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Abstract

Shape grammars are a powerful and appealing formalism for automatic
shape generation in computer-based design systems. This paper presents a
proposal complementing the generative power of shape grammars with re-
inforcement learning techniques. We use simple (naive) shape grammars
capable of generating a large variety of different designs. In order to gener-
ate those designs that comply with given design requirements, the grammar
is subject to a process of machine learning using reinforcement learning tech-
niques. Based on this method, we have developed a system for architectural
design, aimed at generating two-dimensional layout schemes of single-family
housing units. Using relatively simple grammar rules, we learn to gener-
ate schemes that satisfy a set of requirements stated in a design guideline.
Obtained results are presented and discussed.1

Keywords:
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1. Introduction

The problem of computational design has been approached by Artificial
Intelligence researchers since the 1960s [1, 2]. Design problem solving is

1This work is partially funded by: grant TIN2009-14179 (Spanish Government, Plan
Nacional de I+D+i). Manuela Ruiz-Montiel is funded by the Spanish Ministry of Educa-
tion through the National F.P.U. Program.
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considered a particularly complex task, since these kind of problems are ill-
structured [3], that is, they are characterized by the absence of a unique,
well-defined solution. Human experts deal with these problems not only by
means of knowledge about the requirements that solutions need to meet, but
also with the help of creative thinking, that will lead to many valid designs
substantially different between them.

In this work we deal with the computational design problem of automatic,
partially-directed generation of design alternatives according to certain cri-
teria. The diverse variants of this problem are of interest in many fields like
architecture, engineering or packaging, where geometric design plays a cru-
cial role. Certainly, an assistant system that generates and proposes different
design alternatives can be quite worthy for design stakeholders in the first
stages of the design process.

More specifically, we propose a computational design methodology using
shape grammars [4, 5, 6] as design synthesis mechanism. Shape grammars
have been used in the literature for numerous design tasks related to areas like
architecture or industrial design. In this context, shape grammars have been
used to generate designs according to functional requirements in a number
of ways. However, the development of adequate methodologies to create and
control the application of shape grammars remains an open research topic.

The direct, traditional approach requires a human expert to design an ex-
pert shape grammar and thus hard-code the whole set of design requirements
inside the rules [7, 8, 9, 10, 11, 12]. This practice is aimed at producing ad-
missible solutions, but the involved grammars tend to be difficult to create,
modify and maintain. Moreover, these grammars normally reduce the space
of alternatives, since they have been designed with the foreknowledge of the
nature of the results. Albeit this philosophy allows the quick synthesis of
valid designs, expert shape grammars also facilitate obtaining designs that
are prone to be very similar between them.

Alternatively, some researchers have proposed the use of more naive shape
grammars. The blind execution of a generation system based on a naive
grammar would lead to a great number of different designs, but usually the
majority of them would be unfeasible. This problem has been generally
addressed by means of optimization techniques that guide shape generation
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Some of these methods yield a varied
set of solutions, but we aim to go one step beyond and be able to generate
every solution that meets a set of requirements.

In this paper we propose the combination of naive shape grammars with
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reinforcement learning [23]. Instead of directly reaching solutions, the algo-
rithm learns how to generate them; after a simple grammar is set up, our
proposal incorporates a phase of policy learning in which a reinforcement
learning algorithm is applied, yielding a policy that will guide the execution
of the naive shape grammar towards feasible solutions. Design requirements
are formulated as rewards in this phase, and the learning algorithm learns
how to optimize the reward received during shape generation. This method-
ology allows the generation of a large variety of feasible designs using naive
rules that are easy to understand and maintain.

We have applied the proposed methodology to a particular area of ar-
chitectural design: the generation of single-family, basic house layout plans
that comply with a certain guideline. This can be of great help in the first
stages of architectural design, when the designer is at risk of undergoing the
blank page syndrome and can benefit from the existence of many feasible and
varied starting points that have been obtained effortlessly. These starting
points are schematic, as they are not intended to be standard architectural
plans, but layouts that could later work as inception for complete, standard
projects carried out by an architect.

The article is structured as follows: in Section 2 some introductory mate-
rial about shape grammars and reinforcement learning is presented in order
to make the paper self-contained. Then, the structure of the system is de-
scribed in Section 3, addressing generation and learning issues. Next, in
Section 4, results of the system are presented and analysed in terms of time
generation and feasibility. In Section 5 our system is discussed from several
points of view. Finally, some conclusions are drawn and possible future lines
of continuation and generalization of this work are pointed out.

2. Antecedents

2.1. Shape grammars

Shape grammars are a computational formalism for the generation of geo-
metric shapes introduced by Stiny and Gips [4, 5, 6]. This section summarizes
some basic definitions needed later in this paper. Informally, shape gram-
mars are a set of rules that govern the composition of simple geometric and
symbolic elements to generate complex shapes.

A segment or line l = {p1, p2} is defined by any pair of distinct points p1
and p2, the so-called end points of the line. A shape is defined by a finite set
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of distinct maximal lines, i.e. lines that are not part of longer lines inside the
shape. The representation of a shape is thus unique.

A labelled shape σ is an ordered pair σ = 〈s, P 〉 where s is a shape and
P is a finite set of labelled points. A labelled point (p,A) is a point p with
a symbol A. A labelled shape s1 is a sub-shape of another labelled shape s2
(s1 ≤ s2) if and only if every line and every labelled point of s1 is in s2.

Formally, a shape grammar is a tuple 〈S, L,R, I〉 where:

• S is a finite set of shapes

• L is a finite set of symbols

• R is a finite set of rules α→ β, where α is a non-empty labelled shape
and β is a labelled shape

• I is a non-empty labelled shape, called initial shape or axiom.

A rule α → β applies to a shape γ when there is a transformation τ
such that τ(α) is a sub-shape of γ. Usually, τ is a general geometric trans-
formation. In this work, transformations involve translations, rotations and
reflections.

The result produced by the application of a rule α → β to a labelled
shape γ under transformation τ is given by the expression γ − τ(α) + τ(β).
This new labelled shape is obtained substituting some occurrence of τ(α)
inside γ with τ(β).

Figure 1 displays a rule and one sample derivation, i.e., a possible sequence
of shapes generated by successive applications of the rule.

 

Figure 1: A rule (a) and one derivation starting from an initial squared shape (b)

Shape grammars have been used in the literature for many tasks related
to architectural or industrial design. In architecture, the works of Stiny
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and Gips [8] and Cagdas [9] have managed to devise shape grammars that
capture and explain the architectural style of certain buildings, and thus
create designs similar to the original ones. The work of Duarte [24] provides
shape grammars that generate designs according to a given housing program.
In the context of industrial design, shape grammars have been used to design
artefacts taking into account sets of design requirements. Some examples
include the grammars proposed by Lee and Tang [25] to generate compact
digital cameras, considering different combinations of form criteria; the one
proposed by Agarwal, Cagan and Constantine [26] for the generation of coffee-
makers, taking into account different cost-related aspects; and the one devised
by MacCormack, Cagan and Vogel [12] to capture a car’s brand identity.
Shape grammars have also been used in the context of process planning.
Brown et al. presented a method for formalising manufacturing information
trough shape grammars, providing semantics such that a given derivation of
the grammar can be interpreted as a process plan [27]. More recently, Shea et
al. developed a framework for an autonomous design-to-fabrication system
that automatically fabricates customized parts [28]; in this framework, the
shape rules encode primitive movements of the machine tool.

The wide appeal of shape grammars comes on one hand from their versa-
tility. It is well known that they are capable of producing any possible shape
[29]. On the other hand, this formalism presents specific advantages. They
provide an intuitive method for shape definition. They are also compact, in
the sense that they can generate sophisticated and unexpected designs with
just a few rules [30]. As Chase pointed out, design systems based on gram-
mars have a great potential to automate and explore many design alternatives
without tedious work [31]. These systems can help designers to focus on un-
expected designs that otherwise could be easily overlooked. This potential is
subject to the presence of a computer in charge of automatically, quickly ex-
ecute shape grammars, as pencil-and-paper execution might be tedious and
therefore useless for the sake of discovering many new solutions.

