of software in
the latest generation of many systems has has al-
lowed a rapid increase in functional complexity and
the Functional Interpretation Language presented
in this work supports these developments in several
ways:
– to allow the functional descriptions to capture

more complex functional relationships than the
functional decompositions in [9] and [1]

– to enable the functional modelling of systems with
complex effects

– to extend functional labeling to assist in the au-
tomation of additional design tasks, such as de-
sign verification

– to provide a formal description of the functional
labeling approach which will make the approach
useful for other functional reasoning tasks

The following section discusses the background to
the work and introduces approaches to and uses of
functional modelling. Section 3 presents a definition
of function intended to increase the expressiveness of
functional labeling and support the hierarchical de-
scriptions presented in section 4. Section 5 presents
some examples of the FIL in use.

2. Earlier uses and definitions of function for
modelling

There is a good deal of agreement that there are
four classes of knowledge that have a rôle in model
based reasoning, as suggested in [10]. These four
classes of knowledge are:
Structural Concerned with what components

make up the system and the connections between
them.

Behavioural Concerned with how the components
and system behave.

Functional Concerned with why a component is
in the system and explains what the components
and system do.

Teleological Describes the purpose assigned to a
system by its designer or users, and provides ex-
planation of why a component is in the system

In the context of these classes of knowledge, func-
tion is a relational concept, relating the behaviour of
a device to its purpose. According to [10] there are
two approaches to describing it, leading to two def-
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initions. The so-called purposive definition relates
behaviour to purpose while the operational defini-
tion relates input to output. This work is focused on
a purposive approach to function, as the aim is to
express a system’s behaviour in terms of its purpose.

Function is often viewed as less local to a device
than its behaviour [11], defining function in terms
of a device’s response to an external stimulus. An
alternative is the definition of function in [12,13] as
the effect of a system or device on its environment
distinguishing it from a device centred view of func-
tion:

Function: Let G be a formula defined over prop-
erties of interest in an environment E. Let us con-
sider the environment plus an object O. If O (by
virtue of certain of its properties) causes G to be
true in E we say that O performs, has or achieves
the function (or rôle) G.

The purposive approach to function contrasts with
the operational approach which relates function
more closely to behaviour. In the Compositional
Modeling Language [14], function is device centred
and is used to describe an aspect of behavioural
simulation rather than expressing purpose of the
system.

While there is no definition of function in the
earlier approach to functional labeling [1], the ap-
proach follows [11], being concerned with a system’s
response to a stimulus. In [1] a function is associ-
ated with the outputs of the system, so the function
“stop lights on” is associated with the system state
in which both of a car’s stop lights are lit. There is no
explicit representation of the stimulus of a function,
because the application was FMEA and the stimu-
lus can be derived from the simulation of the cor-
rectly working system. In the case of the car lights
the simulation will show that when the brake pedal
is pressed, the stop lights will light. This is accept-
able where a function is triggered purely by an ex-
ternal stimulus (such as a switch being thrown) but
less so if a function depends on the achievement or
otherwise of some other function. Some representa-
tion of the triggering stimulus is also required for
design verification, where the simulated behaviour
of the system is compared to some representation of
its intended behaviour. An alternative definition of
function is proposed in [15]:

An object O has a function F if there is an agent
who can use O under some circumstances in some
specific manner to achieve a goal.

This definition does not capture any idea of inten-
tion, so a user might misuse a chisel, say, by using

it to lever open a paint can; a potentially damaging
use and clearly not a purpose of a chisel. This model
of the design process as functional refinement of a
system follows [16].

Other researchers have sought to use knowledge
of the function of components in a system to derive
the overall behaviour of the system, as an alterna-
tive to qualitative reasoning. For example, [17] mod-
els a system in terms of its components’ functional
rôles, which contribute to the functional processes
of the system and demonstrates the use of this ap-
proach for FMEA. These functional reasoning ap-
proaches have also been used to support diagnosis,
[18], and have in common the idea that a system’s
function is expressed in terms of component func-
tions that are related primarily by connections be-
tween the components, so capturing knowledge of
the system structure. Similar models are also used
for design synthesis tasks, such as conceptual design
decomposition, embodiment design, parameter se-
lection, and function identification from form. The
use of function models for these tasks is particularly
prevalent for mechanical systems where form and
function are closely related. The FIL is not aimed at
these tasks, however it is consistent with many of the
requirements for these tasks [19]. The use of func-
tion models for synthesis also requires that a com-
mon library of function primitives is defined. The
interpretative nature of function makes this prob-
lematic, as demonstrated by the fact that a number
of function taxonomies have been proposed for dif-
ferent domains. For example several grammars (de-
scribed in [19]) are available to describe mechanical
systems functionality (including lathe, truss, vehi-
cle, gear). Others have proposed generic functions
based on energy flows [20,17] for example “conduit”,
“generator”. These low level functions do not as-
sist in explaining the purpose at the system level or
the consequences of failures, which is the aim of this
work. The functional model presented in this paper
is hierarchical however, and therefore for a specific
domain a library of such functions could form the
lowest levels of a functional model, and indeed this
would be necessary if the functional model is to be
used for design synthesis tasks.

