
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 27, 2024

The documentation of product configuration systems: A framework and an IT solution

Shafiee, Sara; Hvam, Lars; Haug, Anders; Dam, Michael; Kristjansdottir, Katrin

Published in:
Advanced Engineering Informatics

Link to article, DOI:
10.1016/j.aei.2017.02.004

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Shafiee, S., Hvam, L., Haug, A., Dam, M., & Kristjansdottir, K. (2017). The documentation of product
configuration systems: A framework and an IT solution. Advanced Engineering Informatics, 32, 163–175.
https://doi.org/10.1016/j.aei.2017.02.004

https://doi.org/10.1016/j.aei.2017.02.004
https://orbit.dtu.dk/en/publications/0cf4b8e2-d489-4c61-b1be-904a192cc62e
https://doi.org/10.1016/j.aei.2017.02.004


 یاھو 

The documentation of product configuration systems: A 
framework and an IT solution  

Abstract. When designing and maintaining a product configuration system (PCS), complete and up-to-date 
documentation of the system is needed in the form of a product model that outlines the structures, attributes, and 
constraints of the PCS. Furthermore, up-to-date documentation for the PCS is crucial for maintenance, further 
development, system quality and communication with domain experts. Product models are the main 
communication and documentation tools used in PCS projects. Recent studies have shown that up-to-date 
documentation for the PCS is often lacking due to the significant amount of work required to maintain product 
models. To address these challenges, this paper proposes an approach for documenting the PCS that is based on 
the structure, attributes, and constraints modelled within the PCS, in which the product model is generated directly 
from the PCS. The suggested approach avoids knowledge duplication, as knowledge needs to be maintained 
within the PCS only. It involves two steps: the first is the building of the initial product model, which is used for 
the programming of the PCS. In the second step, the product model is generated directly from the PCS and is 
based on the structure, attributes, and constraints inside the PCS. The product model does not need to be 
maintained, therefore, outside the PCS. This approach meets the demand for agile documentation and efficient 
communication with domain experts, and uses the fewest resources possible. Furthermore, to support the 
framework, an IT documentation system is proposed that is capable of retrieving knowledge from the PCS and 
thus generating the product model. Our framework and IT documentation system were developed and tested at a 
case company on five different projects. The results confirm that benefits can be achieved by using the proposed 
IT documentation system, as time and resources are saved, while the quality of the PCS is improved.  
 
Key words: Product Configuration System (PCS); IT Documentation System; Product Modelling; Agile 
framework 

1. Introduction 
 Product configuration systems (PCS) are expert systems that support product customisation by 
defining how predefined entities (physical or non-physical) and their properties (fixed or variable) can be 
combined [1]. Automation of engineering processes is increasingly prevalent in multiple lifecycle phases 
such as design, manufacturing and service support [2]. Widely used in various industries, PCS can bring 
substantial benefits, such as shorter lead times for generating quotations, fewer errors, increased ability to 
meet customers’ requirements regarding product functionality, the use of fewer resources, optimised 
product designs, less routine work and improved on-time delivery [3,4,5,6,7]. 
 One of the main challenges when using PCS can be a lack of documentation, which can lead to 
incomplete and outdated systems that are difficult to understand [8]. For a company using a PCS, it is 
therefore crucial to have an efficient system for documenting the structure, attributes, and constraints 
modelled within the system, as well as to facilitate communication between PCS developers and domain 
experts1. Documentation is a vital part of all IT projects, as it is used for sharing knowledge between 
people and reducing knowledge loss, when team members become inaccessible [9]. The documentation of 
PCS includes modelling, maintaining and updating the product model, and storing all information related 
to the products’ attributes, constraints and rules inside the PCS [1]. Product modelling is a method of 
representing the structure and knowledge of the product on a relatively visual, abstract level to ensure that 
they are understandable to all persons concerned. 

Four basic representations for modelling product families for PCS are shown in Fig. 1 [10]. The real 
world is the product knowledge available at a company. A product model presents product knowledge in 
a structured way, whereas an information model (IT model) is a formal, IT-based representation of a 
product model, which is usually based on Unified Modelling Language (UML) notation [11]. As an IT 
model often cannot be understood by most domain experts – especially when it includes complex 

1Domain experts provide the knowledge for the process in terms of performing the tasks and the data content, in addition to ensuring quality and 
providing verification support [1]. 

1 
 

                                                      



 
 یاھو

constraints and rules – the product (or phenomenon) model enables domain experts and configuration 
engineers to communicate in a common language, thus facilitating future updating and documentation 
changes [1].  

 

 
Fig. 1. Four basic representations of product modelling for PCS, revised from Duffy et al. [10]. 

  
 Previous studies discuss different ways of documenting PCS, which are expressed as product 
modelling techniques [1, 12, 13, 14, 15]. There are IT tools available to facilitate the documentation 
process [16]. However, drawbacks to these techniques have been reported as they require manual work to 
be undertaken, even when IT tools are being used. That is, both the modelling and knowledge 
modifications have to be maintained separately in the PCS and in the system used for documentation. 
Accordingly, the knowledge is duplicated, as the knowledge has to be maintained within two separated 
systems [17]. Thus, maintenance of the PCS requires updates to be made to the PCS (IT model) and the 
product model, using both time and resources. Moreover, there is a high risk of the documentation of the 
configuration models being of low quality [8]. Furthermore, a number of projects have highlighted 
developers’ resistance to document product models due to the manual work required and time taken [18].  
 This paper presents an approach (a framework and an IT documentation system) for generating 
product models directly from the PCS. To support the framework, we have developed an IT 
documentation system that is capable of retrieving information from the PCS and representing it using a 
structure that corresponds with that of a product model. In accordance with the focus of the study, the 
following research questions have been developed: 
 

1) How can we document PCS using agile documentation methods? 
2) How can an IT system be developed to support agile documentation for PCS? 

 
 To answer the research questions, we explored the literature in order to identify ways to construct 
such a framework and to determine the requirements of the IT documentation system that would support 
the framework. Both the framework and the IT documentation tool were tested at a case company on five 
projects in total. The tests indicate that an IT documentation system not only significantly decreases the 
resources and time needed for documentation, but also improves the quality of the PCS.  
 This paper is organised as follows: part 2 elaborates on the methodology for the research, explaining 
the two key phases. Part 3 discusses the relevant literature, while part 4 details the framework and the 
development of the IT documentation system. Part 5 presents the results of the case study and part 6 
discusses the results, examining the usability of the applied framework and the IT documentation system. 
Finally, part 7 answers the research questions and discusses the limitations and conclusions of the 
research. 

