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The design process of mechatronic devices, which involves experts from different disciplines working
together, has limited time and resource constraints. These experts normally have their own domain-spe-
cific designing methods and tools, which can lead to incompatibilities when one needs to work together
using these those methods and tools. Having a proper framework which integrates different design tools
is of interest, as such a framework can prevent incompatibilities between parts during the design process.
In this paper, we propose our co-modelling methodology and co-simulation tools integration framework,
which helps to maintain the domain specific properties of the model components during the co-design
process of various mechatronic devices. To avoid expensive rework later in the design phase and even
possible system failure, fault modelling and a layered structure with fault-tolerance mechanisms for
the controller software are introduced. In the end, a practical mechatronic device is discussed to illustrate
the methods and tools which are presented in this paper in details.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Designing mechatronic devices is a challenging task for various
reasons: (1) There are limited time and resources (money, human)
for new innovation and assessment of mechatronic devices in cur-
rent commercial markets; (2) New devices with novel functionality
and an acceptable reliability need to reach the market before other
competing products; (3) Mechatronic device development is a
multi-disciplinary process, involving those who have domain-spe-
cific knowledge in their own field, such as electrical engineers,
software engineers and mechanical engineers. In order to accom-
plish a design process in shorter design cycles, lower cost and bet-
ter quality, engineers often use their own domain-specific design
tools to perform simulations to avoid expensive physical proto-
types in early design stages. Mechatronic devices are currently also
known as Cyber-Physical Systems (CPS), as they consist of digital
devices (computer, micro-controller, etc.) interacting with ana-
logue (continuous-time) machines. Intrinsically, CPS have their
incompatibilities, as the arithmetically and logically (binary) com-
puted controller software is executed in discrete time while the
dynamic plant is modelled in continuous time (i.e.: differential
equations). Experts from different domains have different terms
for the same concept or have the same term for different concepts.
Both these cases are problematic, which can lead to serious prob-
lems later [1].

To handle possible fatal design flaws of mechatronic devices,
modelling possible faulty behaviour of these devices and
designing software that deals with this faulty behaviour at an
early design stage is helpful to construct the actual devices
‘‘First-Time-Right’’.

Methodologically, there are two major directions to perform
modelling and simulation for CPS [2]: (1) use a homogeneous sys-
tem model, i.e. using a single modelling language to express the
whole CPS, and consequently use a single simulator and (2) use a
heterogeneous system model, i.e. using different domain-specific
modelling languages to model components from different
domains, each simulated with their own simulator, and thus need
a means to couple the involved simulators.

Using the homogeneous modelling approach, a model transfor-
mation from one domain to another is needed in order to model
CPS in one single language. This regularly involves more abstrac-
tions and simplifications than originally planned,which in general
compromises model fidelity. Furthermore, engineers from different
specific domains often have the conceptual incompatibilities as
mentioned above, causing misunderstandings and abstracting
away relevant aspects, resulting in incompetent model parts. How-
ever, the single modelling formalism approach does work in case
one of the domains is most relevant for the design: When one
domain behaviour of the system is dominant, a system model

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2014.05.004&domain=pdf
http://dx.doi.org/10.1016/j.aei.2014.05.004
mailto:y.ni@utwente.nl
mailto:j.f.broenink@utwente.nl
http://dx.doi.org/10.1016/j.aei.2014.05.004
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


Y. Ni, J.F. Broenink / Advanced Engineering Informatics 28 (2014) 232–240 233
can be made in which the other domains are either ignored or sim-
plified and formulated in the formalism of the dominant domain.
For example, when the continuous-time (CT) part behaviour of
the system is dominant, a purely CT representation can be made,
in which the discrete-event (DE) part is abstracted away, or mod-
elled very concise.

The heterogeneous system modelling approach preserves the
hybrid properties of the systems by modelling the components in
their own most suitable formalism. In this way, the CT components
of CPS are modelled in one language which is best suitable for
physical-systems dynamics modelling, while the DE components
are modelled in an other appropriate modelling language. In this
case, no sacrifice in any modelling domain needs to be made. This
approach, however, has the risk that since each of the modelling
formalisms and thus simulators has its own notion of time, they
simply do not work together naturally. A proper synchronisation
scheme to couple these different simulators is therefore needed.
Simulation of such a combination takes in general more simulation
time than when a homogeneous approach was used.