3. A logical approach to describing function

The definition of function that underlies the func-
tional language presented here might be given infor-
mally as “how a device achieves its purpose”. This
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definition has the advantage of being distinct from
both the notion of behaviour and of purpose (tele-
ology). A more formal definition is

Function: An object O has a function F if it
achieves an intended goal by virtue of some ex-
ternal trigger T resulting in the achievement of
an external effect E.

This leads to the idea that a representation of a de-
vice function must have three elements; a represen-
tation of the purpose the function is to fulfill, the
trigger and the effect associated with the function.
The automobile stop light function mentioned ear-
lier might informally be described as “The stop light
function achieves the purpose of warning following
traffic that the vehicle is slowing down when press-
ing the brake pedal triggers the lighting of the left
and right stop lights”.

In a text based version of a FIL model, the key-
word TRIGGERS is used to relate a trigger with the
expected effect and the keyword ACHIEVES to relate
function to purpose.

FUNCTION stop_light

ACHIEVES warn_following_driver

BY

depress_brake_pedal TRIGGERS red_stop_lamps_lit

A simple functional model of the function above
uses the labels “depress brake pedal” and “red stop
lamps lit” to act as hooks for linking to appropri-
ate properties of the system’s behaviour. In the case
of an electrical simulation this would be the states
of the pedal activated switch and the lamp respec-
tively. The trigger and effect expression pair is sub-
sequently called a recognizer for the function. They
can be attached to the appropriate components in
the system’s structural model, following [1]. The la-
bels themselves should describe the boundary of the
system, for example the brake pedal above. The be-
haviour and simulation domain of interest may be
restricted, and the behaviour recogniser can be used
to ignore irrelevant aspects (such as the pedal lever
mechanism during an electrical analysis) by attach-
ing the trigger to the pedal switch position. Should
a mechanical simulation be provided then the pedal
position could be identified within the recognizer
“depress brake pedal” to provide a more direct trig-
ger that allows mechanical effects to be interpreted.
The symbol “warn following driver” is a separate
teleological model including a description of the pur-
pose and the consequences of failure to fulfil the
purpose, and may include measures of the severity
and detectability of the function failure required for

FMEA reporting. The effect recognizer similarly re-
quires a boolean result derived from one or more
outputs of the system.

The representation of the trigger and effect sug-
gest that there are two ways the function can fail.
Either the trigger can fail to result in the intended
effect (the stop lights fail to light) or the effect is
present without the trigger (the stop lights stay on
when the pedal is not pressed). The trigger and effect
are taken to be Boolean pre- and post-conditions for
the function that are mapped to corresponding ele-
ments of the system’s behavioural model, typically
states of the input components and the effectors.

This modelling of the trigger and effect leads to a
function having four possible states that we term in-
operative, failed, unexpected and achieved. Where
f is some device function they can be written as
follows; inoperative as In(f), failed as Fa(f), unex-
pected as Un(f) and achieved as Ac(f). These possi-
ble states of a device function f are defined in terms
of the truth of function’s trigger t and effect e:

In(f) ⇔ ¬t ∧ ¬e (1)

Fa(f) ⇔ t ∧ ¬e (2)

Un(f) ⇔ ¬t ∧ e (3)

Ac(f) ⇔ t ∧ e (4)

In addition to these states we have two additional
states, termed triggered Tr(f) and effective Ef(f).
These states depend on the truth of the trigger or
effect respectively.

Tr(f) ⇔ t ⇔ t ∧ (e ∨ ¬e) (5)

Ef(f) ⇔ e ⇔ e ∧ (t ∨ ¬t) (6)

This allows the state of a function to be defined in
terms of whether or not it is triggered and effective.

In(f) ⇔ ¬Tr(f) ∧ ¬Ef(f) (7)

Fa(f) ⇔ Tr(f) ∧ ¬Ef(f) (8)

Un(f) ⇔ ¬Tr(f) ∧ Ef(f) (9)

Ac(f) ⇔ Tr(f) ∧ Ef(f) (10)

This formulation of the definition of the states of
a device function is useful in considering functional
decomposition in Section 4, and is equivalent to rules
1 to 4 above.

For the two cases where the truth values for trig-
ger and effect differ, the system behaviour is incon-
sistent with the intended functionality. For the gen-
eration of a design analysis report, it is necessary to
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differentiate between these two cases because of the
different consequences of these two classes of fail-
ure. For example if a “torch lit” function fails (the
lamp does not light) then the user is not helped to
see, while if the effect is achieved unexpectedly (the
lamp stays on) then the battery is drained. If a func-
tion’s effect is true while the trigger is false, then
the function itself is not achieved, strictly speaking,
as it depends on both the trigger and effect. This
is consistent with the consequences of unexpected
achievement of a function’s effects not relating to the
function’s purpose, as in the torch example above.
The FIL model for the torch is therefore:

FUNCTION torch_lit

ACHIEVES cast_light

BY

switch_on TRIGGERS lamp_on

PURPOSE cast_light

DESCRIPTION "help user to see in the dark"

FAILURE CONSEQUENCE "user can’t find way in dark"

The FAILURE CONSEQUENCE provides the de-
scription of the consequences of the failure to fulfil
the purpose of the function. The description of
purpose is best not included in the functional de-
scription itself, but is instead a separate model
consisting of a description of the purpose and the
consequences of failure to fulfil the purpose when an
associated function fails. Separating purpose from
function is consistent with the idea that a descrip-
tion of function is concerned with how a purpose is
fulfilled, and aids model reuse because the same de-
scription of purpose is common to several possible
functional models. For example, the purpose of stop
lights is common to any road vehicle, but the de-
scription of functions that achieve this purpose will
differ according to the type of vehicle; a car’s stop
light function will be different from a motorbike’s.