2. Research method 
 To achieve the overall goal of improving the process for PCS documentation using agile methods, this 
research is structured into two phases. The first phase focuses on the development of the framework and 
the IT documentation system, while the second phase tests the suggested framework and the IT 
documentation system. 
 

1. Real World 2. Product Model 
(Phenomenon Model) 

3. Information 
Model (IT Model) 

4. Computer 
Model 

Domain experts IT and configuration team IT and configuration team 



 
 یاھو

 Development of the framework and the IT documentation system 2.1.
 In order to develop our framework, first, we studied the available literature on documentation 
methods, agile documentation methods and product modelling. To provide a foundation for the proposed 
framework, we studied why and how agile documentation techniques are of benefit. Consequently, the 
aim to propose a structured documentation process that automatically generates the required 
documentation in the form of a structured product model was established. This rationale for choosing 
such a process was to eliminate the duplication of knowledge and to facilitate the maintenance of PCS 
from one place only. Next, the literature on product modelling techniques was evaluated and the most 
suitable method was selected for this project in accordance with the level of visualisation required. 
 For the development of the IT documentation system, we examined the literature, investigating the 
methodologies and requirements that have been used, maintaining a special focus on both IT and PCS-
based projects. Using the proposed framework, updating and maintaining occurs within the permanent 
model only. Accordingly, we decided to introduce the product structure as a product model within the 
PCS, with a view to investigating the possibility of generating documentation via the structure used inside 
a commercial PCS. Based on evidence from the literature [19] and our experience of working with 
multiple commercial PCS, we recognised that most of commercial PCS contain the knowledge required to 
generate a product model that could be used for documentation. After further investigation, we developed 
an IT solution for documenting the knowledge within a PCS, which could be developed in a short time 
and without significant investment.  
 Fig. 2 illustrates the complete process of developing the framework and the IT documentation system, 
and explains the research steps and methods used for the different phases.  
 

 
 

 

Documentation 
and agility  

Steps Methods 

Product 
modelling for 
PCS projects 

- Literature 

- Literature 

RQ1. Develop the 
framework 

Development of Framework  

- Applied 
Case study 

Method 

Requirements for an 
IT documentation 

tool for PCS - Literature 

RQ2. Develop the IT 
documentation system based 

on the framework and 
requirements; test and 

validate the framework and 
IT system 

- Applied Case 
study 

Product modelling 
in commercial PCS 

systems 

  
- Literature 

  

Method 

Method 

Steps 

Steps 

Development of an 
IT documentation 

system 
- Experience 

Development of IT documentation system  

Steps 



 
 یاھو

Fig. 2. Methodology for developing the framework and the IT-based documentation system. 
  

 Evaluating the usability of the system  2.2.
  We tested the proposed framework and the IT documentation system in order to discover: (1) whether 
the structure, attributes and constraints of a commercial PCS could be extracted, (2) how to extract 
knowledge from a PCS and (3) whether the generated documentation would be sufficient for both the 
domain experts and configuration experts at a company.   
 The requirements for developing the IT documentation system are listed later in the paper (section 
3.4). Usability is ‘the extent to which the IT system can be used by specified users to achieve specified 
goals with effectiveness, efficiency and satisfaction in a specified context of use’ [20]. Nielsen [21] lists 
five characteristics of usability, as follows: (1) learnability (how fast a new user can begin to work with a 
system), (2) efficiency (level of productivity), (3) memorability (i.e. amount of relearning required after 
spending time away from the system), (4) low error rate and (5) satisfaction. In our study, memorability 
was not relevant, as approximately two years have passed since the system at the case company was 
launched and it has been used continuously. Based on the definition given of usability we formulated the 
following interview questions: 
 

1. How much time is required to learn the IT documentation system? 
2. How much time (resource time) is saved by using the IT documentation system, compared with 

older methods, such as Excel spreadsheets? 
3. How much error reduction occurs in PCS with the use of the IT documentation system? 
4. What is the users’ level of satisfaction and acceptance of the IT documentation system? 

 
 In relation to the question 2, it should be noted that by time we mean resource time that includes time 
of the configuration team, domain experts and steering committee. Based on this question, we assess the 
saved resource time as the result of using the IT documentation system. The saved time from resources 
also impacts the total lead-time when developing and maintaining PCS and is therefore of a high 
importance. 
 The data was collected by interviewing different stakeholders at the company in order to reflect 
different expectations with regard to the IT documentation system. The main stakeholders included 
domain experts, members from the configuration team and the steering committee. The results provided a 
list of further possible improvements for the IT documentation system, as well as indicating the end users’ 
levels of satisfaction and acceptance of the system. 
 
3. Literature review 
 The literature review aims to find theories for modelling and documenting PCS (sections 3.1 and 3.2), 
and for developing the IT documentation system in general (sections 3.3 and 3.4). Section 3.1 and 3.2 
focus on the modelling and documentation of PCS, and on agile documentation principles. Section 3.3 
elaborated on product modelling in commercial PCS and Section 3.4 discusses the requirement for 
documenting IT projects in general and PCS specifically.  
 

 Product modelling for PCS projects 3.1.
 This section reviews the various product modelling techniques suggested in the literature for use in 
PCS projects. As mentioned in part 1, modelling tools are used for the communication and documentation 
of PCS. Product modelling is used to handle the growing complexities of software development, enabling 
engineers to work and communicate at higher levels of abstraction [22]. In addition, these techniques 
increase the ability to share knowledge between units, which can contribute significantly to an 
organization’s performance [23]. Different modelling techniques are available for PCS [13, 24, 25, 26, 
27, 14, 28, 15]. UML is a general-purpose visual modelling language designed for the specification, 
visualisation, construction and documentation of the artefacts of a software system [29]. It encourages 
designers to formalise their implicit knowledge and makes knowledge extraction easier. Felfernig et al. 



 
 یاھو

[30] describe a method for using UML as a configuration development tool to support graphical notation. 
A detailed analysis of the product range is necessary – the use of the Product Variant Master (PVM) 
together with CRC cards is suggested for this purpose (Fig. 3), both being based on UML techniques. The 
PVM presented by Hvam [31] displays product knowledge in a structured format, focusing on three 
different aspects: the customer’s view, the engineering view and the production/part view. The use of 
CRC cards was first put forward by Beck and Cunningham [32] as a way to teach object-oriented 
thinking. Hvam et al. [33] have since proposed several revisions for CRC-card use in PCS projects, in 
which the classes utilised are described in more detail.  
 