Early shape grammars succeeded in capturing the essence of different
architectural styles and helped to validate the formalism. However, the de-
velopment of adequate methodologies to create and control the application
of shape grammars when trying to achieve design goals remains an open re-
search topic. In particular, the use of shape grammars for architectural or
engineering design implies taking into consideration constraints and goals for
the designed artefact.

The aforementioned issues of shape grammars can be summarized by
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Helpful Harmful

Internal origin

Strengths
-Versatility
-Intuitive method
-Compacity
-Able to produce unex-
pected shapes
-They can be automated
in order to produce many
design alternatives

Weaknesses
-Creation and control of
SG might be difficult when
trying to achieve design
goals
-SG execution needs con-
siderable computational
expenses

External origin

Opportunities
-General improvement in
computers’ capabilities
-Increasing presence of com-
puters in design processes

Threats
-Reluctance of design prac-
titioners to use SG for their
work

Table 1: SWOT analysis of the use of shape grammars for design

means of a SWOT (Strengths, Weaknesses, Opportunities and Threats) anal-
ysis, used to evaluate the venture of choosing the technology of shape gram-
mars for design tasks. A SWOT analysis involves identifying the internal
and external factors that are favourable and unfavourable to achieve the ob-
jective, that is, the use of shape grammars for design (see Table 1).

This paper addresses the critical issue (in fact, one the weaknesses of
shape grammars) of controlling the application of a set of shape grammar
rules in a particular domain, so as to satisfy a set of design goals. This
process is knowledge intensive, since it requires human expertise to define the
appropriate set of requirements. The next sections briefly review previous
research in the field. Then an innovative approach based on reinforcement
learning is presented and evaluated.

2.2. Expert shape grammars

According to Knight, “Different approaches to connecting grammars and
goals have been suggested. One approach is direct. It involves writing rules
with the foreknowledge that the generated designs will meet, or start to meet,

6
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given goals. In order to do this, the behaviours and outcomes of rules must
be predictable in some way” [32, pag. 7].

The execution of such rules would thus easily lead to feasible designs,
where feasibility is guaranteed by the structure of the shape grammar itself.
We could call these expert shape grammars, since they include much expert
design knowledge hard-coded inside their rules. There exist many references
to expert grammars in the literature. For example, the work of Duarte [24]
considers a set of guidelines imposed by a housing program; and also many
other works aim to design architectural or engineering objects in accordance
with a particular style or brand identity [8, 9, 10, 11, 12]. Figure 2 displays a
fragment of the Palladian grammar used by Stiny and Mitchell [8] to generate
2-dimensional plans of villas similar to those of the famous XVI century
architect Andrea Palladio (see Figure 3).

Figure 2: Seven rules of the Palladian grammar (reproduced from [8])

Some of the methods actually used to include expert knowledge inside
shape grammars comprise the following:

1. Shapes in rules. This is the most direct mechanism, where desired final
shapes arise from the accumulation of shapes present in the rules.

2. Control marks. Special labels added to the “real” shapes are typically
used to control several aspects of rule execution, such as the order in
which rules are applied, the set of rules that can be applied at a certain
moment, or the way rules can be applied (i.e., transformations that can
be applied to their left-hand side).

7
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Figure 3: The Villa Malcontenta as drawn by Palladio (reproduced from [8])

A different approach is taken by Duarte in his discursive grammars [24]:
each conventional shape grammar rule is accompanied by a description rule
that uses extra symbolic information to give semantic to the involved shapes,
thus allowing more control possibilities. Another alternative is the one taken
by Agarwal, Cagan and Constantine [26], in which the intermediate shapes
produced by the rules are measured by means of cost expressions. Results
are delivered to an expert designer who can use them to decide which rules
to apply next.

However, the knowledge engineering effort involved in the creation and
modification of expert systems is important. Expert shape grammars, as well
as rule-based expert systems in general, can become very difficult to create,
modify and maintain. It is generally acknowledged that a “[. . . ]mixture of
knowledge types, together with the lack of adequate justifications of the dif-
ferent rules, makes the maintenance of such knowledge bases very difficult
and time consuming” [33]. Additionally, the use of the common mechanisms
to introduce expert knowledge inside rules promotes the use of deterministic
shape grammars that tend to produce certain kind of shapes that are known a
priori. A trade-off arises between the ability of a shape grammar to innovate
and the feasibility of the produced solutions. In a correctly formulated expert
shape grammar, any arbitrary execution of its rules will ideally produce fea-
sible designs, since the shape grammar designer will have predicted in some
way the nature of these outcomes. If we sacrifice the divergence capacity of

8
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shape grammars in the pursuit of predictability, we are at risk of missing one
of the main reasons for using this formalism as a design framework, that is,
the possibility of obtaining many unforeseen, innovative solutions.

2.3. Naive shape grammars

A different approach calls for the combination of simple shape grammars
with specific methods to guide the generation process. The grammars could
lead to a great diversity in results, while the control methods would guaran-
tee the fulfilment of design requirements. We can call these simpler shape
grammars naive, because an arbitrary execution of their rules without any
additional guiding mechanism would not guarantee feasible designs. This
approach avoids the usual difficulties in creating, modifying and maintain-
ing traditional, expert shape grammars, leaving the guarantees of feasibility
mainly in hands of the control mechanism.

Previous works on goal-oriented design generation with naive shape gram-
mars have usually defined the task as an optimization problem, with a quan-
tifiable objective function to maximize or minimize, and an optional set of
design constraints. Two main optimization techniques have been used: shape
annealing and evolutionary algorithms.

Simulated annealing [34] is a stochastic optimization technique that em-
ulates the physical process of metal annealing, i.e. intense heating and then
gradual cooling until a low-energy equilibrium state is reached. Shape an-
nealing [13, 15] applies simulated annealing to shape grammars. In this
context, we seek a shape that minimizes the value of a given objective func-
tion, interpreted as the energy of the shape. A set of constraints additionally
determines valid transitions in the application of the shape grammar rules.

At every step of rule derivation, a rule leading to a feasible new shape is
randomly selected. If the new shape obtained applying this rule has lower
energy than the current one, then the transition is automatically accepted.
However, if the new shape has higher energy, the transition is only accepted
with a probability that depends on the energy difference and the temperature
of the process. Initially, when the temperature is high, the process can easily
escape local optima this way. As the process goes on and the temperature is
reduced, the chances of escaping deeper (low-energy) optima are reduced. In
an infinite process where the temperature asymptotically approaches zero,
the probability of being trapped in a global minimum approaches one. In
shape annealing, the stochastic sequence of rule applications goes on until the
current shape cannot be further improved after a number or trials, or a limit

9
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on the number of rule derivations is reached. The algorithm reverses rules
if at a certain moment every applicable rule violates any of the constraints.
The temperature profile that determines how quickly the process cools down
is a critical parameter in simulated annealing.

Shape annealing has been applied mainly to structural design problems
such as roof truss [15, 16] or dome design [14]. The use of shape annealing
can lead to a feasible near-optimal design if the algorithm parameters are
correctly configured. Apart from parameter tuning, the underlying knowl-
edge engineering is to a great extent very easy: we just need to compute
the objective function and test whether the constraints are violated. One
important drawback is that each run of the algorithm leads only to a single
solution. If we aim to obtain many distinct designs we have to run the op-
timization algorithm again and again. This approach does not learn how to
generate designs, it just finds a solution each time it is executed.