In addition to the consequences of failure, a de-
scription of purpose may include a similar descrip-
tion of the consequences of the effects being unex-
pected. UNEXPECTED CONSEQUENCES may there-
fore be included as in the following example to de-
scribe the function’s effect being true despite the
trigger being false.

PURPOSE warn_following_driver

DESCRIPTION "warn other drivers - vehicle is slowing"

FAILURE CONSEQUENCE "danger of rear end shunt"

UNEXPECTED CONSEQUENCE "no slowing signal possible"

As an example of how this model is used, suppose
a failure analysis of the torch is run with a wire bro-
ken, so the circuit is never completed. Following sim-
ulation, the resulting report will contain an entry:

When torch was in state switch on, the func-
tion torch lit failed because the expected effect
lamp on was absent. Consequences are user can’t
find way in dark.

This text can be generated from the functional
model above with the addition of simple linking
phrases. In practice, design analysis reports have
a tabular structure that simplifies the automatic
generation of the text.

The reporting of function states requires a num-
ber of rules and these are described in the remainder
of this section. Additional rules are required where
functional decomposition is used, and these are de-
scribed in section 4. In writing the rules for report-
ing of states of function, we use R(f) to report of the
state of function f . This function is associated with
consequences of failure cf and an effect e. The rule
for including the function in the report is written:

R(f) if Fa(f) ∨Un(f) (11)

That is, the report will include a reference to the
function if it has failed or is unexpected. If the func-
tion has failed, the report will also include the con-
sequences of the failure.

R(cf ) if Fa(f) (12)

Where a device function f is unexpected, the rule
for reporting the unexpected consequences uf , if
present, is

R(uf ) if Un(f) and if (f includes uf ) (13)

As the trigger and effect resolve to true or false
they can be arbitrarily complex Boolean expres-
sions, allowing partial triggers and effects to be com-
bined using Boolean operators. The car’s stop light,
for example, requires both the left and right hand
lamps to light for the effect to be true. A refined
functional model for the stop lights might look like:

FUNCTION stop_lights

ACHIEVES warn_following_driver

BY

depress_brake_pedal

TRIGGERS

left_stop_lamp_lit AND right_stop_lamp_lit

The choice between decomposition of a function into
the required combinations of triggers and effects as
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in this example, or subsidiary functions is discussed
in the next section.

The design analysis report will also contain a ref-
erence to the effect whose absence (or unexpected
presence) led to the function being failed (or unex-
pected). This is significant when a function’s effect
expression consists of several individual effects, en,
each of which could be included in the report:

R(e) if (Tr(f) ∧ ¬en) ∨ (¬Tr(f) ∧ en) (14)

This rule takes an effect to be some element of
the function’s effect expression. For the stop lights
example in the situation where a failure causes no
current to flow through the left lamp will clearly
cause the “stop lights” function to fail, and the
above rule provides an explanation that effect
“left stop lamp lit” was absent.

Notice that this rule has no reference to the state
of any associated function, so the report will include
a reference to the inconsistent behaviour of the ef-
fect, even if this does not amount to failure of a func-
tion. For example, suppose a function f has a trig-
ger t and an effect a ∨ b. If some fault causes, say, a
to fail, the report will say “When t, expected effect
a was absent”. This does not amount to failure of
the function, provided effect b does not fail, as the
presence of b in the disjunction is sufficient to en-
sure Ef(f). For the stop lamp example, a short cir-
cuit causing one brake lamp to light, may make the
function inactive (trigger and effect false) but the re-
port mentions that the effect left stop lamp lit was
present (Rule 14), i.e.

Effect left stop lamp lit present although associ-
ated function warn following driver is inactive.

Here, although not necessary, the inactive function
associated with the effect is also reported:

R(f) if (¬Tr(f) ∧ en) ∧ In(f) (15)

Of course, if both lamps are lit due to a fault, Ef(f)
is true so the function state is Un(f). The report
includes “no slowing signal possible” (Rule 13), and
a description of the consequences of unexpected
achievement of the function:

When depress brake pedal trigger not present,
function warn following driver achieved unex-
pectedly. Consequences are that no slowing signal
is possible.

Consequences do not always relate to the purpose of
the system. For example, the significant consequence
of the torch lamp staying lit is the draining of the
battery, it has little to do with lighting the dark and

so it would be inappropriate to add “UNEXPECTED

CONSEQUENCE battery drained” to the “cast light”
purpose of the torch. Therefore we attach a descrip-
tion of the consequences of each effect being achieved
unexpectedly to that effect. The following describes
the effect for the torch example and links effects to
the behaviour of specific structural elements such as
the current flow in the “lamp” component identified
in the structure (schematic). In this case a qualita-
tive electrical simulation behaviour is used resulting
in “ACTIVE” as a valid value of the current flow in
the lamp. The behaviour is qualified with the func-
tion name, allowing several effect descriptions in a
single file to link all effects (and triggers) to the phys-
ical system components.

lamp.filament.i = ACTIVE

IMPLEMENTS torch_lit.lamp_on

UNEXPECTED CONSEQUENCE "battery drained"

This allows the design analysis report to include the
consequences of an effect, even where that effect’s
presence does not amount to unexpectedly achieving
any function.