               
Fig. 3. Structure of the PVM and CRC cards [1]. 

 
 Renzl [34] emphasises that documentation systems are critical in the sharing of knowledge. Rask [35] 
addresses documentation and maintenance requirements by emphasising the importance of traceability, 
verification and versioning. Application of the Dependency Structure Matrix (DSM) method could 
provide natural and transparent documentation of the ‘knowledge base’ [36]. Multiple IT tools have been 
developed to assist with documentation in IT and PCS projects. For example, the Computer Aided 
Software Engineering (CASE) tool applies a set of tools and methods, generating a software system to 
support the desired end result: i.e. a defect-free and maintainable software product [37,38]. The CASE 
tool can be used for software documentation; however, CASE tools are not specifically designed for PCS, 
but rather for the general development of IT projects. Elgh [39] proposes a framework consisting of an 
information model and underlying principles to be used when developing a design automation system for 
quotation preparation. Existing research on PCS documentation indicates that additional specifications 
were introduced in 2007 for a PCS IT documentation system called Product Model Manager – an 
environment which provides a simple overview of the product elements in the form of CRC cards and 
PVMs [12]. According to the principles of model-based systems engineering (MBSE), it can replace 
traditional documentation methods and facilitate the collaborations by representing all aspect of the 
systems engineering [40, 41, 42]. System Engineering Applications (SysML) reuses a subset of UML 
introduced as a standardized general purpose graphical modelling language for capturing complex system 
descriptions in terms of their structure, behaviour, properties, and requirements [43]. Our suggested 
method for IT documentation system and using UML as the modelling language can be considered a 
special case of MBSE as the suggested system capture the knowledge in the PCS and create domain 
(phenomenon) models. A functionality analysis for Product Model Manager was compared with types of 
software commonly applied for documenting PCS [16], which showed that the new software offered 
successful PCS documentation, although the common challenge of additional manual work being required 
remained. As such, there is still a critical need in the industry for an efficient automatic solution to be 
found for documenting the knowledge of PCS, communicating with domain experts and validating 
product knowledge. 
 



 
 یاھو

 Documentation and agility  3.2.
 This section discusses the agile documentation lifecycle, based on UML principles. Communication 
between IT personnel (software developers and modellers) and domain experts is important for software 
development and is a success factor when discussing new changes in software development projects and 
teams [44]. Cockburn [45] claims that clear communication is necessary for inexpensive and fast project 
implementation. Selic [46] explains agile documentation by elaborating different steps for design and 
development. Even in the earliest stages, documentation must be adequate to serve its primary 
communications purpose. Agility and avoidance of duplicate knowledge are essential in software 
documentation [36, 46]. The UML state chart shown in Fig. 4 represents the lifecycle of an agile model 
[47]. It is possible to create a temporary model, which can be used to communicate initial ideas but is not 
made permanent until the model is completely clear to everyone. After the permanent model has been 
developed, all maintenance tasks are performed within that model; the temporary model is skipped. This 
approach creates value and makes programmers more willing to document their work. The next step 
determines the content and the level of detail required for efficient software maintenance [48]. Agile 
methods promote lean, light and easy documentation.  
 

 
Fig. 4. A UML state chart that depicts the lifecycle of an agile model. The idea is modelled temporarily to aid communication and 

modelling in the initial stages. After the validation of the temporary model, the permanent model is generated [47]. 
 

 Product modelling in commercial configuration systems 3.3.
 This section discusses the available literature regarding commercial PCS, their structures and levels of 
maturity in order to demonstrate the capabilities of commercial PCS to perform as documentation 
systems.  
 The literature discusses many commercial configurators that are currently available, such as Tacton, 
Encoway and SAP [49]. There are benefits, strengths and weaknesses to each of the available 
configurators. Friedrich et al. [49] describe modern PCS as systems that must provide a mechanism to 
abstract the underlying technical representations inside the PCS as much as possible during the modelling 
phase. The typical elements found in such tools include compatibility tables (which non-IT specialists can 
understand), a user-oriented rule language (including appropriate editing support), a graphical 
representation of bills-of-material structures, and testing and tracing support [49]. 
 Several researchers put forth suggestions for better structures for commercial PCS, listing the 
requirements. For example, Tiihonen et al. [8] evaluate the modelling efficiency and performance of PCS 
in the views of several domain experts and present a list of requirements for a future, web-based 
commercial PCS. Myllärniemi et al. [50] present a feature configuration model in which the attributes, 
composition structure and constraints of certain elements, features and properties are given, with an 
explanation of how these aspects can be combined to create a valid product. 
 A number of researchers (as mentioned in previous paragraphs) agree that available commercial PCS 
should be capable of communicating with non-IT specialists through visualised modelling structures, but 
modern PCS remain immature in this regard. The existing literature indicates that modern PCS does not 
include sufficient documentation systems, but they do have the capability to generate the input for a 
documentation system automatically. 
 



 
 یاھو

 Requirements for an IT documentation tool for PCS 3.4.
 In Table 1, we identify and prioritise the most important requirements for IT documentation tools for 
PCS based on the literature studied. The requirements are labelled as either general requirements for 
documenting IT systems or specific requirements for documenting PCS. The requirements are sorted 
according to importance, from the most to the least important.  

 
Table 1. Requirements for PCS documentation 

 Requirements Description General/ 
Specific 

1 Accessibility and 
ease of use 

Providing accessibility to end users in a format that they can understand. In 
addition, it is important that documentation can be easily generated [39, 51]. 

General 
(IT) 

2 Model history 
overview 

Management of the changes made to the model and the ability to revert to a 
previous version [51]. 

Specific 
(PCS) 

3 Model tree 
structure 

New primary view with an unchangeable tree structure for maximum clarity 
[16]. 

Specific 
(PCS) 

4 Navigation ability 
An intuitive user interface displaying the model documentation and allowing 
the user to navigate and search for knowledge in the documentation system 
[1]. 

General 
(IT) 

5 Change requests 
and notifications 

Allowing users to comment on documentation and make requests for changes 
by sending change requests to the modeller responsible [47, 51]. 

General 
(IT) 

6 Updated Allowing the easy and fast updating process by the modellers [52]. General 
(IT) 

7 
Entering changes 
and updating in 
one place 

Avoiding errors when updating the PCS and avoiding knowledge duplication. 
The documentation system should receive changes automatically [47]. 

General 
(IT) 

8 Version 
comparison 

Allowing historical comparisons between different versions of documentation 
[35]. 

General 
(IT) 

9 Broad network 
access 

The user should have access to online software, irrespective of geographical 
location (important for regional offices) [47]. 