Genetic algorithms are an optimization technique that emulates the pro-
cess of natural selection. An initial population of individuals (phenotypes)
is represented as strings (chromosomes or genotype). Individuals are then
selected and their strings combined to produce new individuals in a stochas-
tic process that takes into account their fitness to a given objective function
(survival of the fittest). Ideally, this iterative process produces populations
with good or near-optimal individuals. Gero, Louis and Kundu [17] describe
two different applications of genetic algorithms to shape grammars. In the
first approach (routine design), they seek the execution order (or derivation)
of the grammar rules that optimizes a given set of constraints. This can
be done using rule sequences as genotypes, and evaluating the fitness of the
resulting designs. In the second, more ambitious one, grammar rules them-
selves are encoded for manipulation by the genetic algorithm. This way,
new grammars are produced that could possibly lead to better or innovative
designs. Gero and Kazakov [18] used the technique of genetic engineering
in order to evolve shape rules by identifying rule sub-sequences that appear
in the good individuals of the populations and not in the bad ones. These
sub-sequences were used to make up new, complex rules that were combined
with a standard genetic algorithm in order to allocate sets of tiles according
to given requirements. Ang et al [19] also combined a shape grammar and
a genetic algorithm in order to design Coca-Cola bottles, by means of para-
metric rules and by codifying the parameters of the rule sequences inside the
genotype. A similar but more complex system is described by Lee and Tang
[20]. It uses genetic programming in order to determine rule parameters for

10
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the problem of designing the body of a camera. Chouchoulas [21] also uses
a genetic algorithm to evolve rule sequences in order to produce apartment
buildings required to meet certain criteria and O’Neill et al [22] employ a
genetic algorithm to design shelters.

An advantage offered by all evolution-based approaches is simpler knowl-
edge engineering. Feasibility of resulting designs is enforced by a fitness func-
tion that evaluates them according to a set of criteria. Among the downsides
we must mention the usual, inherent difficulty of parameter setting.

The set of generated solutions is often restricted in the sense that it has a
relatively small size compared to the diversity potential of shape grammars.
Some works [20, 19] offer just a single solution to a given problem (an optimal
or near-optimal one), while others [17, 18, 21] provide few distinct, feasible
solutions (less than 10), which are picked from the last generation.

2.4. Reinforcement Learning

In this work we aim to learn how to apply a set of given naive shape rules
so as to produce feasible design alternatives. That is, we seek a function that
determines a suitable transformation to be applied to a given shape. We will
use this function at every step of the shape grammar derivation, in order to
finally produce a feasible solution according to a set of design criteria. A
different but related problem is that of grammatical inference [35]. However,
the aim of this paper is to learn the order of rule application, and not the
rules themselves.

Reinforcement learning [23] is an area of machine learning that deals
with how to learn which actions to take in a given environment, in order
to maximize a given long-term reward. Learning occurs through interaction
with the environment, in particular, receiving positive or negative rewards
after certain actions. Consider for example a baby learning to build a toy
brick tower. S/he will perceive positive or negative rewards when the tower
stands or falls respectively. Another example are the successful game playing
programs that have acquired master levels in games like Backgammon from
self-play. In this case, the only reward received from the environment is the
win/draw/lose state after the game is over.

Reinforcement learning has certain advantages over supervised learning
(one of the most researched approaches in machine learning). Unlike super-
vised techniques, reinforcement learning does not need externally provided
examples; it just requires interaction with the environment. Such feature can
be very useful when is impractical to obtain representative examples of all the

11
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situations in which the agent is involved. Additionally, reinforcement learning
allows dealing with uncertainty, making possible to consider more realistic,
non-isolated environments. Due to these benefits, reinforcement learning has
been successfully applied to many fields like robotics [36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46], games [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
scheduling systems [60, 61, 62], computer vision [63, 64, 65, 66], dynamic
channel allocation in cellular networks [67, 68, 69] or medicine [70, 71].

The solution to a reinforcement learning problem is a policy, which is
basically a function that maps each possible state to an action to be taken
when at that state. Independently of its immediate reward (which depends
solely on the environment), each state has an associated value, that reflects
the potential of the state for future rewards, assuming that we will follow
the current policy in the future. At the same time, the rational action to
take at a given state is the one that leads to a new state with maximum
value. Therefore, the policy determines the value of states and vice-versa.
An optimal policy is one that maximizes the expected value of all states and,
in consequence, the expected long-term reward.

There exist three elementary methods for solving a reinforcement learning
problem [23]:

1. Dynamic programming. This term gathers a collection of algorithms
that can be used when a perfect model of the environment is given.
By model we understand the transition probabilities between states
(that is, the probability of reaching a state s′ from a state s following
the action a) and the expected rewards of each possible transition.
These methods usually bootstrap, that is, they update values from other
previous value estimations.

2. Monte Carlo methods. Unlike the previous approach, they do not as-
sume a perfect model of the environment, so they can learn through
experience. They do not bootstrap, so it is necessary to wait until a
final outcome (the accumulated reward) is available to update values.

3. Temporal-Difference learning. TD learning combines ideas from both
dynamic programming and Monte Carlo methods: as the former, they
learn by bootstrapping, but as the latter, they can also learn from raw
experience, without a model of the environment.

Dynamic programming techniques are of limited utility because the great
computational expense introduced by full sweeps over the state space. A
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sensible option is to implement a model-free learning technique (that is,
Monte Carlo or TD), that only sweeps along the states inside the experi-
enced paths. TD(λ) techniques are a generalization of Monte Carlo methods
and TD learning; they allow to control the level of bootstrapping by means
of a parameter λ ∈ [0, 1]. If λ = 0, then the method is equivalent to raw
TD. If higher values of λ are used, then we reduce the bootstrapping level,
bringing the method closer to a Monte Carlo technique. Q-learning [72] (see
Figure 4) is a TD learning algorithm with minimal convergence requirements
that has been intensively researched and successfully used in many works
[36, 63, 65, 38, 73, 39, 69, 54, 62, 70, 71]. Here we use the generalized version
of this method, that is, Q(λ).

In the following we describe this technique. For simplicity, we stick to
the Q(0) case, that is, the pure TD approach. In Q-learning, each pair
(state, action) is associated with a long-term value Q(s, a), and the policy is
determined by the following rule: “in state s take the action a that yields a
pair (s, a) of maximum value”, as given by the following expression,

argmaxaQ(s, a)

The direct approach is to store Q-values in a table. In Q(0), When mov-
ing from state s to state s′ through action a, the value Q(s, a) is updated
according to the following expression,

Q(s, a)← Q(s, a) + α× δ

where α ∈ [0, 1] is the so-called learning rate that determines speed of con-
vergence, and δ is the temporal difference. This is defined as follows,

δ = r + γ ×maxa′Q(s′, a′)−Q(s, a)

where r is the immediate reward at state s′ (if any), maxa′Q(s′, a′) is the
maximum value currently achievable at state s′, and γ ∈ [0, 1] is the so-called
discount rate that measures how much the agent disregards future rewards in
favour of immediate ones. A value of γ = 1 is usual when long-term future
rewards are sought.

The framework of reinforcement learning adjusts well to our case: actions
will be applications of shape grammar rules to the current shape. We will
receive positive rewards depending on how well the resulting shape responds
to certain design requirements. In our application of Q-learning to naive
shape rules we have to address two practical issues.
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Figure 4: Q(0) algorithm (reproduced from [23])

1. The first one is related to how much we trust in our current policy dur-
ing the learning stage. It is usual to follow an exploitation-exploration
strategy. Most of the time, the algorithm exploits the current policy,
that is, at the majority of steps it chooses the best valued action accord-
ing to the table. However, from time to time, the algorithm chooses a
random action in order to explore states that would otherwise never be
visited by the current policy. This kind of strategy is called ε-greedy,
since at each step a random action is chosen with probability ε.