If Un(f) does occur and the function has no unex-
pected consequences included, we can still include
consequences of the unexpected effect ue. The rule
for reporting unexpected consequences of effects
R(ue) is:

R(u e) if ¬Un(f) ∨ ¬(f includes u f) (16)

A trigger for a device function is represented using
the IMPLEMENTS keyword in the same way as an ef-
fect. Triggers will typically be a representation of the
user’s intentions for the system, expressed in terms
of the state of those components that allow the user,
whether a human operator or a larger, surrounding
system, to interact with the system. Switch posi-
tions are a typical example. In most cases, the input
of energy to the system is not part of the trigger, as
its source might either be treated as part of the sys-
tem – such as a battery – or beyond the scope of the
system’s design analysis, as would be the case for a
mains electrical appliance. In this case, the public
electricity supply can be regarded as a separate en-
tity and taken for granted unless there are specific
safety issues arising from failure of the supply, in
which case it is best modelled as part of the system,
rather than a triggering interface to the system.
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4. Decomposition of function

In all but the simplest of cases, a device func-
tion will depend for its achievement on more than
one trigger and effect. There are also cases where a
function is better considered in terms of subsidiary
functions, each with their own purpose, trigger and
effect, beside being a necessary part of the top level
function. One simple example of this is a cooking
hob with several rings, where each ring has its own
control knob, output of heat for cooking, and has
the purpose to allow cooking. In addition, the (iden-
tical) functions of the rings also contribute to a top
level “cook on hob” function – using logical OR – so
that the correct working of any one ring allows some
use of the hob. For a two ring cooker, the subsidiary
functions “cook on left” and “cook on right” take
the place of the recogniser in the top level function.

FUNCTION cook_on_hob

ACHIEVES cook_food

BY cook_on_left OR cook on_right

FUNCTION cook_on_left

ACHIEVES cook_on_ring

BY switch_on_left TRIGGERS heat_left_ring

PURPOSE cook_food

DESCRIPTION allow preparation of cooked food

FAILURE CONSEQUENCE hob cannot be used for cooking

PURPOSE cook_on_ring

DESCRIPTION use burner for cooking

FAILURE_CONSEQUENCE burner cannot be used for

cooking, limits cooking

This captures the idea that a failure of some compo-
nent affecting all the rings, such as a wire connecting
all the knobs to the power supply going open cir-
cuit, is more serious than one that only affects one
ring, such as failure of a wire connecting a ring with
its knob. It is worth noting that subsidiary func-
tions must have a distinct purpose. Decomposing the
stop lamps into “FUNCTION left stop light” would
be inappropriate, since this function has no distinct
purpose in the system, and is merely an effect that
forms part of the real function described earlier. In
general, subsidiary functions may be combined us-
ing the Boolean operators AND, OR and XOR.

One consequence of decomposing functions is that
it becomes necessary to express the four states of
achievement of the top level function in terms of
the four possible states of the children. Where some
function f is composed of two subsidiary functions

a and b related using an arbitrary Boolean operator
⊗ the following rules are used to determine whether
f is triggered and effective.

Tr(f) if Tr(a)⊗ Tr(b) (17)

Ef(f) if Ef(a)⊗ Ef(b) (18)

The state of the top level function f can then be de-
termined using rules 7 to 10. Therefore, subsidiary
functions can only be used where the same logical
relation is appropriate for both the trigger and ef-
fect. This is consistent with the idea that the sub-
sidiary function has its own trigger and effect. Where
the expressions for the triggers and effects differ, ei-
ther the top level function has to be composed using
triggers and effects instead of subsidiary functions
or, if lower level descriptions of purpose are to be
included, incomplete subsidiary functions described
later in this section can be used.

The resulting states of the top level function, ex-
pressed in terms of the subsidiary functions com-
bined using AND, OR and XOR are shown in Ta-
ble 1. In the table, for the cases where a fault does
not affect the top level function – typically because
it remains inoperative – the state of the top level
function has been indicated in parentheses. In these
cases, the design analysis report should simply ig-
nore the top level function and report the problem
with the child function. This follows the rule for re-
porting on the state of a function, rule 11. For exam-
ple if a top level function depends on Child 1 AND

Child 2 then when Child 2 fails (its trigger is true
but effect false) and Child 1 is inoperative (trigger
and effect both false) then the top level function is
also regarded as inoperative (both triggers are not
true) so all that is needed in the report in this case
is a note of the failure of Child 2.

It might appear anomalous that a top level func-
tion can be achieved despite this depending upon
incorrect states of subsidiary functions but in fact
it is consistent with fulfilling the purpose of the top
level function. The clearest example of this is the
penultimate row of Table 1 for the decomposition
Child 1 OR Child 2. This apparently unlikely sce-
nario, can easily arise in complex systems and fail-
ure modes and can be demonstrated in the hob ex-
ample if connections between switches and effectors
were inadvertently swapped. For example the knob
intended for the front left ring actually controlled
the left back ring and vice versa. In this case the
top level function is achieved, as a necessary precon-
dition is associated with a necessary postcondition.
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Table 1

States of functions and sub-functions.