General 
(IT) 

10 Cost efficiency The system should save the company resources, compared to existing systems 
[52]. 

General 
(IT) 

11 Language For the widest possible usage, the language of the tool should be in English 
(perhaps with multilingual support) [51]. 

General 
(IT) 

12 Access 
management 

The system should have a database of user groups, allowing for different 
rights of access for model editing [53]. 

General 
(IT) 

13 Hyperlinks Allowing the user to create links to external references, such as drawings and 
documentation [51]. 

Specific 
(PCS) 

14 Multiple views at 
the same time Allowing multiple views at the same time on multiple personal computers [1]. General 

(IT) 

15 Active search A visualisation of the search function [1]. Specific 
(PCS) 

16 Flexible structure The system should be adoptable for integration with, or extension of, other 
systems [1, 51]. 

Specific 
(PCS) 

17 Integration 

Integration with other systems in the company, e.g. Enterprise Resource 
Planning (ERP) systems and other data bases, should be possible. The person 
responsible should be informed by email each time a change is made to the 
document (whether version or name) [51]. 

Specific 
(PCS) 



 
 یاھو

4.  The proposed approach for the agile documentation of PCS 
 This chapter discusses: (1) the framework development, (2) the structures within a PCS for the 
retrieval data and the setup of a product model, and (3) the IT tool, in terms of technical details. 
 

 An agile documentation framework for PCS 4.1.
 This section presents the proposed framework for the agile documentation of PCS. The main idea of 
this framework is based on the agile lifecycle model [47], as described in Section 3.2. The focus is upon 
the creation of a temporary model version, which is made permanent once it has been proved to be viable 
and trustworthy as a documentation system.  
 The method selected for structuring the product model, which is also used for the documentation, 
utilises the Product Variant Master (PVM) together with Class Responsibility Collaboration (CRC) cards 
We have chosen the PVM and CRC cards as methods for structuring the product model as they are 
described well in the literature [1] and enable a high level of visualisation, even where complex products 
are concerned.  
 First, the initial product model is built using specific modelling techniques (in this study, via the PVM 
and CRC cards). This phase is the temporary documentation phase. Based on the initial modelling, the 
model is programmed into the PCS, and models similar to the PVM/CRC-card approach are then 
generated from the PCS directly via the documentation system. For future versions of the PCS, updates 
will be made from within the PCS and the updated product models will be generated directly from the 
PCS. Fig. 5 demonstrates the processes for the suggested agile documentation of the PCS.  
 

 
Fig. 5. The process of generating documentation from the PCS (the photographs will be shown in the case study). 

 
 The product model is generated based on the structure inside the PCS; the configuration engineer 
simply has to upload his PCS model to the documentation system. With this approach, the IT experts will 
provide the configuration engineers with the ability to control their models, such as showing/hiding 
different parts or providing users with descriptions. The model is depicted as a tree structure inside the 
documentation system. The documentation system is capable of controlling the different versions of 
models by storing them in the history. Domain experts can access the system, depending on their rights, 
which are managed by the system administrator. The experts can see the tree structure, navigate between 
variants and constraints, and ask for changes to be made to any part of the model by sending through 
change requests. When a request is sent, an email will arrive to the configuration engineer responsible for 
the model, who will be able to see which part of the model the change request refers to specifically. Once 
changes have been made to the model and it has been tested, the model will be uploaded to the 
documentation system as the latest version. Domain experts are not able to make changes to the 
documentation system because the goal is to keep all the changes within the PCS to avoid errors. 



 
 یاھو

Moreover, the licenses for PCS modelling are limited, domain experts are not capable of understanding 
the IT language used inside PCS without additional training, and a specific person should be responsible 
for updating and maintaining the system. 
 

 Development of the IT documentation system 4.2.
 This section describes the process of developing the IT documentation system, starting with an 
explanation of the correlation between the structures in commercial PCS and the structure of the product 
model, which is followed by a description of how the knowledge is exported from a commercial PCS to 
the documentation system. 

4.2.1 The corresponding structures in PCS and product models 
 For this study, commercial PCS available on the market were evaluated. As shown in Fig. 6, the 
model structures within these commercial PCS correspond to the PVM/CRC-card approach. More 
specifically, all of the components and sub-components – including all of the attributes, constraints and 
rules – form a tree structure. The goal is to transfer and translate all the relevant knowledge to the 
documentation system and thus to generate PVMs and CRC cards automatically.  
 

 
Fig. 6. Relations between the product model and the common structure in commercial PCS. PVM and CRC-card structure (a & b) 

 [1]; traditional structure of commercial PCS (c). 
 
 The tree structure represented in the PVM describes the structure and the available variants shown. On 
top of the attributes and constraints listed in the PVM structure, the CRC cards are used to describe 
individual classes in more detail [8], as shown in Fig. 6.  
 Common drawbacks of product knowledge models in commercial PCS modelling environments are 
the lack of additional explanation regarding rules/variants, the unavailability of product figures and the 
lack of a product hierarchy [19]. Furthermore, most of the knowledge is stored in IT language. These 
drawbacks indicate that commercial PCS seem to fall short in terms of the functionality required for 
documenting product models.  



 
 یاھو

4.2.2 Setting up the IT documentation system 
 This section explains the development of the IT documentation system at the case company. The 
platform for the IT documentation system is a content management system (in this case, Microsoft 
SharePoint). The original documentation format generated from a commercial PCS model (Tacton was 
used here) is based on the xml format; by renaming the model file extension as .xml, the documentation 
can be read/ parsed.  
 With this system, the PCS models will be maintained in a document listed in the content management 
platform called the ‘Model Workspace’, from which the IT documentation system will read the files. The 
Model Workspace is based on a fairly standard SharePoint Team site, which places the models under 
version control (minor/major versions) and has check-out/check-in functionality to lock the models while 
updating. 
 To render the model documentation with the required navigation, layout and content syntax, a 
transformation/interpretation of the native PCS xml is needed. This process parses and transforms the 
model structure into JSON objects, which can be rendered using feature-rich JQuery components. Fig. 7 
shows the interactions between SharePoint and the UI Renderer, which, together, make up the IT 
documentation system.  
 

 
Fig. 7. Interactions between the Content Management System and the UI Renderer (IT documentation system). 