The proposed approach in this paper is to perform a co-model-
ling methodology (heterogeneous system modelling methodology)
supported by a co-simulation tool framework which can address
the incompatibilities described in the previous paragraphs.

Other research work has been done related to co-modelling
methods and implementing the methods using tool frameworks:
Modelica [3] is an object-oriented, equation based multi-domain
language for simulating controlled physical systems, and provides
a number of open and closed source libraries of physical compo-
nents. However, in general, Modelica simulators cannot perform
co-simulations that combine DE and CT computation domains
together. The Functional Mockup Interface (FMI) [4] is a tool-inde-
pendent standard for exchanging data between dynamic models,
which is executed by implementing Functional Mock-up Units
(FMU) that contain concrete mathematical models describing pos-
sible events in the related models. However, as it is indicated in [5],
due to the fact that FMU is at a lower abstraction level comparing
to Modelica and more target-oriented, it is less flexible. Ptolemy II
[6] supports heterogeneous simulation from a methodology point
of view, where per diagram a Model of Computation must be
specified. It is implemented as a single tool. However, in [7,8], it
was shown that dynamic plant modelling in Ptolemy II is less
intuitive than 20-sim1 (details about this tool will be mentioned
later in Section 2.2.3).gCSP [9] is to graphically model concurrent
process-oriented software based on the CSP formalism [10].
Co-simulation of networked control systems has been tried out
[11], but the tool never reached maturity. Cosimate2 is a backplane
co-simulation tool offering interfaces to tools like Simulink,
Modelsim, Modelica. Only time synchronisation is supported as
exchanging data between simulators every time step. Cosimate has
been tried out on the control of a mechatronic test set up [12]. The
two discipline-specific models involved have to be connected in a
rather cumbersome way.

In this paper, we discuss how our co-modelling method can
help to solve the incompatibilities coming along with the designing
process of mechatronic devices. In Section 2, we present some
essential modelling and simulation concepts, explaining our mod-
elling top-level structure, the details about the co-simulation tool
integration framework. In order to make the design process of
mechatronic devices ‘‘First-Time-Right’’, details about fault model-
ling and its corresponding controller software fault handling will
also be introduced. Section 3, the introduced methods and the tools
are demonstrated by using an existing mechatronic device as an
Fig. 1. Top-level structure of the system model.

1 www.20sim.com.
2 www.chiastek.com/products/cosimate.html.
example. Finally, conclusions are drawn and directions for future
work are indicated in Section 4.

2. Approach

In Section 2.1, the proposed co-modelling concepts and meth-
ods are introduced, following by details about the co-simulation
tool integration framework in Section 2.2. Fault modelling and
fault handling in controller software are presented in Section 2.3.

2.1. Modelling methodology

To avoid unnecessary misunderstanding about commonly used
terms in this paper for readers from different background
(domains), a short explanation about concepts related with
co-modelling is included.

Co-modelling is a heterogeneous modelling approach in which
different, domain-specific modelling methodologies are used. It is
supported by a co-simulation tool framework which integrates
different domain-specific tools. The simulators under the co-
simulation framework are connected through a co-simulation
engine. The details about the synchronisation schemes among
different tools are explained in Section 2.2.

Collaborative modelling is one step of the whole co-design pro-
cess, which means more than one person is working together.
Engineers from different domains can perform collaborative
modelling, but this process does not necessarily need to be a
co-modelling process unless the tools can synchronise with each
other. Details about collaborative modelling on a pilot study can
be found in [1].

Our proposed co-modelling approach is one of the options to
perform collaborative modelling. It is considered as less error-
prone than those depending purely on human communication,
since there, the human factors involved easily introduce unneces-
sary faults.