Child 1 Child 2 AND OR XOR

inoperative inoperative inoperative inoperative inoperative

inoperative achieved inoperative achieved achieved

inoperative failed (inoperative) failed failed

inoperative unexpected (inoperative) unexpected unexpected

achieved achieved achieved achieved inoperative

achieved failed failed (achieved) (inoperative)

achieved unexpected unexpected (achieved) failed

failed failed failed failed (inoperative)

failed unexpected (inoperative) (achieved) (achieved)

unexpected unexpected unexpected unexpected (inoperative)

The hob could be used for cooking once you found
that a wrong ring was on, so the purpose is achieved.
Notice that according to rule 11, although the top
level function is not included in the design analysis
report, the two child functions will be.

It is possible for a function to be achieved despite
the failure of a child function, as is the case where the
top level function depends on Child 1 OR Child 2
and Child 2 has failed. In this case, the report will
be cast in terms of the failure of Child 2, along the
lines of “function top level achieved when Child 1
and Child 2 are triggered, despite Child 2 having
failed” together with the consequences of the failure
of Child 2. Using the hob example, the report would
produce:

function cook on hob achieved when cook on left
and cook on right triggered despite cook on right
having failed. Burner cannot be used for cooking,
limits cooking.

In practice a properly set up design analysis will
reveal the failure of Child 2 in terms of failure of the
top level function as, of course, when only Child 2
is triggered, the expected top level function will fail.
For example:

function cook on hob failed when cook on right
triggered because subsidiary function cook on
right failed. Hob cannot be used for cooking.
The XOR operator completes Table 1 and de-

scribes the situation when one, but not both of the
subsidiary functions must be achieved. The oper-
ator leads to some results that are not necessarily
intuitive. Row seven describes the situation when
one child is unexpected and the other is achieved.
For this case, when the effects are both true, equa-

tion 17 provides a false effect for the parent function
leading to an overall failed state for the parent func-
tion. This result is consistent with the specification
provided by using the XOR operator to combine
functions.

As a functional description has three elements
(the purpose, trigger and effect) it is useful to intro-
duce the concept of incomplete functions that com-
bine two of these elements. There are three possible
combinations. The first is a “purposive incomplete
function” (PIF) which associates an effect with a pur-
pose, but does not have its own trigger. Instead it
shares a trigger with other PIFs that contribute to a
top level function. A possible example is a warning
system that both flashes a lamp and sounds a horn.

FUNCTION fire_warning

ACHIEVES fire_notification

BY

smoke_dection OR alarm_button_pressed

TRIGGERS

PIF siren

AND

PIF strobe_light

PIF siren

ACHIEVES audible_fire_notification

BY sounder_activated

PIF strobe_light ...

In this case, both warnings are triggered by the same
event, but each has its own effect. This also illus-
trates one use of distinguishing between subsidiary
functions and merely the required effects for the top
level function. In this case, a failure in the warn-
ing system that prevents one of the warnings being

8



given, but not both, does at least mean there is some
warning, so the achievement of one of the subsidiary
functions mitigates the failure of the main function.
This contrasts with the case where both effects are
simply associated with the top level function, so the
absence of either is tantamount to complete failure
of the main function. This is one of the motivations
for distinguishing between decomposing a function
in terms of subsidiary functions and in terms of ef-
fects. To allow achievement of one of a function’s ef-
fects to mitigate failure of the function, that effect is
associated with a subsidiary function and the conse-
quences of failure of the functions follow rules below.
We define f as the top level function with conse-
quences of failure cf , and a and b as subsidiary func-
tions with consequences of failure ca and cb. Rules
19 and 20 are used where the subsidiary functions
are combined using AND or OR.

R(cf ) if and only if Fa(a) ∧ Fa(b) (19)

R(ca) if Fa(a) ∧ ¬Fa(b) (20)

These rules are inappropriate where the subsidiary
device functions are combined using XOR and the
opposite approach has to be taken:

R(cf ) if (Fa(a) ∧ ¬Fa(b)) ∨ (¬Fa(a) ∧ Fa(b)) (21)

This is because failure of one of the subsidiary func-
tions, but not both, is tantamount to failure of the
top level function. These rules can be used whether
the subsidiary functions are complete functions or
PIFs. Note that the failure of the top level function
will still be reported following rule 11.

While it might be supposed that there is no need
for an incomplete function that maps a trigger to a
purpose thereby sharing the effect with other sub-
sidiary functions, there is actually a need for such
“triggered incomplete functions” (TIFs). This is be-
cause PIFs and TIFs cannot always be replaced by
complete subsidiary functions that share a trigger.
If the subsidiary functions are combined using XOR,
then if they share a trigger in the case of PIFs, or
an effect in the case of TIFs, the triggers of the sub-
sidiary functions will always have a common value.
Following rules 17 and 18, the top level function will
never be triggered if composed of PIFs, or effective
if composed of TIFs, as one of subsidiary function’s
will never be true without the other. Therefore these
incomplete functions are necessary for completeness
of the language, even though TIFs will seldom be
used. An example might be a Yale style lock which

allows allows a door to be opened from outside with
a key and from inside using a knob:

FUNCTION unlock_door

ACHIEVES door_open

BY

TIF unlock_using_key

OR

TIF unlock_using_knob

TRIGGERS lock_released

TIF unlock_using_key

ACHIEVES entry_to_building_from_outside

BY

key_inserted_and turned

TIF unlock_using_knob

ACHIEVES exit_from_building, allow_visitor_in

BY

turn_knob

Here “lock released” is an effect with two purposes
dependent upon the trigger used. The lack of ef-
fect in a TIF makes unexpected consequences inap-
propriate for the TIF functions, although the failure
consequences are associated with the purpose in the
usual way. Unexpected consequences may be added
for the intermediate level effect (i.e. lock released in
the example), and this provides a rôle for TIF func-
tions combined using AND. Clearly the subsidiary
functions can never fail individually, however the ef-
fect can appear unexpectedly in response to only one
of the triggers occurring.