 
 For integration purposes, we used the SharePoint JavaScript Object Model (JSOM). This JavaScript 
API is used for receiving lists and list items from SharePoint, as well as creating requests back in 
SharePoint. The following is an example of how a request is registered to the request tracking list: 
 
var clientContext = new SP.ClientContext(‘/sites/20’);  
var oList = clientContext.get_web().get_lists().getById('{7A6EFEDF-5D65-4241-A6E0-E84CF2F3312D}'); 
var itemCreateInfo = new SP.ListItemCreationInformation(); 
var oListItem = oList.addItem(itemCreateInfo);  
oListItem.set_item('Title', $('#component_name').text()); 
oListItem.set_item('Body', $('#rfctext').text()); 
oListItem.set_item('Model', 'testtest2.dk');  
oListItem.update(); 
clientContext.load(oListItem);  
clientContext.executeQueryAsync(function() { 
  alert('Item created'); 
  $('#rfctext').text(‘‘) 
}, function(sender, args) { 
  alert('Request failed. ' + args.get_message() + '\n' + args.get_stackTrace()); 
}); 
 
 Below, the proposed approach for developing an IT documentation system is explained further and is 
tested via a case study. 



 
 یاھو

5. Case study 
The proposed approach (the framework and the IT documentation system) was tested on five PCS 

projects. The case company, which operates globally, specialises in catalyst production and process-plant 
technology. A project team was formed at the case company, including two full-time researchers from the 
university, together with a software developer and a configuration engineer from the company, who spent 
approximately half of their time working on the project over three months. During the 10 months before 
the development phase commenced, the architecture of available documentation systems and the 
framework for the future documentation system were discussed and outlined. The major role of the 
researchers was to develop the proposed approach, extract and analyse knowledge, prioritise the 
requirements of the documentation system, and facilitate interviews to evaluate the models generated by 
the system. A software developer programmed the IT documentation system to extract the structure, 
constraints and attributes of the commercial PCS used at the company from the PCS itself. The total cost 
of the documentation system is calculated to be 6000 USD, which includes requirement analysis, making 
the architecture of the system, development, debugging and training. It is estimated that the 
documentation system had positive return on investment in the first year due to saved time and resources 
on different stages of the project. 
 The case company has five operational PCS, which support the sales and engineering processes. All 
these five system are similar as they are configuring the similar highly engineered complex products or 
processes. This enabled us to test the documentation system within five different environments at the 
same company, with varying levels of complexity. The IT documentation system was tested during the 
development and operation of all five projects. The characteristics of the different projects are provided in 
Table 2. 
In each of the projects, training workshops were held to demonstrate the IT documentation system and to 
obtain feedback. Each workshop lasted between 30 minutes and 1 hour. The content of the workshops 
included the introduction of the IT documentation system, training on the use of the system and open-
forum segment that encouraged feedback and improvement suggestions. All the examples given in this 
section relate to Project 2. 

Table 2. Background information for the projects used in the case studies 

Projects Project 1 Project 2 Project 3 Project 4 Project 5 

Time frame for development, running and 
maintenance (months) 6 24 12 6 4 

Complexity of the project (number of 
attributes and constraints in the PCS) Medium Great Great/Med

ium Medium Medium 

No. of employees involved 4 10 6 4 3 

No. of workshops 3 6 4 2 3 

No. of feedback meetings 4 15 4 2 3 

 
To measure the complexity of PCS, Brown et al. [54] categorize them into three major components; 1) 

execution complexity, 2) parameter complexity, and 3) memory complexity. Execution complexity covers 
the complexity involved in performing the configuration actions that make up the configuration procedure 
and the memory complexity refers to the number of parameters that system manager must remember. In 
this paper, the parameter complexity is the most important, as it measures the complexity involved in 
providing configuration data to the computer system during a configuration procedure [54]. Therefore, we 
assessed the parameter complexity in terms of two major parameters inside the PCS: attributes and 
constraints (Table 3). 

 
 
 
 



 
 یاھو

 
Table 3. Complexity assessment in terms of parameters in PCS 

 No. attributes No. constraints 

Small complexity 500 - 1300 200-800 

Medium complexity 1300-2000 800-1200 

Large complexity >2000 >1200 

 
 Phase 1: Initial product model 5.1.

 In the initial phase, the product assortment, the individual components and the relation between these 
components were modelled using the PVM and CRC cards. The PVM and CRC cards are used only when 
the PCS system is being developed; after the system has been developed, the models are generated from 
the PCS and maintained within the documentation system. The initial PVM was used for communicating 
with domain experts in the early phases of the project. Fig. 8 shows part of the PVM used initially to 
model the product assortment. Detailed information regarding different nodes in the PVM are described 
on the CRC cards.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 یاھو

 
 

Class Name: Baffle plates 
 

 

 

 

 

 
 

Responsibilities: The class contains knowledge about the baffle plates’ 
arrangement, dimensions and capacities. 
Aggregation Generalisation 
Super parts: None Superclass: None 
Subparts: None Subclass: None 
Sketch: 

 
Attributes: 
Length (8 mm) 
Width (1900.00 mm) 
Delta tube wall (45.6352 C) 
Maximum flow per tube (54.584 Nm3/h/tube) 
Minimum acceptable particle number 
(54662888410000000 particles/h) 
Distance between baffle rows (90 mm) 
 

Collaborations: 
Drain tubes,  
Side tubes 

Methods: 
Module width calculation: 
number of plates = 1, then 8-9 modules 
number of plates = 2, then 18-25 modules 

Fig. 8. The initial PVM and CRC-card structure of the product (during PCS development). 
 

5.2. Phase 2: PVM and CRC-card generation from the PCS 
 The PCS model contains the knowledge required for the documentation to be generated, including the 
tree structure of the product, along with all the variants and rules. Fig. 9 shows the structure and 
knowledge within a commercial PCS (in this case, Tacton) as a PVM (tree structure) and a CRC card. 



 
 یاھو

 
Fig. 9. Available PVM and CRC-card framework in the commercial PCS at the case company. 

 
 It should be noted that, even if all the knowledge was accessible to the domain experts, they would not 
be able to understand the structure, attributes and rules inside the PCS. Therefore, to make both the logic 
inside the PCS and the reasoning behind the different calculations and restrictions visible/understandable, 
an IT documentation system can be used. The IT documentation system covers the aspects that appear in 
the requirement list (Table 1), such as the attributes of the product model (tree structure, components, 
attributes, features, constraints and name domains), and gives a tree-style navigation of the model’s main 
structure. It is possible to show or hide parts, attributes, rules and other sections within the model – 
collapsible panels appear in the content sections of the display. The user is able to submit 
requests/comments to the request tracking list directly from the documentation view, and the request’s 
context is included automatically in the request tracking information. Additionally, rich syntax is 
available to enrich the documentation and make it more readable to business users and experts. Tags can 
be used to add links or text, or to hide/show knowledge. Fig. 10 illustrates the tree structure of the PVM 
and the CRC cards, as generated by the IT documentation system based on the PCS model. 
 