2. The second one deals with generalization. In many practical cases,
the number of state-action pairs is so large that cannot be stored in a
table. This is the case with shape grammars, since we have as many
states as possible shapes than can be generated, and as many actions as
transformations can be applied to match the left-hand side of the rule
to the current shape. The solution is to use a function approximator
to learn the Q(s, a) values. This is done selecting a number of relevant
features fi to describe each pair (s, a), and then postulating the Q(s, a)
values as a function of those features.
In this work, we use a linear function of features, which worked well
in our experiments over the housing unit domain. More precisely, we
postulate a function,

Q(s, a) = θ1 × f1(s, a) + θ2 × f2(s, a) + · · ·+ θn × fn(s, a)

where fi(s, a) is the i-th feature of the state produced by applying
action a to state s, and θi is the i-th coefficient of the function Q. The
coefficients θi of this function are learnt at each reinforcement learning
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step according to the following gradient-descent rule, that takes into
account the temporal difference δ,

θi ← θi + α× δ × fi(s, a)

The use of function approximators introduces certain complexity in Q-
learning but, at the same time, the use of features to represent states
has certain advantages. Many different shapes can share the same set
of features, so when we update the value for a given set of features, we
are learning (generalizing) over all similar pairs (state, action). Thus,
if an adequate set of features is selected, proper Q-values can be learnt
even for states that were never visited during the learning stage. The
features selected for our shape grammar domain will be described in
Section 3.3.

The algorithm we have used forQ(λ) (that is, the generalized version of Q-
learning, so as to control the bootstrapping level) with linear approximation
and binary features can be found in [23] (p. 213).

3. A system for the generation of housing unit designs

In this section we describe our approach combining shape grammars and
reinforcement learning through a knowledge-intensive test case: the design
of single-family housing units. In the conceptual stage of this design process,
where the architect faces the blank page syndrome but also has to consider
many design requirements, a system that proposes many distinct, feasible
and even unexpected starting points can be of great help.

3.1. Housing unit design

The design of housing units, either single or multi-family, is a strongly
constrained process. The nature of such constraints ranges from issues such
as the area of each space, to adjacency relationships between them and,
of course, more detailed constraints particular to each different space. In
this work we have started from the housing program proposed by the studio
Montaner & Mux́ı [74] for the regional government of Andalusia (Spain).
This program details the criteria that a basic house must fulfil depending
on the number of inhabitants. By a basic house we understand a house
that, besides satisfying some minimum habitability conditions, also offers
some adaptability, that is, its spatial composition may be modified if the
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number of inhabitants rises. The final outcome of our experiments will be
two-dimensional floor distribution schemes (in the following, schemes) of
basic, two-person housing units. The produced schemes are distributed in
just one floor.

Albeit working with floor plans does not guarantee a global approach
to architectural design, it allows the establishment of relationships between
spaces, the generation of circulation spaces and the definition of static places.
It also allows a dimensional quantification regarding area and longitudinal
measures, and therefore also concerning the house scale, making it compatible
with constructive and structural dimensions that approach reality.

In the housing proposal of Montaner, several kinds of spaces that must
be present in a basic house are established. Among these we have considered
three main categories: 1) specialized spaces (which need specific installa-
tions), 2) non-specialized spaces (do not need specific installations, and their
use is determined by the inhabitants: dining-room, living-room, bedroom)
and 3) complementary spaces (such as the distribution hall, that allows cir-
culation between spaces).

Table 2 summarizes the imposed explicit constraints. The nature of the
house contour is not constrained by our guidelines [74], but in the context
of a computational system we must set some additional criteria in order to
avoid the generation of unfeasible contours. In our experiments we have
favoured compact contours, (i.e. contours with a high area/perimeter ratio)
over scattered ones, because the latter might make the process of establishing
the internal layout of the scheme very difficult.

In Figure 5 proximity relationships between spaces are represented graph-
ically. The circle represents the external wall of the unit. Dotted lines estab-
lish possible relations, that differ from the striped line (adjoining relation)
in the level of importance (possible relations are less necessary than adjoin-
ing ones). Our system also considers an additional constraint that is not
explicitly mentioned in the housing proposal, but it is desirable to take it
into account in the design of a housing unit: the entrance to the house must
be near both the kitchen and the distribution hall, and not very close to the
bathroom.

Working with schemes of housing units for two people gives rise to some
considerations about intimacy and privacy that have implications in the exis-
tence of internal partition walls. Sharing a two-person housing unit involves a
high level of intimacy between the inhabitants, and thus less privacy is needed
than in the case of a higher number of people living in the house, so it is pos-
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Global requirements
R1: Total area must be of at least 46 m2

R2: The contour must be compact (not scattered)
Kitchen requirements
R3: Minimum linear space must be of at least of 6 modules 60×60 cm
R4: Minimum distance between modules and walls: 1,10 m
R5: Minimum distance between modules: 1,10 m
Bathroom requirements
R6: At least two modules of 90×180 cm must exist
Non-specialized spaces requirements
R7: The area of each non-specialized space must be bigger than 9 m2

R8: A 2,8 m-diameter circle must be inscribed inside each non-specialized space
Complementary spaces requirements
R9: A support space that allows the circulation between spaces must exist

Table 2: Requirement set for a single-family basic house (adapted from [74])

Figure 5: Proximity relationships in a single-family house (adapted from [74])
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sible to relax the existence of internal partitions. The most necessary walls
are those that isolate the bathroom from the rest of the house. Even walls
isolating the kitchen are not essential. The walls that delimit non-specialized
spaces such as living rooms or rooms are optional, and demarcation can be
achieved by means of proper pieces of furniture.

Here we have exposed the criteria that will guide the housing unit gener-
ation process in our system. Knowledge in Table 2 and in Figure 5 will be
formalized in the form of naive rules and, much more intensively, rewards,
that are numerical expressions that represent the quantities to be maximized
by the learning algorithm.

All the implementations along this work have been programmed using the
Ruby language [75]. For visualization and geometry-related tasks we have
used Trimble SketchUp [76], a 3D modelling tool that allows incorporation
of Ruby scripts. The main advantages of this technological choice are that
(a) SketchUp makes the edition and visualization tasks very easy, and (b)
it additionally provides a complete set of geometry operations that are very
useful when implementing ad-hoc shape grammars interpreters by means of
Ruby. The main shortcoming of this technological choice is the increase in
computing time that the use of an interpreted language may introduce.

3.2. Naive grammars and phases of generation

For the synthesis of housing units, we use naive shape grammars. There-
fore, the creation and management of rules is to a great extent easy. However,
we need additional mechanisms to control the execution of each rule, as ex-
plained in Section 2.3.

We have defined several design phases that establish an ordering in the
placement of the different architectural elements. Each phase can be de-
scribed as follows:

• Phase 1: Generation of a contour.

• Phase 2: Labelling the distribution hall.

• Phase 3: Placing the kitchen modules.

• Phase 4: Placing the bathroom modules.

• Phase 5: Labelling non-specialized spaces.

• Phase 6: Labelling the entrance.
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This division in phases allows us to simplify the problem, since each phase
needs to care only about the relevant set of requirements.

Figure 6 illustrates the grammars for phases 1-6 (there is a maximum
of two rules per phase). The input to the first phase is a simple axiom: a
suitably labelled module of one square meter (1 m2). The shape generated
in the n-th phase is the input for the (n+ 1)-th phase.