The final class of incomplete function is an “oper-
ational incomplete function” (OIF) which is a com-
bination of trigger and effect which is not associated
with a purpose, but merely contributes to a top level
function. A case in point is a room with, say, a wall
light and a ceiling light, each with its own switch.
Either one of these lights will allow an occupant to
move around the room without hitting the furni-
ture, so either contributes to a “light room” func-
tion, while – at least arguably – having no distinct
function of its own. The “light room” function can
be expressed as “wall light” OR “ceiling light”:

FUNCTION room_light

ACHIEVES find_way_around_room

BY

OIF wall_lamp

OR

OIF ceiling_lamp

OIF wall_lamp_switch_on TRIGGERS light_on

OIF ceiling_lamp_switch_on TRIGGERS light_on
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This has the advantage of associating a trigger with
its effect. After all, it is not the case that either
switch can switch on either light as would be the
case if we used:

FUNCTION room_light

ACHIEVES find_way_around_room

BY

wall_lamp_switch_on OR ceiling_lamp_switch_on

TRIGGERS

wall_light_on OR ceiling_light_on

The use of OIFs also allows the introduction of
a finer grained functional model as the design pro-
ceeds. This might be done by promoting the OIFs
to complete functions, by associating them with a
purpose. For example, the wall light might be asso-
ciated with the purpose of lighting a desk, for which
the ceiling light might be inappropriate because it
casts the user’s shadow on the work.

These “incomplete functions” are only to be used
as child functions of some other function, and not to
try and represent component or sub assembly func-
tions for a specific implementation. Sometimes sub-
systems may provide both a structural and func-
tional decomposition because the physical structure
has been organised functionally. We briefly consider
local functions of implementation dependent com-
ponents, and their relationships, in the context of
an example in the following section. This section has
presented a pure function decomposition using trig-
gers and effects leading to four classes of subfunc-
tion:
– Complete child functions each having its own trig-

gers, effects and purpose.
– Purposive incomplete functions which share a

trigger.
– Triggered incomplete functions which share an ef-

fect.
– Operational incomplete functions each with its

own trigger and effect but that do not by them-
selves fulfil a purpose but simply contribute to the
top level function’s fulfilling of its purpose.

5. Practical Examples

Having described the Functional Interpretation
Language, we can discuss its application to a real
world automotive example system, although only
one function is presented for reasons of space. The
passenger safety system includes car’s seat belt
warning system that lights a lamp on the dashboard
and sounds a chimer if the car moves off with one of

the front seats occupied but without the seat belt
buckled. A functional description might be:

FUNCTION belt_warning

ACHIEVES unbuckled_warning

BY

vehicle moving

AND (driver unbuckled OR

(passenger present AND

passenger unbuckled))

TRIGGERS

PIF warning_lamp

AND

PIF chimer

PURPOSE unbuckled_warning

DESCRIPTION

"Warn that passenger is unbuckled"

FAILURE_CONSEQUENCE

"no warning given of dangerous state"

PIF warning_lamp

ACHIEVES visual_warning

BY lamp_on

PURPOSE visual_warning

DESCRIPTION

"Show driver that a belt is unbuckled"

FAILURE_CONSEQUENCE

"no persistent visual warning given"

PIF chimer

ACHIEVES audible warning

BY chimer_sounding

PURPOSE audible_warning

DESCRIPTION

"Draw attention to unbuckled seat belt"

FAILURE_CONSEQUENCE

"no audible warning given"

This example illustrates the point that PIFs can be
used to model cases where the triggers and effects
are combined using different logical expressions.

This system is electrical but some of the function-
ality is implemented using electronic control units,
so some of the components use software. We assume
the use of a mixed electrical and state machine based
simulator, such as described in [21]. The elements
in the trigger expression of the belt warning func-
tion and effect expressions of the two PIFs can then
be mapped to appropriate states in the component
behavioural models.

Having built the functional model and attached
the labels to the structural model, a failure analysis
is run on the system. Assuming the design is correct,
simulating the system with all components behav-
ing correctly results in all the device functions be-
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ing achieved as expected. Suppose that the simula-
tion is now run with wire connecting both the lamp
and chimer to ground open circuit, so a circuit is
never completed for either component, and despite
the trigger condition being true (maybe the driver is
unbuckled) neither effect will be achieved. The de-
sign analysis report will include an entry similar to:

Function belt warning failed because function
warning lamp failed because expected effect
lamp on was absent and function chimer failed
because expected effect chimer sounding was
absent. Consequences are no warning given of
dangerous state.