2.1.1. System top-level model
In our methodology, a mechatronic device is divided into sev-

eral top-level components as shown in Fig. 1: Controller, IO and
Plant. The Controller (DE domain) block represents the control
algorithm and/or logic, which ultimately get implemented in a
control computer. The Plant (CT domain) block models plant
dynamics, which involve the relevant physics domains, like electri-
cal, mechanic, pneumatic, hydraulic, and thermal. The data conver-
sion between the controller and the plant (as is needed to connect
the two different modelling domains) is modelled in the IO block,
as it is also there in the real system. I/O components such as A/D, D/
A converters, Samplers, Zero-Order Holds are modelled inside this
IO block as well. The discrete-event parts of the IO block (i.e.
which will eventually be implemented in the control computer)
are modelled in DE domain, while its continuous-time parts are
modelled in CT domain. This is indicated in Fig. 1 by the IO block
having two different background shades.

2.2. Tool integration framework

2.2.1. General concepts
In this paper, we use the concept of co-model and co-simulation

to express and execute CPS models [13]. A co-model is a model
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which consists of two component models, one formulated in a DE
formalism, the other in a CT formalism and one contract. In a co-
simulation, the DE and CT models are executed in their own simu-
lators with the steering of a co-simulation engine as shown in
Fig. 2. This co-simulation engine handles the exchange of time,
parameters and variables at the interface of DE and CT models.

2.2.2. Co-simulation synchronisation scheme
A system model representation is defined as the following

[14,15],

xðrÞ ¼ /ðs;r; xðsÞ;uÞ ð1Þ

where

� s: initial time s 2 time set T ;
� r: final time r 2 T with r P s;
� x: state variable in time set ½s;r�;
� u: a function that maps ½s;r� to control inputs U;
� /: a mapping from the initial state x, the initial time s, the final

time r and the function u to the value of the state at time r.

This formulation covers both time-triggered and (discrete)-
event triggered cases. Here the time-triggered case means the state
of the system changes as time progresses. In other words, when x
and u belong to infinite sets, this representation is a time-driven
system. In this case, T 2 R the system is continuous time, while
when T 2 Z the system is discrete time. The (discrete)-event trig-
gered case means the state of the system changes due to the occur-
rence of an event. When u belongs to a finite/countable set, this
representation is an (discrete)-event triggered system, while x still
belongs to infinite sets (dynamic behaviour of the system). In this
paper, we adopt the notation given above.

For a proper co-simulation framework, state events, being
detected and precisely localised in the CT simulator, need to be
communicated to the DE simulator. This functionality must be sup-
ported by the co-simulation engine as shown in Fig. 2.

There are two options to achieve a synchronisation for this pur-
pose [16]:

� In an optimistic co-simulation, each simulator proceeds at its
own pace. If a signal is received from the other simulator, the
time at which the event occurred is determined. A problem
occurs if the simulator’s internal clock has passed the time at
which the event occurred. If this happens, a roll back of the sim-
ulator has to be performed to put it in the state it was in at the
time of the received event. This roll-back mechanism is not
available in all simulators.
� In a lock-step co-simulation, all simulators calculate synchro-

nously and at equal time-steps. There is no need for a roll-back
mechanism.

We use the lock-step synchronisation scheme in this paper.
Fig. 3a illustrates the synchronisation scheme underlying the
Fig. 2. Co-model and co-simulation.
co-simulation between a DE simulator (top) and a CT simulator
(bottom). The DE and CT simulators are coupled through a co-sim-
ulation engine that explicitly synchronises the shared variables,
events and the simulation time.

At initial time T s, the DE simulator has processed all internal
zero-time transitions and it wants to move time forward by
T i � T s, shown as a co-simulation step in Fig. 3a. Instead of actu-
ally performing this time step, transfer is given to the CT simulator
through the co-simulation engine.

The state of the shared variables in the CT model is updated at
XT s and the CT simulator tries to move forward to XT i

. Assuming
that no state events have been triggered in the CT-part during that
time step, control is given back to the DE simulator through the co-
simulation engine and the shared variables and DE simulation time
are updated in UT i

. The DE simulator again processes all internal
zero-time transitions until it needs to perform another time step,
in this case T r � T i. Fig. 3a illustrates an iterative synchronisation
scheme for solving Eq. (1), in the sense that there can be n interme-
diate co-simulation steps in between.

If one or more state events happen at the CT side in between T s

and T i as seen in Fig. 3b, the CT simulator detects and localises that
event, and hands over control to the DE simulator, which adjusts
its co-simulation step accordingly.