 
Fig. 10. Knowledge generation in the PCS and PVM/CRC structure inside the IT documentation system. 

 



 
 یاھو

 A comparison of the structure in Fig. 9 (PCS structure) with that in Fig. 10 (IT documentation system) 
reveals the differences between the two ways of documenting. The IT documentation system emphasises 
the descriptions and translations for each part, as well as the tree structure and easy navigation of the 
model. The ‘change request’ part includes requests from domain experts for changes that need to be made 
to the model. To make the tool complete, a ‘change request’ field with navigation possibilities is 
necessary. Every change request must include the time, the part, the name of the user, the title and the 
request made, as shown in Fig. 11. The system also has the ability to display pictures, as with PVMs and 
CRC cards, which was not necessary in the example of the case company. 
 

 
Fig. 11. Change request overview and history. 

6. Discussion 
 Employees at the case company were interviewed to assess the IT documentation system. The 
interviewees were selected from among the configuration team, domain experts and members of the 
projects steering committee. The main results from the interviews are summarized in Table 4. 
 
Table 4. Usability interviews 

Questions Configuration team Domain experts 
Steering committee and 

top managers (3 
persons in total) 

How much time is required to 
learn the IT documentation 
system? 

0.5–1 hour 2–3 hours 1–3 hours 

How much time is saved using 
the IT documentation system, 
compared with older methods, 
such as Excel spread sheets? 

50%–60% of the total time 

70%–80%, compared 
with updating Excel 

spreadsheets and 
attending meetings 

30–40% 

To what extent are errors reduced 
in PCS due to the use of the IT 
documentation system? 

30%–40% 20% 20% 

What are the users’ levels of 
satisfaction with, and acceptance 
of the IT documentation system? 

Very high Very high High 

  
 The results indicate that the interviewees found the learning processes and use the IT documentation 
system to be considerably easier than those for previous communication/updating systems, such as Excel 
spreadsheets, Visio files, CAD files and ERP systems. The differences in the answers obtained depended 
on the interviewees’ familiarity with the model, and with PVMs/CRC cards. The findings regarding time 
saving vary in ranges, depending on the product complexity. The IT documentation system prevented the 
overwriting of knowledge and reduced errors in PCS because the domain experts had a higher level of 
understanding of the system, compared with their understanding of previously used systems. Furthermore, 
the results from the interviews indicate that 1) resource time is saved because of the efficiency of the new 
system and updating the knowledge in only PCS, 2) the quality of PCS is improved because of the good 
communication and verification of knowledge inside PCS, and 3) acceptance/satisfaction levels are high 



 
 یاھو

due to a nice user interface and access to the knowledge for testing and debugging. This system provides 
users with documentation, validation and communication for domain experts and the configuration team. 
 We analyse the IT documentation system to evaluate to what extent it is providing the requirements 
discussed in Section 3.4 using compliance matrix. In order to show the compliance of developed IT 
documentation system to overview of applicable requirements for documenting PCS listed in Table 1, a 
compliance matrix is provided (Table 5). This matrix formalizing requirements verification with respect 
to the developed system; which directly uses the dimensions of Table 1. 
 
Table 5. Compliance matrix for requirements verification with respect to Table 1 and developed IT documentation system 

No. 

Configuration Documentation System Compliance Matrix 

Requirement 

Compliance 

Comments 

Fu
ll 

Pa
rt

ia
l 

N
on

e 
1 Accessibility and 

ease of use X   
Easy fast generation of product documentations. The system 
should have ease of accessibility both for configuration team 
and domain experts.   

2 Model history 
overview X   The system  controls all the uploaded versions and saves them 

with additional details. 

3 Model tree structure X   Tree structure view is available that represent the hierarchy of 
the actual product structure. 

4 Navigation ability X   A powerful navigation ability even for different attributes in 
the constraint part. 

5 Change requests and 
notifications X   A very nice user interface and easy way both to generate and 

respond to change request is provided. 

6 Updates X   Updates take place in the PCS the PCS model is then 
uploaded to the IT documentation system in easy manners.  

7 Entering changes and 
updating in one place X   

As changes and updates are all done in the PCS model. The 
knowledge is maintained in one place which eliminates 
duplications. 

8 Version comparison X   Historical comparisons between different versions is available.  

9 Broad network access  X  
The IT documentation system is implemented on the case 
company’s internal network, where there are security 
requirements to get connected to the system. 

10 Cost efficiency X   Calculated Return On Investment (ROI) was positive in the 
first year after the IT documentation system was launched. 

11 Language   X The system is available in English. Further development will 
include other langue for regional offices. 

12 Access management X   The platform provides different access rights for different 
group of users (e.g. configuration team and domain experts).  

13 Hyperlinks   X It will be included in the next version of the system especially 
for accessing drawings of the components. 

14 Multiple views at the 
same time X   There is no constraints on how many users can access the 

system at the same time. 

15 Active search  X  The search is possible but not in a very strong and visualized 
way. 

16 Flexible structure X   The IT documentation system is adoptable to integrations, 
extension and etc.  

17 Integration   X 
The system integrated with other documentation systems in 
the company especially the one which is developed based on 
SharePoint. 