In the following we explain how each rule works. Rule 1 is in charge of
creating the contour. White labels are used to mark the added walls, and
black labels mark the interior of the housing unit. In Figure 1 we can see an
example of how this rule enlarges the small contour delimited by the axiom.
Some residual walls can arise from the application of rule 1, thus we use rule
2 in order to delete them. As we can see in Figure 6, the left-hand side of
rule 2 ensures that it will only erase inner walls, keeping the walls delimiting
the contour untouched. Rule 3 puts the label that marks the location of
the distribution hall somewhere in the interior of the housing unit, which is
marked with black labels. Rules 4 and 5 are in charge of placing the kitchen
modules (that is, the pieces of furniture that will delimit the kitchen space).
In particular, rule 4 adds the first module, which is placed right next to a
contour wall. Rule 5 adds the rest of the modules, just adding one module
next to an existing one. Rules 6 and 7 are similar to rules 4 and 5, but they
refer to bathroom modules. Notice that the dimensions of these modules
(both for the kitchen and the bathroom) are directly extracted from the
housing program of Montaner (see Table 2). Rule 8 marks a non-specialized
space, and it works exactly as rule 3, except for the kind of label in its right-
hand side. Finally, rule 9 marks the entrance to the housing unit, placed
right next to a contour wall.

Rules are executed in order (the ordering is given by the rule numbers)
and repeatedly applied as long as possible, or until a final state test has been
satisfied. This final state test depends on each rule. Tests for every rule are
gathered in Table 3.

This set of rules can be used without further guidance to generate schemes;
when executing each rule, all possible transformations are computed and one
of them is selected at random. Two examples are depicted in Figure 11
For the final presentation of the schemes, two additional operations are per-
formed: (a) erasing of the labels and (b) addition of significant text in order
to distinguish each space. As we will discuss in Section 4, the schemes are
not actually admissible, highlighting the need of extra guiding mechanisms
in order to comply with housing unit requirements.
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Figure 6: Naive grammars for phases 1-6

Rule Final state test
1 Total area = 46 m2

2 Execution continues until the rule cannot be applied any longer
3 A distribution hall label exists
4 The first kitchen module is placed
5 Six kitchen modules are placed
6 The first bathroom module is placed
7 Two bathroom modules are placed
8 Two specialized labels exist
9 The entrance to the house is placed

Table 3: Final state tests for every rule
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Figure 7: Effect of the application of rule 2

3.3. Learning processes for naive shape rules

In order to generate valid designs, we must incorporate a policy into each
naive rule. These policies will select the most suitable transformation to be
applied at each step in order to produce feasible solutions.

Nevertheless, not every rule in Figure 6 needs the use of a policy. For
example, rule 2 cannot perform badly, since it only erases residual walls that
appear from the repeated execution of rule 1 (see Figure 7).

Rule 3, which is in charge of placing the label for the distribution hall,
can also perform well randomly, since when it is applied, none of the elements
of the scheme has been placed yet. So this label can be placed at any point
inside the scheme, and then the rest of the elements will be placed considering
its situation.

Rules 1, 4, 5, 6, 7, 8 and 9 need to be guided by a policy in order to
perform properly, because they have to meet requirements that have not
been considered inside the rules due to their naive nature. These policies
are learnt through reinforcement learning. As explained in section 2.4, in a
reinforcement learning process we interact with our environment by obtaining
rewards; these will be determined from the conditions described in Section
3.1, concretely the ones in Table 2 and Figure 5. We also need to establish
state features, because we deal with a vast state space and thus storing the
value of each state in a table is not practical; therefore, we will learn a
function of the features that returns the values of states.

As an example of how policy learning is accomplished, we will consider
rule number 5 to explain in detail the features and rewards that have been
used. Rule 5 is in charge of placing the kitchen modules. It is depicted in
figure 6. As we can see, the rule simply states that an additional module can

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

be placed next to an existing kitchen module.
The reward for the learning process of this rule is defined as follows: the

more requirements the state complies with at a certain step, the bigger reward
it gets. An advantage of dividing the process in distinct phases is that we only
have to consider subsets of requirements. In this case, we have considered
six requirements that are evaluated as 1 or 0 depending on whether they are
fulfilled or not in the shape corresponding to a given state. The first one is a
geometric constraint: every module must lie inside the contour. The others
are direct translations of constraints imposed by the guideline [74]:

• r5,1(s) = 1 if every module is inside the contour.

• r5,2(s) = 1 if every module is accessible.

• r5,3(s) = 1 if the distance between modules and walls is bigger than 1,1
m.

• r5,4(s) = 1 if the distance between non-contiguous modules is larger
than 1,1 m.

• r5,5(s) = 1 if the modules are at a proper distance from the distribution
hall (more than 1,2 m and less than 6).

• r5,6(s) = 1 if there are at least six modules.

So the reward r(s) of a state (a shape) s in the context of rule 5 is
computed as the following sum:

r5(s) = 3 ∗ r5,1(s) + r5,2(s) + r5,3(s) + r5,4(s) + r5,5(s) + r5,6(s)

Some extra expert knowledge can be used to define this reward. In the
case of rule 5, this expertise is translated in giving more importance to the
fulfilment of the first requirement (the one that determines if the modules
are inside the contour).

To define the features for this phase, we have decided to identify a feature
with every single requirement, so six binary features were considered for the
shapes generated by this rule. Each feature is computed over the shape s′

produced by applying action a to the shape of state s:

f5,i(s, a) = r5,i(s
′), 1 ≤ i ≤ 6
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Rule Reward
1 area/perimeter2

4 r4,1(s) + r4,2(s)
5 3 ∗ r5,1(s) + r5,2(s) + r5,3(s) + r5,4(s) + r5,5(s) + r5,6(s)
6 3 ∗ r6,1(s) + r6,2(s) + r6,3(s)
7 3 ∗ r7,1(s) + r7,2(s) + r7,3(s) + r7,4(s)
8 3 ∗ r8,1(s) + r8,2(s) + r8,3(s) + r8,4(s) + r8,5(s) + r8,6(s)
9 r9,1(s) + r9,2(s) + r9,3(s) + r9,4(s)

Table 4: Rewards for every learning process

So the learned value Q5(s, a) is determined by the function:

Q5(s, a) = θ5,1 × f5,1(s, a) + · · ·+ θ5,6 × f5,6(s, a)

The reward r(s) refers to the short-term value of certain shape. In the
end, the algorithm will learn the adequate coefficient θ for each feature f
(that is, the policy), so as to determine which features must be pursued first
in order to maximize the accumulated reward obtained at the end of the rule
application.

The reward expressions used for each rule are gathered in Table 4. Re-
wards are assigned to states at every step, except in the first rule, where they
are assigned only to final states. This is due to the fact that we only have
valuable information of the compactness of a contour when all the modules
have been placed.

The complete set of requirements that define rewards for rules 4-9 is
gathered in Table 5. All these requirements are binary, i.e one or zero when
the associated predicate is satisfied or not respectively.

Table 5: Requirements for rules 4-9

Rule 4 (placing the first kitchen module)
r4,1(s) = 1 if the module is at a proper distance from the distribution
hall (more than 2 m and less than 4)
r4,2(s) = 1 if the module is separated from the walls by at least 1,1 m
Rule 5 (placing the rest of the kitchen modules)
r5,1(s) = 1 if every module is inside the contour
r5,2(s) = 1 if every module is accessible
r5,3(s) = 1 if the distance between modules and walls is bigger than 1,1
m
Continued on Next Page. . .
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Table 5 – Continued
r5,4(s) = 1 if the distance between non-contiguous modules is larger than
1,1 m
r5,5(s) = 1 if the modules are at a proper distance from the distribution
hall (more than 1,2 m and less than 6)
r5,6(s) = 1 if there are at least six modules
Rule 6 (placing the first bath module)
r6,1(s) = 1 if the module does not overlap with kitchen modules
r6,2(s) = 1 if the module is at a proper distance from the distribution
hall (more than 2 m and less than 4)
r6,3(s) = 1 if the module is separated enough from the walls
Rule 7 (placing the rest of the bath modules)
r7,1(s) = 1 if the modules do not overlap with any kitchen module
r7,2(s) = 1 if the modules are at a proper distance from the distribution
hall (more than 2 meters and less than 4)
r7,3(s) = 1 if the modules are separated enough from the walls
r7,4(s) = 1 if there are at least two modules
Rule 8 (labelling non-specialized spaces)
r8,1(s) = 1 if in each label a 3 meter-diameter circle can be centred,
without overlapping with walls or modules
r8,2(s) = 1 if there is a label separated from the bath by less than 4,5 m
r8,3(s) = 1 if there is a label separated from the kitchen by less than 4,5
m
r8,4(s) = 1 if there are 2 non-specialized labels separated at least by 3 m
r8,5(s) = 1 if the distance from each non-specialized label to the distri-
bution hall label is larger than 2 m and shorter than 6
r8,6(s) = 1 if when there is one single non-specialized label, then there is
enough space for another one
Rule 9 (labelling the entrance)
r9,1(s) = 1 if the entrance is separated by at least 1 m from every kitchen
module
r9,2(s) = 1 if entrance is less than 2 m from some kitchen module
r9,3(s) = 1 if the entrance is separated by at least 4 m from every bath-
room module
r9,4(s) = 1 if the distance from the entrance to the distribution hall label
is shorter than 4 m
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Features for rules 4-9 have been defined according to the expression:
fi,j(s, a) = ri,j(s

