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Abstract:  

Assessing building evacuation performance designs in emergency situations requires complex 

scenarios which need to be prepared and analysed using crowd simulation tools, which require 

significant manual input. With current procedures, every design iteration requires several 

simulation scenarios, leading to a complicated and time-consuming process. This study aims to 

investigate the level of integration between digital building models and crowd simulation, 

within the scope of design automation. A methodology is presented in which existing ontology 

tools facilitate knowledge representation and mining throughout the process. Several 

information models are used to integrate, automate and provide feedback to the design decision-

making processes. The proposed concept thus reduces the effort required to create valid 

simulation scenarios by applying represented knowledge, and provides feedback based on 

results and design objectives. To apply and test the methodology a system was developed, 

which is introduced here. The context of building performance during evacuation scenarios is 

considered, but additional design perspectives can be included. The system development 

section expands on the essential theoretical concepts required and the case study section shows 

practical implementation of the system.  

Keywords: Knowledge Mining; Crowd Simulation; Ontology; Evacuation Design; Building 

Information Modelling (BIM); Industry Foundation Classes (IFC).  

1. Introduction 

The building design process has advanced significantly since the adoption of BIM tools and 

standards, leading to easier modelling and information sharing. However, there are currently 

very few ways in which to model and use information to provide knowledge outputs about the 
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design, and thereby enhance the design decision-making processes. With increased 

interoperability and the use of common data formats such as IFC (Industry Foundation Classes), 

design disciplines can provide analysis models from various perspectives: costs, energy, fire 

safety, etc.  However, these developments are more focused on validation of BIM models 

(Zhong et al. 2012) for various analyses and often apply prescriptive design rules (Eastman et 

al. 2009) as opposed to performance-based analysis. The current state of using digital 

technologies for the building lifecycle is constantly developing and there is a need for more 

automatic, multi-disciplinary methods to deal with large data and interoperability issues (Leite 

et al. 2016). 

In the field of fire safety, Crowd Simulation (CS) analysis tools are used to estimate building 

performance in terms of human movement behaviour (Duives et al. 2013). This process requires 

several iterations in different scenarios, which can be a very time-consuming process and can 

often lead to wrong estimations of the building performance (Sagun et al. 2011). There are 

currently no practical ways of leveraging building information and designer knowledge to 

enhance and speed this process. The traditional process usually relies on designer judgement to 

identify performance problems, which cannot take into account all scenario types due to time-

constraints, or the invariance caused by human behaviour (Lovreglio et al. 2014). 

This research aims to bridge this gap by exploring the potential of representing information 

models, designer knowledge and design processes into semantic web ontologies. Using this 

methodology, ontologies can leverage information models through reasoning and data linking, 

thereby providing a more automatic process of analysing building performance. With the right 

operators in place, ontology rules and reasoning can provide insight from CS design scenarios. 

Another advantage which semantic web languages provide is a more complex integration of 

crowd simulation tools with BIM, but also with various other sources of information which are 

required the create realistic scenarios. 

Moving towards a BIM level 3 way of working, model data and information need to be linked 

and stored in knowledge databases, which can be leveraged to provide advanced and speedy 

design support for various AEC applications. Succar 2009 describes level 3 BIM as a network 

of integrated models and services which can be used beyond just the semantic properties of the 

used building models. Thus, it is expected that level 3 BIM and beyond to be able to provide 

more than just data and information, but also knowledge about building models.  
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The paper begins with presenting some of the most important related work in the field of fire 

safety analysis and current uses of ontology tools. The system development outlines the main 

requirements for representing the CS domain and its interactions with BIM and other sources 

of information. The system also describes a conceptual knowledge mining process, for creating 

valid simulation scenarios and return results in accordance to design objectives. A case study 

outlines the process of using the system points out advantages and limitations, followed by a 

discussion on the practical use of this approach and future work. 

2. Related work 

This section outlines crowd simulation models and ontologies in the fields of BIM collaboration 

efforts. A review of CS models and tools was necessary to assess their limitations, ways of 

working and their interoperability degree to BIM processes. The overall research aims to bridge 

interoperability and perform knowledge mining using vast simulation data, for which 

ontologies are chosen as tools to achieve this. A review of ontology tools is also presented to 

establish current methodologies, especially in the fields of BIM and fire safety. 