 
 یاھو

7. Conclusion 
 As product models become more complex, documenting a product model becomes more time 
consuming [55]. One of the reasons for this is that the updating of the product model must be completed 
manually. The importance of proper documentation for a PCS is related to the vital knowledge modelled 
inside the system, which needs to be changed and updated frequently. Besides this, there is a need for 
knowledge validation by domain experts in order for a reliable system to be achieved. Following a review 
of the available literature, this paper proposes an agile documentation framework for PCS.  
 We suggest a framework based on the agile model and previous literature, through which a temporary 
model can be created. Subsequently, the PVM and CRC cards are generated from the configuration 
system, based on the structures, attributes and constraints within the PCS. The proposed documentation 
framework saves time by removing unnecessary manual tasks, such as recording product knowledge 
multiple times and updating tasks, from the process. This systematic documentation approach gives 
domain experts ownership of the processes of PCS development and maintenance. The system also 
facilitates communication between an IT group and domain experts, which has been reported to be one of 
the main challenges in configuration projects [9]. Additionally, the proposed approach turns the PCS into 
a comprehensive documentation tool that can be used as a product-knowledge database and in which all 
changes can be made in one place: within the PCS.  
 This practical approach has been developed as an IT documentation system that supports the 
framework’s principles. The proposed IT documentation system was implemented using the xml 
(standard) and JavaScript format at the case company. With this system, the whole configuration team 
benefited from agile documentation, uploading their PCS models. Thus, domain experts were empowered 
to check the validity of the PCS continuously. Technical development of the system was quick and easy; 
the only challenge observed relates to the upgrading of the commercial PCS, as the IT documentation 
system has to be tested and debugged after each new version is installed (approximately once a year). 
 Structured interviews, conducted in the testing phase to measure the usability of the new IT 
documentation system, indicated that the proposed method was useful in facilitating the understanding 
and debugging of the system. However, the approach might not be applicable to all kinds of commercial 
PCS (due to the differing structures of PCS). Various challenges might arise, depending on the mind-sets 
and cultures at different companies. We suggest, therefore, that future research should test the system 
using different projects, companies, types of software and platforms. 
 As developing an IT system based on a framework requires not only the availability of the company, 
but also considerable time and resources, we tested the approach at one company only, which limits the 
paper’s generalisability. Focusing one case company, however, allowed us to gain an in-depth 
understanding of how the framework operates, as well as providing a detailed loop of improvements and 
simplifications required in the development of the system. The case company was chosen because it is an 
engineering company that produces highly engineered, complex products, and currently utilises PCS to 
support sales and engineering processes. The firm reported difficulties with the maintenance of their PCS, 
as well as with a lack of documentation for use in communications with domain experts. We assume that 
if the proposed framework can solve such challenges at one company, other companies with the same 
level of complexity or with less complex products might also benefit from use of the framework.  

8. Acknowledgement 
This research was conducted at the company Haldor Topsoe A/S. Permission to undertake the project and 
the financial support are gratefully acknowledged.  

 
 

References 
 

 یاھو



 
 یاھو

[1] L. Hvam, N. H. Mortensen, J. Riis, Product Customization, Springer Verlag, Berlin, 2008. 
[2] W. J. Verhagen, B. de Vrught, J. Schut, R. Curran, A method for identification of automation potential 

through modelling of engineering processes and quantification of information waste. Advanced 
Engineering Informatics, 29(3) (2015) 307-321. 

[3] V. E. Barker, D. E. O’Connor, J. Bachant, E. Soloway, Expert systems for configuration at digital: 
XCON and beyond. Communications of the ACM, 32(3) (1989) 298-318. 

[4] L. Hvam, S. Pape, M. K.  Nielsen, Improving the quotation process with product configuration. 
Computers in Industry, 57(7) (2006) 607-621. 

[5] T. Petersen, Product configuration in ETO companies, in:  T. Petersen, Mass customization 
information systems in business. In T. Blecker (Ed.), Igi Global, 2007, pp. 59-76.  

[6] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, G. Petrone, R. Schafer, M. Zanker, A 
framework for the development of personalized, distributed web-based configuration systems. Ai 
Magazine, 24(3) (2003) 93. 

[7] C. Forza, F. Salvador, Product Information Management for Mass Customization, Palgrave 
Macmillan, New York, 2007. 

[8] J. Tiihonen, M. Heiskala, A. Anderson, T. Soininen, WeCoTin – A practical logic-based sales 
configurator. AI Communications, 26(1) (2013) 99-131. 

[9] F. Paetsch, A. Eberlein, F. Maurer, Requirements engineering and agile software development, in: 
IEEE 12st International Workshop on Enabling Technologies, Infrastructure for Collaborative 
Enterprises, 2003, pp. 308. 

[10] A. Duffy, M. Andreasen, Enhancing the evolution of design science, in: Proceedings of International 
Conference on Engineering Design (ICED), 1995, pp. 29-35). 

[11] P. Kruchten, The Rational Unified Process: An Introduction, New York, Addison-Wesley, 1998. 
[12] A. Haug, L. Hvam, The modelling techniques of a documentation system that supports the 

development and maintenance of product configuration systems. International Journal of Mass 
Customisation, 2(1/2) (2007) 1-18. 

[13] A. Haug, L. Hvam, Representation of Industrial Knowledge as a Basis for Developing and 
Maintaining Product Configurators. Technical University of Denmark, Department of Management 
Engineering, Operations Management, 2008. 

[14] Z. Jinsong, W. Qifu, W. Li, Z. Yifang, Configuration-oriented product modelling and knowledge 
management for made-to-order manufacturing enterprises. The International Journal of Advanced 
Manufacturing Technology, 25(1-2) (2005) 41-52. 

[15] D. Yang, R. Miao, H. Wu, Y. Zhou, Product configuration knowledge modeling using ontology web 
language, Expert Systems with Applications, 36(3) (2009) 4399-4411. 

[16] A. Haug, A software system to support the development and maintenance of complex product 
configurators, The International Journal of Advanced Manufacturing Technology, 49(1-4) (2010) 393-
406. 

[17] S. Shafiee, L. Hvam, K. Kristjansdottir, An agile documentation system for highly engineered, 
complex product configuration systems, in: 22nd EurOMA Conference: Operations Management in 
an Innovation Economy. Neuchatel, Switzerland, 2015. 

[18] J. D. Herbsleb, D. Moitra, Global software development, IEEE Software, 18(2) (2001) 16-20. 
[19] G. Friedrich, D. Jannach, M. Stumptner, M. Zanker, Knowledge engineering for configuration 

systems, in: A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen, Knowledge-based Configuration From 
Research to Business Cases, Morgan Kaufman, 2014, pp. 139-155. 

[20] W. ISO, Ergonomic Requirements for Office Work with Visual Display Terminals. Geneva: The 
International Organization for Standardization, 45, 1998. 

[21] J. Nielsen, The usability engineering life cycle. Computer, 25(3) (1992) 12-22. 
[22] E. Arisholm, L. C.Briand, S. E. Hove, Y. Labiche, The impact of UML documentation on software 

maintenance: An experimental evaluation, IEEE Transactions on Software Engineering, 32(6) (2006) 
365-381. 



 
 یاھو

[23] L. Argote, P. Ingram, J. M. Levine, R. L. Moreland, Knowledge transfer in organizations, 
Organizational Behavior and Human Decision Processes, 82(1) (2000) 1-8. 

[24] M. Aldanondo, S. Rouge, M. Ve, Expert configurator for concurrent engineering: Came´ le´ on 
software and model, Journal of Intelligent Manufacturing, 11(2) (2000)127-134. 