′), as we have explained for rule 5. Other approaches for
features definition are possible (apart from directly translating design re-
quirements). For example, in the case of rule 1, the design requirement is a
high compactness factor, and we have not directly defined the features from
this requirement, as in rules 4-9. Using any approach, the general intuition
behind the definition of the features is that they have to be related via a
linear function in order to maximize the final reward. In the case of rule
1, the use of a linear function of the number of modules with 1, 2, 3 and
4 neighbours makes sense, as compact shapes will probably have a certain
combination of the following features:

• f1,1(s, a) = number of modules of 1 m2 with 1 neighbour

• f1,2(s, a), f1,3(s, a), f1,4(s, a) analogously to f1,1(s, a) with 2, 3 and 4
neighbours respectively

As these features are continuous, they have been normalized between 0
and 1, by dividing by the total number of modules of 1 m2 that are going to
exist at the end of one learning episode; in this case this number is 46.

In the end, the learning algorithm will learn how much these features re-
late to each other. If the relation were not linear, then the learning algorithm
would fail. However, our results suggest linear relations capture this relation
well, since scattered contours are not generated.

Except for the first rule, for which the axiom (initial state in the learning
process) is always the same (one module of 1 m2), for the rest of the rules the
initial states can be quite different. For example, in the case of rule 6, the
initial state is the house contour with the label of the distribution hall and
the kitchen modules already placed. The distribution hall and the kitchen
modules could be in many different places, so it would be illogical to always
start the learning process with the distribution hall and the modules exactly
in the same place. It is better to use a set of distinct initial states for every
learning process. These initial states are generated by means of the previous
rules, using the already learnt policies when necessary.

The coefficients for each policy were initialized to arbitrary values (in our
case, they were set to zero) before the learning process. After running the
reinforcement learning algorithm, the values for these coefficients are learnt,
with the objective of maximizing the total accumulated reward. The learnt
coefficients are gathered in table 6.
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Rule 1
θ1,1 = 0, 0037; θ1,2 = 0, 0044; θ1,3 = 0, 0338; θ1,4 = 0, 0624
Rule 4
θ4,1 = 9, 6338; θ4,2 = 10, 9915
Rule 5
θ5,1 = 11, 3647; θ5,2 = 5, 0703; θ5,3 = 6, 3998; θ5,4 = 6, 9184; θ5,5 = 7, 581; θ5,6 = 1, 7631
Rule 6
θ6,1 = 13, 9956; θ6,2 = 10, 9998; θ6,3 = 10, 7779
Rule 7
θ7,1 = 6, 7972; θ7,2 = 7, 2621; θ7,3 = 6, 8873; θ7,4 = 6, 8873
Rule 8
θ8,1 = 6, 3159; θ8,2 = 2, 9472; θ8,3 = 7, 2953; θ8,4 = 5, 1918; θ8,5 = 7, 4059; θ8,6 = 8, 3831
Rule 9
θ9,1 = 7, 4246; θ9,2 = 2, 0591; θ9,3 = 5, 7704; θ9,4 = 1, 5242

Table 6: Policies learnt for every rule

Figure 8: Shape produced from one derivation of rule 1

For rule 1, the learnt coefficients establish a combination of the number
of tiles with 1, 2, 3 or 4 neighbours. For rules 4-9, the learnt coefficients give
importance to each feature regarding the maximization of the accumulated
reward. Possibly not all requirements are going to be fulfilled at the end
(that is, not every feature is going to be 1-valued), so the learnt coefficients
give insight to determine which requirements must be pursued first in order
to maximize the final total reward.

In order to clarify how the learnt policies guide rule derivation, we will go
through one step of the guided application of rule 1 (the process is the same
for every rule). Let us suppose that, at a certain moment, the derivation of
rule 1 has yielded the shape in Figure 8.

There are many possible transformation alternatives for the next applica-
tion of rule 1. Each transformation would yield a different shape, but many
of these shapes share the same features. In order to represent all the shapes
that share the same set of features, we use patterns according to the follow-
ing method: we mark with a cross all the positions where one application of
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Figure 9: Pattern that represents two shapes obtained from the shape of Figure 8 sharing
the same features

rule 1 could add the extra black label of its right part (see Figure 6). For
example, in Figure 9 we can see the pattern for two shapes that share the
following features:

• f1,1(s, A) = 1/46

• f1,2(s, A) = 5/46

• f1,3(s, A) = 1/46

• f1,4(s, A) = 2/46

Where s is the shape depicted in Figure 8 and A is the set of transforma-
tions of rule 1 that yield some of the shapes included in the pattern of Figure
9 (in this case |A| = 2). We can now compute the value for these features by
means of the coefficients for rule 1 (see Table 6):

Q1(s, A) = θ1f1,1(s, A) + · · ·+ θ4f1,4(s, A) = 0, 1843/46

The application of rule 1 to the shape in Figure 8 yields four different com-
binations of features. In Table 7 we gather the four corresponding patterns
along with their features and the computed value.

In light of the computed values gathered in Table 7, the chosen trans-
formation is one of those that yields the pattern in the first row of Table 7
(that is, we randomly pick one action of the set A1), because it produces the
higher value. This pattern represents the two shapes depicted in Figure 10.

When all the policies have been learnt, we can automatically produce
designs with the rules guided by their policies when these are present (that
is, in rules 1, 4, 5, 6, 7, 8 and 9). In Section 4 we show some obtained results.
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Pattern Features Value

f1,1(s,A1) = 0
f1,2(s,A1) = 4/46
f1,3(s,A1) = 4/46
f1,4(s,A1) = 1/46

0, 2152/46

f1,1(s,A2) = 1/46
f1,2(s,A2) = 5/46
f1,3(s,A2) = 1/46
f1,4(s,A2) = 2/46

0, 1843/46

f1,1(s,A3) = 1/46
f1,2(s,A3) = 4/46
f1,3(s,A3) = 3/46
f1,4(s,A3) = 1/46

0, 1851/46

f1,1(s,A4) = 0/46
f1,2(s,A4) = 5/46
f1,3(s,A4) = 2/46
f1,4(s,A4) = 1/46

0, 152/46

Table 7: Patterns yielded by one application of rule 1 to the shape in Figure 8

(a) (b) 

Figure 10: Shapes represented by the best pattern obtained from the shape of Figure 8
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Kitchen

Bathroom

Non-specialized

space

Non-specialized

space

Kitchen

Distributor

Distributor

Non-specialized

space

Non-specialized

space

Bathroom

(a) (b)

Figure 11: Two schemes obtained with naive grammars

4. Results

All tests reported in this work were run on an Intel Core i7 860 @2.80
GHz processor with 8GB RAM and Windows 7 (64 bits).