On the other hand, if a wire connecting the lamp
to ground goes open circuit, at least the chimer will
sound, so some warning is given. This will be re-
ported:

Function belt warning failed because function
warning lamp failed because expected effect
lamp on was absent. Consequences are no persis-
tent visual warning given.

In the second case, the failure of the top level func-
tion is still reported but its effects are mitigated by
the consequences of the failed subsidiary function
being used.

This allows the design analysis report to differ-
entiate between the failure of both subsidiary func-
tions and either one of them. If the two effects are
not associated with child functions, then the fail-
ure of either or both will result in the same report.
This decomposition of a function in terms of effects
and triggers would be used in the case of the stop
lights system example mentioned earlier, because
the lighting of one but not both of the stop lamps
will not be regarded as mitigating the failure of the
function, if only because of the legal requirement for
a car to show two stop lights.

For FMEA, the system’s behaviour will be simu-
lated with all possible component failures, and the
effects of each will be found. For example, if the de-
tector in the passenger seat sticks, this will result in
the warning sounding when there is no passenger in
the car. This example has considered only one func-
tion. In many cases a system will embody several
functions and the FIL can be used to relate these
functions to each other. This is especially true of
software systems.

Subsidiary functions within the FIL are designed
to form a purely functional hierarchy. For design
synthesis tasks it is common to refine systems to in-
clude the product structure decomposition, and to
link functions provided by components to support

the system functions. For example in mechnical de-
sign [22] provides a model that aims to associate
function into the product representation. The FIL
includes a PERFORMED BY attribute to provide a
link to lower level components or sub assemblies if a
relationship between structure and function decom-
position is required. This information implicitly en-
codes many implementation choices into the func-
tion hierarchy however, resulting in a model that is
no longer a purely functional description. As an illus-
tration consider the Yale lock presented earlier. The
lock may be built of three modules such as the bolt,
the latch and the lock barrel perhaps considered as
‘subsystems’ with individual functions below:

barrel FUNCTION turn

ACHIEVES use_key_to_move_latch BY

key_inserted_and_turned

TRIGGERS

open_barrel_lever

latch FUNCTION release

ACHIEVES retract_bolt BY

turn_knob OR open_barrel_lever

TRIGGERS bolt_lever_retracted

latch FUNCTION sprung_extend

ACHIEVES return_bolt_to_extended_position BY

NOT turn_knob AND NOT open_barrel_lever

AND NOT lever_output_pushed

TRIGGERS bolt_lever_extended

bolt FUNCTION connect

ACHIEVES secure_lock_to_slam_plate BY

extend_bolt TRIGGERS bolt_restrained_by_slam_plate

bolt FUNCTION disconnect

ACHIEVES release_lock_from_slam_plate BY

retract_bolt TRIGGERS bolt_released_from_slam_plate

At this level, these components are often designed
with a specific relationship to an adjacent compo-
nent, resulting in for example a component called
‘bolt lever’ as part of the latch. The name does not
actually imply any specific relationship within the
functional model however. In some cases an output
from one element becomes the trigger for another
function (e.g. ‘open barrel lever’), however these
links do not build a complete causal model, as can
be seen in the lock example, because a trigger for
a function only describes the behaviour that causes
the function to occur rather than all the inputs that
may be required for the expected behaviour to oc-
cur. The structure and other simulation is required
to determine all of the behavioural interactions be-
tween functions (e.g. between latch and bolt above).
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The purpose of each module is in terms of its role at
the next higher level of the decomposition, in this
case adjacent modules or the lock itself, consistent
with the notion of purpose used for the FIL. The
choice of components for a decomposition will de-
pend upon the level of detail required for the design
tasks. For example many products define the idea of
a replaceable unit for the purpose of diagnosis and
repair and the functions of these modules may be
considered as the most detailed level of granularity
required.

The implementation details required to specify
the relationship between the system and module
function means that it cannot form part of the sys-
tem functional hierarchy and it is provided along-
side details of the recogniser details of the FIL. This
maintains the implementation details separate from
the system function decomposition. For example, for
the lock in section 4:

bolt.position=bolt.geometry.retracted

IMPLEMENTS lock_released

..etc..

TIF unlock_using_key

PERFORMED BY

barrel.turn

AND latch.release

AND bolt.disconnect

TIF unlock_using_knob

PERFORMED BY

latch.release

AND bolt.disconnect

Notice that triggers such as “key inserted and
turned”, “open barrel lever” need to be defined in
terms of force applied since the trigger is that an
attempt is made to move the component, and when
the component is stuck (or something linked com-
ponent is stuck) the trigger is still required to be
effective or else the function will be inactive and not
failed. For component functions completed as fol-
lows an analysis of the latch mechanism becoming
stuck will report:

When key inserted and turned and when turn knob,
unlock door failed because unlock using key
failed and unlock using knob failed. Cannot en-
ter building from outside, cannot exit building,
cannot allow visitor in. Sub assembly functions
barrel.turn and latch.release failed. Consequences
are no movement of latch lever and no movement
of bolt mechanism.

barrel PURPOSE use_key_to_move_latch

DESCRIPTION "key engages with tumblers and allow

lock lever to move"

FAILURE CONSEQUENCE "no movement of latch lever"

latch PURPOSE retract_bolt

DESCRIPTION "the knob or barrel lever force

is used to retract the bolt"

FAILURE CONSEQUENCE "no movement of bolt mechanism"

In this case the bolt function is simply inactive be-
cause no force was transferred to the trigger and the
bolt didn’t retract. If the key is faulty, when both un-
lock functions are attempted, the report states that
unlock using key fails (unlock door can be achieved
due to unlock using knob). The worst case is:

When key inserted and turned unlock door failed
because unlock using key failed. Cannot enter
building from outside. Sub assembly function bar-
rel.turn failed. Consequences are no movement of
latch lever.