In the situation that the event is a special case, such as so-called
even root problem [17], if the integration step is too large, there is a
danger of missing both events, see Fig. 3b. CT simulator has the
possibility to specify a maximum integration time step in order
to avoid this problem.
2.2.3. DESTECS tool
In DESTECS (Design Support and Tooling for Embedded Control

Software) project,3 two domain-specific tools were involved: VDM
and 20-sim.

VDM [18] is a formal method that permits description of func-
tionality at a high level of abstraction. It is an object-oriented lan-
guage. In this paper, we use VDM-RT, a special version of VDM, to
specify time in DE models. VDM-RT includes primitives for model-
ling deployment to a distributed hardware architecture and sup-
port for asynchronous communication, supported by the
Overture4 tool.

20-sim is a multi-domain modelling and simulation tool for the
dynamic behaviour of physical systems. It supports mixed-mode
integration techniques to allow the modelling and simulation of
computer-controlled physical systems that contain continuous as
well as discrete-time parts. 20-sim supports bond-graph modelling
[19,20] which is a port-based approach. Bond-graph submodels
can be re-used elegantly, since bond graphs are non-causal. The
submodels can be seen as objects as well, with hierarchy, thus
bond-graph modelling is a form of object-oriented physical-sys-
tems modelling. 20-sim has handy graphic visualisation function-
ality (diagram based).

The DESTECS tool takes advantages from both VDM and 20-sim:
VDM’s high level abstraction and 20-sim’s intuitive physical-sys-
tems dynamics modelling property as well as the object-oriented
feature. Using the lock-step synchronisation scheme, the DESTECS
tool can handle not only time-triggered cases but also event-
triggered cases. These are improvements compared to the tools
listed in Section 1. The DESTECS tool was also tested by industry,
using industrial case studies [21].
3 www.destecs.org.
4 www.overturetool.org.

http://www.destecs.org
http://www.overturetool.org


(a) The whole synchronization scheme (b) CT simulator in one co-simulation step

Fig. 3. Co-simulation synchronisation scheme.
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2.3. Fault modelling and corresponding controller software fault
handling

As we already know that modelling is an abstraction of the real-
ity, which means that a model is not ‘exactly’ the same as reality. In
order to make the mechatronic device design more compatible
with reality, it is useful to model non-ideal cases during the early
design phase (modelling phase). In this way, the whole co-design
process can be more robust: the controller takes non-ideal situa-
tions (faults) into consideration.

In this section, we introduce how to perform fault modelling
and how to make controller software compatible with different
abstraction levels (with faults and without faults) of the same plant
model.

The procedure of fault modelling and designing controller soft-
ware that handles these faults is as follows:

1. Identify the faults and make a model which can represent the
faulty behaviour.

2. Determine the priority of the faults by analysing the conse-
quence of the faults and design the corresponding fault-tolerant
software.

2.3.1. Fault modelling
We use the terms ideal, realistic and fault models. The ideal

model is a model of a component’s essential functionality ignoring
all parasitic effects, like physical implementation limitations, e.g.
spring without mass, and non-idealnesses due to manufacturing
tolerances. A realistic model of a component is more faithful to that
of a real object and includes the previously ignored parasitic
effects. A fault model includes faulty behaviour of the component
being modelled. This model mimics the behaviour of the compo-
nent exhibiting the envisaged fault.

Note that such a modelled fault must be triggered in order to
see the effects of that fault model in simulation results as shown
in Fig. 4. One can use a scripting language [22] to activate faults,
or one can physically inject faults, e.g. physical switches to turn
off/on certain components. Here faulty behaviour is considered as
a deviation from its specified behaviour [23], whilst the presence
Fig. 4. Fault modelling.
of this error is the fault. Fault tolerance means to avoid functionality
failures in the presences of faults.

2.3.2. Controller structuring to accommodate fault-tolerance
In this paper, we propose a controller structure (shown in Fig. 5)

to elegantly accommodate fault-tolerant add-on code. The func-
tionality of the actual control-law implementation is separated
from fault-handling issues. This allows for separate testing, and
makes the implementation First-time right. Existing controller
architectures with fault-tolerance facilities, in general, are either
application specific, or are general structures with ad hoc add-
ons for fault tolerant functionality. Examples of the latter are sub-
sumption architectures [25] and middleware software layers [26].