2.1. Crowd simulation analysis tools 

There are several comprehensive crowd model reviews, which offer critical analysis regarding 

methodologies used (Gwynne et al. 1999) (Kuligowski 2005), application domains (Kuligowski 

2005), scale (Zhou et al. 2010), degree of realism (Duives et al. 2013) and high-rise buildings 

focused (Ronchi and Nilsson 2013). The afore-mentioned authors agree that there is no 

comprehensive model which can simulate all the complexities of human behaviour. Such a 

model would not be practical because as the complexity of the model grows, so does the 

computation time. Kuligowski 2005 advises that each model should be used for very specific 

purposes and users should be aware of each model's practical application and limitations. 

Ronchi and Nilsson 2013 mention that for a more comprehensive view, several models can be 

considered at the same time, which might reveal more information from different perspectives. 

Zhou et al. 2010 and Duives et al. 2013 agree that models can be divided into microscopic 

models (small population) which have high precision, and macroscopic (large population) 

models with lower precision. From literature, the most prevalent trend is concerned with the 

emergency egress of a building scenario.  

Crowd simulation analysis tools are now widely used in design decision-making to assess 

building performance. Thus, they are expected to provide relevant information indicating 
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building behaviour in crowded scenarios. However, according to Hopfe and Hensen 2011, it is 

not always clear how relevant the simulation output is, as it is dependent on a large number of 

parameters. To compensate for this limitation, it is often required to conduct several simulations 

using different assumptions and scenarios. This becomes overwhelming when in the context of 

several design iterations, making it a highly inefficient process. This suggests the need to 

integrate and automate the process with de-facto design processes and standards. Studies 

focused on automation of fire performance design systems are identified from reviewing the 

literature. 

A number of studies are focused on integrating crowd simulation tools into various systems:  

Jalali et al. 2011 integrate 3 different domain tools together for fire evacuation management 

scenarios; Wang et al. 2015 use BIM platforms to provide building environment information 

into a system that perform calculations of escape routes; the authors present a sophisticated 

system using several tools to compare results across different design perspectives. For the 

above-mentioned studies, there is no consensus on information formats, but they regard BIM 

as the source of information. However, no use of IFC is mentioned, and the BIM data imported 

is limited to geometry. Despite these attempts, a gap in the interoperability layer between BIM 

tools and fire safety tools is evident, with no common methodology or information transfer 

protocols, also pointed out by Wang and Wainer 2015; Additionally, the studies forget to 

mention that geometric information is insufficient for CS purposes, and that valid simulation 

models require input from various other sources.  

Apart from the geometric information, additional object properties are often used in rules 

checking for fire safety. There are several attempts to automate the rules checking for fire 

evacuation safety evaluation, with one of the first comprehensive attempts by Dimyadi et al. 

2016. The study presents a system which relies on IFC model data and user input, which is 

compared against a Regulatory Knowledge Model (RKM) consisting of the design rules applied 

to the process. The research checks output from multiple tools to assess fire safety performance 

of building designs, and is IFC focused. Although a good step in the right direction, the process 

of integrating the information is not scalable or collaborative enough for more holistic design 

views or across the BIM lifecycle stages. These limitations are also mentioned by the same 

authors in another study (Dimyadi et al. 2015), where they recommend using ontology formats 

to express regulatory knowledge, due to higher expressivity and interoperability. 
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Malsane et al. 2015 try to identify the requirements of integrating simulation safety tools and 

regulations. The scope of the research is limited to regulation in England and Wales, but it 

discusses in detail the level of knowledge formalisation, and concludes that there is no overall 

consistency on how many fire sub-system rules are addressed. Fire design is a very complex 

problem to solve due to the multitude of sub-systems that require audit and their inter-

dependencies. The authors furthers state that with the use of the IFC standards, regulation 

formalisation should be more object-oriented, thus more specific and easier to assess. However, 

due to the complex nature of describing regulations, IFC alone cannot encapsulate all the 

necessary information for valid performance and rules-compliance audit. 