4.1. Naive grammars without policies

A number of schemes were generated with the naive set of rules depicted
in Figure 6, without benefiting from any process of learning. Namely, the
system was used to generate 100 schemes (two of them are shown in Figure
11). For the final presentation of the schemes we have (1) replaced labels for
the kitchen, bath, distributor hall and non-specialized spaces with suitable
text, (2) replaced the entrance label with an arrow, and (3) surrounded non-
specialized spaced with dotted, 3×3 m. squares.

Computation was fast. The minimum generation time for a scheme was
30,42 s and the maximum 41,88 s. The mean time was 34,87 s.

All the schemes were different, but all of them violate several requirements
of the housing program described in Section 3.1. In particular, those in Figure
11 violate the following requirements of Table 2:

• R2. The contours are scattered

• R3. The kitchen modules do not form a lineal space
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• R4. The distance between kitchen modules and walls is not higher than
1,1 m

• R8. A 2,8 m-diameter circle cannot be inscribed inside each non-
specialized space

• R9. There is not a support space that allows the circulation between
spaces.

Regarding the relevant relationships gathered in Figure 5, these schemes
do not respect them mainly because a circulation cannot be established be-
tween the different spaces in the housing unit.

These results could be expected given the use of naive, non-expert shape
grammars without further guidance. Grammar rules do not enforce the whole
set of the involved requirements, and thus arbitrary execution is not likely to
lead to feasible designs.

4.2. Learning processes

In our system we have used the algorithm Q(λ) outlined in section 2.4
with the following parameter choice: learning rate α = 0.1; exploration rate
ε = 0.3; discount rate γ = 0.8; bootstrapping level λ = 0.5. In Section 5 we
describe a parametric study that has been carried out in order to determine
how different settings of parameters affect the learning processes.

In table 8 some information about the learning processes for the different
rules is shown. For each rule amenable to be learnt (namely, rules 1, 4, 5, 6,
7, 8 and 9) the number of learning episodes (in Section 5 we describe how
these numbers have been established) and different initial states are shown.
Every learning episode ends when a final state is reached (see Table 3). The
last column shows time in seconds taken by the learning process.

4.3. Naive grammars with policies

A hundred designs were produced by means of generation processes guided
by policies when necessary (that is, for rules 1 and 4-9 in Figure 6). Only
11 out of these 100 schemes violated some of the constraints in Table 2.
Therefore, compared to the ones generated by the naive grammars alone,
these are closer to fulfil the housing program described in Section 3.1.

We arbitrarily chose 12 schemes out of the valid ones. The generated
schemes are depicted in Figures 12 and 13. Computation time was fast; the
minimum generation time for a scheme was 33,94 s and the maximum 44,35
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Rule No. of Episodes No. of initial states Learning time (in seconds)
1 5000 1 4728,42
4 100 10 76,57
5 100 10 270,758
6 100 10 126,75
7 100 10 481,215
8 100 10 130,198
9 100 10 53,611

Table 8: Information of learning processes

s. The mean time was 38,46 s. The slight time increase with respect to the
random execution of the naive grammars is due to the calculus of the feature
values, that has to be performed in this policy-driven approach, but not in
the random one. Nevertheless, the number of iterations (understood as rule
derivations) is the same for both approaches, as the final step tests (shown
in Table 3) are shared.

The schemes show also great design diversity. A more in-depth discussion
of the quality of the results from an quantitative and architectural point of
view can be found in Section 5.

5. Discussion

The results shown in section 4 can be discussed from several points of
view. We will focus on four issues:

1. Admissibility of generated schemes

2. Architectural evaluation of the generated schemes

3. Variability of generated schemes and generation times

4. Knowledge engineering effort

Admissibility of generated schemes. The first goal of the system should be
to generate admissible designs according to the Montaner program (that is,
regarding the items in Table 2 and the relationships depicted in Figure 5).
Obviously, a naive grammar generates inadmissible schemes: it is difficult
for a scheme generated at random to satisfy all the requirements. It was
illustrated in Section 4.1.

However, when policies are learnt the rules generate better designs, as the
rewards considering Montaner criteria are maximized. Regarding conditions
of Table 2 and Figure 5, we found that the requirements were violated only 22
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Figure 12: Some generated designs (results a-f)
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(g) (h) (i)
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Figure 13: Some generated designs (results g-l)
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Requirement reference Number of schemes that violate the requirement
R3 6
R4 2
R8 5

Adjoining relation between
entrance and distribution
hall

3

Adjoining relation between
non-specialized space and
distribution hall

6

rest of requirements 0

Table 9: Requirements violated by the generated schemes

times. This fact is detailed in Table 9, where we list the number of schemes
that violate each criterion.

Architectural evaluation of the generated schemes. Our system, applied to
the generation of housing units according to a guideline, aims to help ar-
chitects in overcoming the blank page syndrome, providing them with many
distinct and feasible solutions. Once these solutions have been obtained,
design practitioners can evaluate them in order to discover promising incep-
tions for their projects. This evaluation is done from a more general and
subjective architectural perspective. In this section we describe this process
of evaluation.

The results in Figures 12 and 13 were studied by a team of architects.
From the depicted set of schemes, two were chosen by the architects as the
best alternatives, and other two ones as the less adequate. Additionally, some
improvements that can be easily performed in order to obtain more plausible
solutions are detailed.

Schemes (a) and (b) can perform well, since non-specialized spaces are
each one combined with a specialized space (kitchen or bathroom). In (a)
there is an efficient combination of entrance, kitchen, distribution hall and
non-specialized space that releases space and optimize the circulation. More-
over, when we enter the house we find a wide space that gives the feeling
of more spaciousness. The scheme (b) aligns the kitchen and the bathroom,
which is desirable given the possibility of sharing piping installations.

On the other hand, schemes (g) and (h) are not feasible from an archi-
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tectural point of view. The kitchen and the bathroom have a diagonal dis-
position that strangulates non-specialized spaces and makes the circulation
difficult.

Schemes (e) and (k) can be easily improved by changing the location of
the bathroom, moving it from the bottom to the top of the scheme. Scheme
(d) can be improved by moving the kitchen to fit a corner (for example, the
top-right one), and thus form a more delimited space. In scheme (j) we could
change the entrance position to one more centred, in order to improve the
circulation inside the house.

Interestingly, in (a) we can observe an unexpected fact concerning the
entrance. Normally, this kind of housing units have the entrance more or less
centred in order to make the circulation easier. Nevertheless, the entrance
of scheme (a) performs very well placed in a lateral position, given the high
compactness of the solution. Also, the contours of the housing units are to a
great extent very unusual and inspire grouping or clustering possibilities be-
tween units. These are examples of how we can find unexpected and inspiring
solutions using the shape grammar framework.

In general, except for schemes (g) and (h), all the solutions in Figures
12 and 13 are feasible with minor changes or even just as they have been
generated, as is the case of (a) and (b).

It is worth questioning why the set of criteria used by the team of ar-
chitects has not been considered in the assessment of schemes during the
learning process. Firstly, we emphasize that this architectural evaluation is
part of the intended work flow inside which our system makes sense, that
is: (1) generating many feasible and varied schematic designs effortlessly, (2)
studying and evaluating the proposals from the point of view of the designer,
and (3) using the best generated solution(s) as seed(s) for complete architec-
tural projects. Secondly, the criteria considered by our team of architects do
not belong to any architectural guideline (unlike the requirements that have
been used in the learning process, that stem from an architectural guideline),
and can be described as subjective and even elusive in some cases.