In Fig. 5, the Measurement and Actuation block of the embedded
control software denotes filtering and scaling to adapt the value
ranges. The Safety layer block checks all signals going to and com-
ing from the hardware. Safety issues are on all controller levels,
shown by its U-shape in the figure. The Safety layer deals with
the fault handling issues. More detail of the Safety layer is given
in Fig. 6. The Loop control block contains the control algorithms
controlling the actuators. The Sequence control block is a kind of
task level controller: it commands the loop controllers, by comput-
ing the setpoints of the control algorithms, and if applicable,
enabling them and adapting parameters. The Supervisory control
block is a strategy controller: calculations, often taking consider-
able amount of computing time (relative to the sampling period),
that instruct the Sequence controller to determine its next task.

Safety-layer parts, shown in Fig. 6, are Error Detection, Safety
Controller and Decision Maker. Error detection: use the sensor val-
ues and reasoning algorithms to detect what fault has occurred
and give a status of the sensors. Different safety controllers are
available to take over control depending on the exact situation of
the detected fault. Examples are: immediately stop the whole
Fig. 5. Controller layered structure [24].



Fig. 6. Safety layer components.
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device; limit the outputs; bring the device to a safe state, etc. These
strategies are device dependent. Decision maker: based on the
severity of the fault, it decides which controller output is passed
to the device, so either the steering value from the loop controller
in the normal case or the value calculated by the selected appropri-
ate safety controller. All blocks can be computed at any time and
decision maker only passes the values computed by the selected
(a) set up in reality

(b) virtual representation

Fig. 7. The whole set up.
controller to the Meas.& Actuation. For performance reasons, the
safety controller may only be calculated when needed. However,
when such a safety controller needs the sensor values, it might
be necessary to always calculate this safety controller to ensure a
(a) front view

(b) rear view

Fig. 8. The dynamic plant part of the slider.



Fig. 9. Top-level of the slider system model.

Components Parameter Value

Motor (b) Motor mass 1e−5kg
Frame (a) Mass of frame 0.8kg

Spring constant 4.4KN/ m
Damping 4.4Ns/ m

Slider (d) Mass 0.3kg
Belt (c) Spring constant 800N/ m

Damping 1Ns/ m
Rail (e) Viscous friction 3Ns/ m

Coulomb friction 0.5N

Fig. 11. Mechanical parameter specification for the set up.
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bumpless transfer of the steering value from the loop controller to
the safety controller at the moment of selection.

2.4. Practical use

The proposed co-design flow of a mechatronic device is as
follows:

� First, make a co-model which consists of different components
from different specific domains. In this paper, it means that
designers make the controller software model using VDM. At
the same time, the plant model is produced in 20-sim.
� Second, a co-simulation is performed by using the DESTECS tool

to assess whether the design of this particular mechatronic
device is good or not.
� To validate this design, experiments on final products are

needed. For this, it is most elegant that the controller code is
automatically generated from the controller software models.
Unfortunately, at this moment, code cannot be generated from
the DESTECS tool. Therefore, we have modelled the controller
structure in 20-sim, according to the structure given in Figs. 5
and 6.

3. Case study

In this section, we have chosen a mechatronic device, called sli-
der, to demonstrate the approach introduced in the paper. How-
ever the approach can also be applied on other setups.
Fig. 10. Plan
3.1. Set-up description

The slider demo set up was designed to demonstrate typical
mechatronic systems in practical situations, see Fig. 7. This set
up originates from the principle of a printing device: a slider mov-
ing back and forth over a rail guide which is controlled by an
embedded computer (PC block in Fig. 7). The frame of the system
is flexible, which introduces vibrations in the set up when the sli-
der accelerates, see Fig. 7a. The device has six sensors in total: 1
motor position encoder, 1 position sensor with respect to the fixed
world and 2 position sensor with respect to the frame (upper and
lower), 2 endstops (left and right), as shown in Fig. 8.
3.2. Modelling and implementation

3.2.1. Top-level modelling
By applying the methods mentioned in Section 2.1.1, we pro-

duced the top-level model as shown in Fig. 9. The co-model of
the slider consists of Controller block, a Plant block and a
IOInterface in between. The plant block contains the slider
dynamics model. The Controller block reads data from sensors
to determine the position of the slider to control the motor servo.
This suggests 7 variables being exchanged between the plant and
t model.