It is feasible however that at the lower levels of prod-
uct decomposition, many common components have
regularly used functions and these could be reused
from a library together with their recognisers which
are all local to the component model. At the lowest
levels functions such as “conduit” can be identified,
with a purpose “transfer fluid from A to B” for a
pipe connecting A and B. The details of these func-
tions might conceivably be derived from the struc-
ture model or the global behaviour models such as
electrical circuit simulation. PERFORMED BY links
with the high level system function would allow more
detailed explanation and fault localisation, perhaps
forming part of a functional design synthesis tool.
Clearly such models can become complicated and
would not be recommended for many design tasks,
particularly at such a low level where the additional
detail is unnecessary, even for diagnosis tasks that
only require localisation to a replaceable assembly.
The discussion was intended to demonstrate possi-
bilities for decomposition using the FIL that may be
applied to large systems where large functional sub
assemblies are used.

Two observations are worth making about
the above model. Firstly, that bolt component
‘bolt released from slam plate’ effect would proba-
bly be implemented as:

bolt.position=bolt.geometry.retracted

IMPLEMENTS bolt_released_from_slam_plate

This is the same recogniser as ‘lock released’
demonstrating that this single effect is the output
of the ‘disconnect’ function of the bolt and the
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‘unlock door function effect of the system.
Secondly, it might be tempting to specify the

trigger of performer functions in a causal sequence
(such as the lock) by using the achievement of
another component function to create an explicit
dependency between functions. This leads to in-
terpretation problems when functions are in the
Un(f) state or when partial effects exist since the
functions are not actually related directly, but only
to common behaviour elements and the higher level
functions. It is possible and useful to use depen-
dencies between functions in cases such as warn-
ing, fault mitigation (backup, fault tolerence, limp
home), interlocking, and recharging functions. In
these cases one function is explicitly intended to be
active (or in some other state) based on the state of
another. We do not pursue these specialised depen-
dent functions in this paper, suffice to say the FIL
is able to support them.

6. Conclusion

The functional description language proposed
herein allows a more precise specification of re-
quired system behaviour than the one used for
functional labeling in [1,8]. The specific inclusion of
the triggering condition for the function allows the
language to be used for interpretation (and so for
report generation), for design verification as well as
failure analysis. The specification of the triggering
condition of a function has several advantages com-
pared to the earlier functional labeling approach,
though these must be set against an increase in
complexity. Where the trigger is not included, then
the use of the language for interpretation is limited
to failure analysis where the triggers can be derived
from the simulation of the system working correctly.
This is not appropriate for design verification, as
some description of the triggers and effects is re-
quired for comparison with the simulation. Even for
failure analysis the trigger has to be specified for
device functions such as warning or fault mitigation
that are triggered by the state of some other device
function, since the trigger of such functions cannot
be unambiguously derived from the simulation of
the system working correctly. The use of the trigger
allows these cases to be unambiguously specified so
different kinds of warning or telltale functions can
be distinguished. The trigger of a function can also
be specified to an arbitrary degree of precision at
the expense of reducing the reusability of the func-

tional model. This, combined with the use of labels
for attaching system properties, allows a functional
description of the system to be created indepen-
dently of the system, so it can be used both to assist
in capturing detailed requirements for the system
and also to support the design process, where this
follows the model in [16]. This differs from the ap-
proach in [1] where functional labels are added to
an existing structural description of the system to
be analyzed.

This function decomposition in section 4 uses bi-
nary logical operators, however a function might also
depend on a combination of temporally more com-
plex behaviours resulting in intermittent or sequen-
tial effects, so the sequential operators described in
[23] might also be used. These give rise to few com-
plications as they are unary operators (as are the
temporal logic operators to which they are related)
so decompositions are simple. If a function depends
on two child functions being achieved in sequence
then naturally if one of the children fails, so will the
top level function.

The FIL allows functional descriptions of a sys-
tem to be made before the physical design of the
system is arrived at. For example, such a functional
model might be used as a way of capturing the func-
tional requirements of a design in such a way that
the behaviour of a candidate physical design can, in
due course, be verified against these requirements.

The FIL is intended to be used for the descrip-
tion of high level system function and therefore the
majority of the model will be specific to each sys-
tem since it is designed to capture intention. The
modularity of the description does make it possible
to reuse various elements of the models on occasion,
especially for new versions of a previous system.

The proposed language shares the advantages
of simplicity, reusability and capability claimed
for functional labeling in [1] with the additional
advantage of allowing the functional model to be
constructed independently of the system, so sup-
porting the use of the language in functional refine-
ment of a design and for constructing a complete
functional description of a proposed system for
comparison with the (simulated) behaviour of that
system in design verification. This, combined with
the possibility of using the language to specify the
functional requirements of the system, allows the
closer integration of functional modelling in the
design process.
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