Variability of generated schemes and generation times. An analysis of gen-
eration time and variability of solutions is interesting in the context of an
interactive system that is to be used by designers who are willing to obtain a
big number of different alternatives for the first stages of the design process.
These alternatives will be evaluated, and in case they do not meet design cri-
teria or they just do not satisfy the designer, he or she may wish to generate
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another big set of solutions.
As mentioned in section 4 and shown in Figures 12 and 13, the system

generates different schemes for the given problem. In fact, when applying
the policy, we choose the action that yields the maximum value. In order to
produce a potentially distinct shape every time the policy is applied, we need
more than a single action a to yield the maximum possible value so that we
can pick one action out of the set of draws. As features aim at generalizing
shapes, this behaviour is likely to occur: several actions may yield shapes
with the same feature values (this fact is described in section 2.4, see Table
7). Generated designs thus turn out to be substantially different in our case.

Once the policies are learnt, the system must run in a reasonable amount
of time, suitable for an interactive environment. This goal is also achieved by
the rules with the learnt policies (generation times of about half a minute per
scheme, see Section 4). Notice that generation times are very similar to those
for the naive grammars alone, so the effect of incorporating learnt policies to
the rules is not relevant. Most time was employed in learning processes, but
this is only done once for each rule.

The knowledge intensive domain of housing unit design will benefit from
this approach, as designers will be able to consider simultaneously a huge
number of automatically generated starting points (possibly unexpected) that
will generally meet the considered set of design criteria.

Knowledge engineering effort. The use of conventional expert shape gram-
mars requires an important knowledge engineering effort. In the case consid-
ered in Section 3.1, a set of rules that generate all valid designs of housing
units according to the program under consideration would have to be de-
fined. The main difficulties to overcome would be brittleness, maintenance,
precedence, and unanticipated interactions of the expert shape rules.

In contrast, the learning system proposed here makes use of naive shape
grammars and an explicit rule ordering dictated by elementary considera-
tions. For example, rules 4 and 5 in Figure 6 add standard kitchen modules
of 60 × 60 cm., but do not prescribe how these modules are to be exactly
placed in the final design. These sets of naive rules are robust and easy to
create, understand, modify and maintain.

Policies on rule application are the necessary complement to this simple
approach. These guarantee that rules interact in desirable ways according to
the housing design program. Policies are learned automatically from rewards
and features as explained in Section 3.3. Therefore, the knowledge engineer-
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ing effort concentrates mainly on defining these rewards. In the presented
case, these also follow easily from the design program.

However, stochastic learning algorithms, like the one used in this study,
incorporate a number of parameters that need to be set before learning is
actually carried out. Analysing the effect of all parameters simultaneously in
algorithm performance is a combinatorially difficult task and is never carried
out in practice. Instead, each parameter is usually analysed in isolation,
using standard values for the others. Our case involves only four parameters,
which can be summarized in order of importance as follows,

• Bootstrapping level (λ ∈ [0, 1]). If λ = 0, then the algorithm uses
pure temporal differences. If λ = 1, then the algorithm becomes a
Monte-Carlo method.

• Discount rate (γ ∈ [0, 1]) . If γ = 0, then the algorithm favours ac-
tions with immediate rewards, while with γ = 1 long-term rewards
are sought. Although our approach seeks long-term rewards, we some-
what reduce this value according to the recommendations of Thrun and
Schwartz [77].

• Exploration rate (ε ∈ [0, 1]). This is the probability that the algorithm
will ignore the current policy in favour or random exploration during
the learning process.

• Learning rate (α ∈ [0, 1]). This is a standard parameter in many learn-
ing algorithms that controls how fast learning takes place. However,
large values can lead to convergence problems.

In the experiments described along the paper, these parameters were set
to the following“standard”, conservative values: λ = 0.5, γ = 0.8, ε = 0.3, γ =
0.1. In order to study the influence of the parameters on the results obtained
by the Q-learning algorithm, additional experiments were carried out. For the
compact contour generation problem, parameters were sequentially analysed
and set according to the initial values and phases described in Table 10. The
first parameter analysed was the bootstrapping level (λ). A wide range of five
different values was analysed (0, 0.25, 0.5, 0.75, 1) while the rest of parameters
were set to the values we chose (γ = 0.8, ε = 0.3, α = 0.1). The best value
for λ was obtained assessing the quality of the generated designs according
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Phase Parameter Plausible values Fixed values
1 λ (0, 0.25, 0.5, 0.75, 1) γ = 0.8, ε = 0.3, α = 0.1
2 γ (0.7, 0.8, 0.9, 1) λ = λphase1 , ε = 0.3, α = 0.1
3 ε (0.1, 0.2, 0.3, 0.4) λ = λphase1 , γ = γphase2 , α = 0.1
4 α (0.1, 0.15, 0.2) λ = λphase1 , γ = γphase2 , ε = εphase3

Table 10: Sensitivity analysis for the involved parameters in the algorithm Q(λ)
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Figure 14: Average compactness factor during the learning process

to their compactness factors. Then, the analysis of the other parameters was
carried out in a similar fashion.

Most of the experimentation was devoted to parameter λ. Up to 3000
learning episodes were needed to produce good designs. Figure 14 shows the
average compactness factor of produced designs with intermediate learned
policies during the process for λ = 0.5. However, algorithm Q(λ) proved to
be robust regarding parameter λ in this domain, returning good designs for
all values. A trade-off value of λ = 0.5 was finally chosen to take advantage of
the speed provided by bootstrapping methods and the safety of Monte-Carlo
techniques (see [23], Section 8.6).

Regarding the discount rate, values of γ = 0.9 and γ = 1 provided poor
results, as already noticed by Thrun and Schwartz [77]. Therefore, the initial
value of γ = 0.8 was preserved. Finally, the algorithm proved to be robust
regarding variations of ε and α, so the initial values were also preserved.
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In summary, standard parameter settings proved to perform well and
quite robustly in this domain.

6. Conclusions and future work

This work deals with the computational design problem of automatic,
partially-directed generation of design alternatives according to certain cri-
teria. A novel proposal is presented to complement the generative power
of shape grammars with reinforcement learning techniques. The approach
makes use of simple (naive) shape grammars that are easy to elaborate and
understand. Unlike previous approaches based on naive grammars, the gen-
eration process is controlled by policies learnt with reinforcement learning
techniques. The power of shape grammars allows to generate a large va-
riety of designs, while reinforcement learning helps to obtain policies that
guide the generation process towards those designs that satisfy given design
requirements.

This methodology has been applied to generate two-person, basic housing
2D scheme units. Working with floor plans simplifies geometry issues, and is
enough to allow the establishment of relationships between spaces. A simple
set of rules has been presented for the different phases of housing unit design.
Adequate policies for design generation were learnt according to an adapted
set of the constraints and conditions proposed by a design guide elaborated for
the regional government of Andalusia, Spain. Learning is based on rewards
and features, taken directly from the conditions established in the design
guide. Learning processes are easy to define and run in reasonable time.

The system generates schemes which are clearly better than the ones
generated by the same grammars without learning. Schemes also present
a great variability and are reasonable solutions to the housing unit design
problem analysed. Time generation is also reasonable, allowing architects to
consider simultaneously a huge number of automatically generated starting
points (possibly unexpected) that will generally meet the considered set of
design criteria.

The natural continuation of this work would be to apply the same method-
ology (simple shape grammars and reinforcement learning) to more complex
problems of architectural and engineering design. Our separation of the gen-
eration process in sequential phases manages to reduce the set of require-
ments that are taken into account at every step. However, it also introduces
an important shortcoming that may have impact when dealing with more
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complex design problems: the learning process deals only with the local re-
quirements of each phase, and thus the policies cannot reflect global issues.
For example, in the context of our housing design example, a globally optimal
policy would give insight about how to place the kitchen modules regarding
the future placing of non-specialized spaces. A more ambitious continuation
would be to relax rule ordering, allowing more flexibility in the processes of
generation and learning. The application of multi-objective reinforcement
learning techniques to naive design grammars is also an interesting line of
future research.
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