Fig. 12. Controller implementation (layered structure).

Fig. 13. Safety layer components on the slider set up.
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the controller via the IOInterface, the shared variables: one
motor steering variable and the six sensor values.
Fig. 14. Slider position comparison with safety layer and without safety layer
(measurements from the set up).
3.2.2. Plant modelling
The details of the Plant block from Fig. 9 are shown in Fig. 10,

with parameters values in Fig. 11. This is a dynamic model which is
based on the basic fourth-order mass-spring-mass system. As both
the flexibility of the frame and belt is taken into account, this
model is a sixth-order model. Including Coulomb friction of the
damping phenomena makes this model non-linear. Fig. 10 shows
a IPM (Ideal Physical Model) which can be seen as a domain-spe-
cific bond graph. In this model, the top and bottom position sen-
sors are considered one, because the slider stays upright during
movement, thus these sensors read the same value all the time.
Hence in Fig. 9, the signal connection from Plant to IOInterface
has a multiplication of 5. The signal connection from IOIninter-

face to Controller has a multiplication of 6, since here, all four
encoders are considered (next to the two end switches). The



Fig. 15. Slider position together with broken sensors fault scenarios. scenario A: sensor SB broken; detection A: detection of fault A; scenario B: sensor ST broken; detection B:
detection of fault B; scenario C: sensor FW broken; detection C: detection of fault C.

5 http://www.20sim.com/products/20sim4c.html.
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coloured ellipses labelled with letters indicate the components as
listed in Fig. 11.

3.3. Fault modelling and fault tolerance mechanisms

3.3.1. Fault modelling and detection
Scenarios of complete failure of sensor were investigated for

this set up. There are four sensors considered: 1 motor position
encoder, 1 position sensor with respect to the fixed world and 2
position sensors with respect to the frame (upper/lower sensor).
So using the matrix as given below:

ComparisonMatrix

¼

jFX � FXj jFX � SBj jFX � STj jFX �MPj
jSB� FXj jSB� SBj jSB� STj jSB�MPj
jST � FXj jST � SBj jST � STj jST �MPj
jMP � FXj jMP � SBj jMP � STj jMP �MPj

2
6664

3
7775

ð2Þ

where FX, SB, ST and MP denote the sensor values from FixedWorld,
SliderBottom, SliderTop and MotorPosition accordingly. So if the
FixedWorld sensor was broken, the difference comparing to the
other sensors would be out of the normal range: e.g. jSB� FXj,
jFX � STj and jFX �MPj are all out of range. So, we can deduce that
the FixedWorld sensor is broken. In this particular set up, a switch,
disabling the sensor’s power, was made for each of the sensors to
mimic the sensor failure: when a sensor loses power, then that sen-
sor stops functioning, so applying the switch means injecting a fault
into the system.

3.3.2. Fault tolerance mechanisms
Based on the method introduced earlier in Section 2.3, we can

structure the controller software of the slider as in Figs. 12 and
13. In detail, Fig. 12 shows a layered structure of the overall con-
troller software. Fig. 13 shows the components of the slider safety
layer: Error Detection, Panic Controller, Homing Controller, Safety
Controller and Decision Maker. Error detection: identifying how
many sensors are broken, by using the algorithm mentioned above.
Different safety controllers: panic controller (the slider stops mov-
ing immediately); homing controller (move the slider to the safe
area, the middle of the frame, in this case); safety controller (limit
the motor output, reduce the motor speed). Decision maker: based
on the sensors status, the decision maker decides which controller
to enable.

3.4. Analysis

In Figs. 14 and 15, it is shown that with the aid of the used
safety layer in the controller software, the system can react more
robust when faults are injected into the system. As indicated in
Fig. 14, in between the green dashed lines (�10 cm) (the origin
point is the middle of the rail) are the safe range that the setup
can operate. The slider can move in between the endstops with
the aid of the safety layer. In Fig. 15, the grey dotted vertical line
indicates when a sensor error is injected while the green dotted
vertical line indicates when the software safety layer detects the
broken sensor. It can be seen that even when the system has faults
injected, it can still operate normally: in this case, the slider still
moves within the safety zone (in between the endstops). In this
case, the safety controller and homing controller (activated when
two sensors are broken) from Fig. 13 were activated sequentially.