[25] P. Chao, T. Te Chen, Analysis of assembly through product configuration, Computers in Industry, 
44(2) (2001) 189-203. 

[26] D. Magro, P. Torasso, Decomposition strategies for configuration problems, Artificial Intelligence 
for Engineering Design, Analysis and Manufacturing, 17(01) (2003) 51-73. 

[27] H. Tseng, C. Chang, S. Chang, Applying case-based reasoning for product configuration in a mass 
customization environment, Expert Systems with Applications, 29(4) (2005) 913-925. 

[28] T. Guðlaugsson, P. Ravn, N. Mortensen, R. Sarban, Front-end conceptual platform modelling, 
Concurrent Engineering, 22(4) (2014) 267-276. 

[29] M. Mekhilef, J. Bourey, M. Bigand, An UML Modelling of an Architecture for Knowledge 
Documentation, in: International Conference on Engineering Design (ICED), Stockholm, 2003.  

[30] A. Felfernig, D. Jannach, M. Zanker, Contextual diagrams as structuring mechanisms for designing 
configuration knowledge bases in UML, in: International Conference on the Unified Modeling 
Language, Springer, 2000, pp. 240-254. 

[31] L. Hvam, A procedure for the application of product modelling, International Journal of Production 
Research, 39(5) (2001) 873-885. 

[32] K. Beck, W. Cunningham, A laboratory for teaching object-oriented thinking, ACM Sigplan Notices, 
24(10) (1989) 1-6. 

[33] L. Hvam, J. Riis, B. Hansen, CRC cards for product modelling. Computers in Industry, 50(1) (2003) 
57-70. 

[34] B. Renzl, Trust in management and knowledge sharing: The mediating effects of fear and knowledge 
documentation, Omega, 36(2) (2008) 206-220. 

[35] Rask, I. (1998). Rule-Based Product Development. Molndal: Industrial Research and Development 
Corporation. 

[36] S. Sunnersjo, M. Cederfeldt, F. Elgh, I. Rask, A transparent design system for iterative product 
development, Journal of Computing and Information Science in Engineering, 6(3) (2006) 300-307. 

[37] d. Kuhn, Selecting and effectively using a computer aided software engineering tool, in: Annual 
Westinghouse Computer Symposium. Pittsburgh, PA, USA, 1989. 

[38] R.J. Kusters, G. Wijers, On the practical use of CASE-tools: Results of a survey, in: IEEE 
Proceeding of the Sixth International Workshop on Computer-Aided Software Engineering, 1993. 

[39] F. Elgh, Decision support in the quotation process of engineered-to-order products, Advanced 
Engineering Informatics, 26(2012) (2011) 66-79.  

[40] C.J. Paredis, T. Johnson, Using OMG’s SysML to support simulation, in: Simulation Conference, 
IEEE, 2011, pp. 2350-2352.  

[41] R. Karban, T. Weilkiens, R. Hauber, M. Zamparelli, M. Diekmann, A. Hein, MBSE Initiative–SE2 
Challenge Team–Cookbook for MBSE with SysML, SE2 Challenge Team, 2011.  

[42] S.C. Spangelo, D. Kaslow, C. Delp, B. Cole, L. Anderson, E. Fosse, B.S. Gilbert, L. Hartman, T. 
Kahn, J. Cutler, Applying model based systems engineering (mbse) to a standard cubesat, in: 
Aerospace Conference, IEEE, 2012, pp. 1-20.  

[43] C.J. Paredis, Y. Bernard, R.M. Burkhart, H.P. de Koning, S. Friedenthal, P. Fritzson, An overview of 
the SysML-modelica transformation specification, in: 2010 INCOSE international symposium, 2010. 

[44] D. Stelzer, W. Mellis, Success factors of organizational change in software process improvement, 
Software Process Improvement and Practice, 4(4) (1998) 227-250. 

[45] A. Cockburn, Agile software development joins the ‘would-be’ crowd, Cutter IT Journal, 15(1) 
(2002) 6-12. 

[46] B. Selic, Agile documentation, anyone?, IEEE Software, 26(6) (2009) 11-12. 



 
 یاھو

[47] S. Ambler, Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process. 
New York, Wiley Computer Publishing (John Wiley & Sons, Inc.), 2002. 

[48] L. Briand, Software documentation: How much is enough?, in: IEEE European Conference on 
Software Maintenance and Reengineering, 2003.  

[49] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen, Knowledge-based Configuration: From Research to 
Business Cases. Morgan Kaufmann, 2014.  

[50] V. Myllärniemi, J. Tiihonen, M. Raatikainen, A. Felfernig, Using answer set programming for 
feature model representation and configuration, in: International Configuration Workshop, CEUR 
Workshop Proceedings. Novi Sad, Serbia, 2014. 

[51] L. Hvam, S. P. Christensen, K. L. Jensen, J. Riis, Development and maintenance of product 
configuration systems: Requirements for a documentation tool, International Journal of Industrial 
Engineering: Theory Applications and Practice, 12(1) (2005) 79-88. 

[52] B. Pentland, Information systems and organizational learning: The social epistemology of 
organizational knowledge systems, Accounting, Management and Information Technology, 5(1) 
(1995) 1-21. 

[53] T. Hansen, Supporting the CPM Procedure. Lyngby, Denmark, Technical University of Denmark, 
2010. 

[54] A.B. Brown, A. Keller, J.L. Hellerstein, A model of configuration complexity and its application to a 
change management system, in: IFIP/IEEE International Symposium on Integrated Network 
Management, IEEE, 2005, pp. 631-644. 

[55] P. Comptont, R. Jansen, A philosophical basis for knowledge acquisition, Knowledge Acquisition, 2 
(1990) 241-257.  

 
 
 
 
 
 
 وهای


	1. Introduction
	2. Author/Version: SARA
	1. Date: 24.05.2015
	2. Research method
	2.1. Development of the framework and the IT documentation system
	2.2. Evaluating the usability of the system

	3. Literature review
	3.1. Product modelling for PCS projects
	3.2. Documentation and agility
	3.3. Product modelling in commercial configuration systems
	3.4. Requirements for an IT documentation tool for PCS

	4.  The proposed approach for the agile documentation of PCS
	4.1. An agile documentation framework for PCS
	4.2. Development of the IT documentation system
	4.2.1 The corresponding structures in PCS and product models
	4.2.2 Setting up the IT documentation system


	5. Case study
	5.1. Phase 1: Initial product model
	5.2. Phase 2: PVM and CRC-card generation from the PCS

	6. Discussion
	7. Conclusion
	8. Acknowledgement
	References