Note that due to the fact that the DESTECS tool has not yet facil-
ities to generate code from the VDM controller models, we have
specified the controller in 20-sim, according to the structure give
in Fig. 12. Using the automatic code generation feature of 20-sim
and the deployment and experiment tool 20-sim 4C,5 we have con-
ducted experiments on the real system, of which the key result is
shown in Figs. 14 and 15.

4. Conclusions and future work

In this paper, we have first listed the current challenges (incom-
patibilities) during the co-design process of mechatronic devices.
Later, our co-modelling approach was introduced both from
methodology and tool aspect: domain-specific modelling
(top-level system structure) and co-simulation tool (co-simulation

http://www.20sim.com/products/20sim4c.html
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synchronisation scheme). Furthermore, the fault modelling and
fault tolerance mechanism of the controller software were intro-
duced. This allows for designing and testing controller software
that can handle faults, i.e. more realistic cases.

In this way, the whole system design is more compatible with
the real situation: taking the non-ideal cases into account. Hence
the incompatibilities during the whole co-design process were
addressed by deploying our methods and tooling.

Looking to future work, constructing the code generation facil-
ity of the co-simulation tool is useful for the mechatronic devices
designers. More fault patterns and thorough testing is of interest
as well.
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[23] A. Avižienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Trans. Dependable Sec. Comput. 1
(2004) 11–33. http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/
TDSC.2004.2, doi:http://doi.ieeecomputersociety.org/10.1109/TDSC.2004.2..

[24] J.F. Broenink, Y. Ni, Model-driven robot-software design using integrated
models and co-simulation, in: J. McAllister, S. Bhattacharyya (Eds.),
International Conference on Embedded Computer Systems, SAMOS 2012,
Samos, Greece, IEEE Computer Society, USA, 2012, pp. 339–344.

[25] R. Brooks, A robust layered control system for a mobile robot, IEEE J. Robot.
Autom. 2 (1) (1986) 14–23. http://dx.doi.org/10.1109/JRA.1986.1087032.

[26] H. Bruyninckx, Open robot control software: the orocos project, in: IEEE
International Conference on Robotics and Automation, 2001. Proceedings 2001
ICRA, vol. 3, 2001, pp. 2523–2528. http://dx.doi.org/10.1109/ROBOT.2001.
933002.

http://refhub.elsevier.com/S1474-0346(14)00038-X/h0085
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0085
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0085
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0085
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0085
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0090
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0095
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0095
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0095
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0100
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0100
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0100
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0105
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0105
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0105
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0105
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0110
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0110
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0110
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0115
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0115
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0115
http://dx.doi.org/10.1016/0016-0032(85)90062-6
http://dx.doi.org/10.1016/0016-0032(85)90062-6
http://www.destecs.org/
http://www.destecs.org/
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0125
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0125
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0125
http://refhub.elsevier.com/S1474-0346(14)00038-X/h0125
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1109/ROBOT.2001.933002
http://dx.doi.org/10.1109/ROBOT.2001.933002

	A co-modelling method for solving incompatibilities during co-design of mechatronic devices
	1 Introduction
	2 Approach
	2.1 Modelling methodology
	2.1.1 System top-level model

	2.2 Tool integration framework
	2.2.1 General concepts
	2.2.2 Co-simulation synchronisation scheme
	2.2.3 DESTECS tool

	2.3 Fault modelling and corresponding controller software fault handling
	2.3.1 Fault modelling
	2.3.2 Controller structuring to accommodate fault-tolerance

	2.4 Practical use

	3 Case study
	3.1 Set-up description
	3.2 Modelling and implementation
	3.2.1 Top-level modelling
	3.2.2 Plant modelling

	3.3 Fault modelling and fault tolerance mechanisms
	3.3.1 Fault modelling and detection
	3.3.2 Fault tolerance mechanisms

	3.4 Analysis

	4 Conclusions and future work
	Acknowledgements
	References