The studies discussed above rely heavily on IFC, but still face difficulties when expressing rules 

and regulations on top of building models when trying to evaluate the performance of a design. 

While IFC is the best option for storing structured data, it is less likely to meet the needs for 

inter-disciplinary design processes, when in the context of performance assessment. In addition 

to that, the studies have expressed less interest in conceptualising and representing the factors 

which are the indicators of fire design performance or how they can be used in the context of 

automation.  

2.2. Ontology models for building design 

Pauwels et al. 2011 is one of the pilot studies investigating the capabilities of semantic web rule 

checking, applied to acoustic building design, closely tied to IFC concepts. They state that the 

limitations in the IFC schema expressivity of concepts are overcome by an ontology approach. 

Another pilot study on using ontology tools is by Scherer and Schapke 2011, which describes 

a framework for using ontologies as a means of integration on the project level, which can 

include multiple models and processes. Such approaches enable the rule checking process to go 

beyond the schema scope, thus allowing for more flexible model view definitions, which is 

crucial in including non-traditional design analysis under the BIM umbrella. Long before these 

developments, Rűppel et al. 2006 proposed an ontology model framework for fire safety design, 

integrating different databases. This study was limited at the time due to insufficient 

technologies in the AEC sector. However, many developments today rely on the IFC format, 

which is seen as an underlying schema for structuring data, while IfcOwl (Beetz et al. 2009) 

(OpenBIMstandards 2017b) is its ontology representation - which provides higher level 

interoperability and reasoning capabilities. Ontology representations of the IFC schema allow 

for a flexible and more robust backbone for interoperability requirements, as concluded by 
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Venugopal et al. 2015. The computer-interpretable features of ontologies allow for validation 

methods and easier extensibility of other disciplines into the design process. However, this 

presents serious limitations when querying geometry data due to the object-oriented nature of 

the IFC schema. Pauwels et al. 2017 investigate the optimisation issues around its 

representation in terms of geometry retrieval of the data.  Farias et al. 2015 also mention that 

the IFC STEP file was created for optimal information compression, but its object-oriented 

nature does not really align the same way semantically when represented in an ontology. Terkaj 

and Šojić 2015 also aim to improve the semantics of the IfcOwl, to make it more adaptable and 

robust over different application domains. The IfcOwl is currently under the process of 

becoming an international standard (BuildingSMART 2017), which would open the gates 

towards web-languages oriented BIMs. 

Abanda et al. 2013 offer an overview of ontology and semantic web linked data trends in 

research over the last decade, with clear interest in the fields of risk analysis, project 

management knowledge sharing and energy performance analysis. The authors mention that 

semantic linked data is a trend, as it facilitates interoperability between the large spectrums of 

application domains involved in the construction sector. However, they point out that very few 

applications exist commercially which are using ontology support. This is likely due to complex 

requirements for ontology-based collaboration in the field of design and construction. The study 

also identifies several research applications in energy performance analysis and building 

sustainability in general, but there was no mention of fire design performance analysis. This 

suggests a low level of research and development in the area.  

Trento et al. 2012 present a methodology to incorporate human behaviour in assessing building 

performance using ontology representations. However, this is beyond the rules and regulations 

for design compliance and does not address the requirements for using BIMs in practice. This 

is human due to the focus on representing behaviour and toward knowledge management. The 

authors argue that software tools have very limited capability of using ontologies, as they are 

abstract and require significant processing power. Onorati et al. 2014 is an example of using 

ontology methods for aiding the evacuation process, whereby ontology and semantic web 

technologies are used in the building operation stage context.  

Some studies represent certain regulations into ontology concepts and logical rules in order to 

facilitate a fast and automatic environment. Beach et al. 2015 is one of the more recent studies 

which applies regulation checking using ontology representations due to it being easier to 



7 

 

manage and having a more interoperable environment compared to traditional software tools. 

The study focuses on presenting a more viable way to quickly convert textual rules and 

procedures into valid ontology representations and checking. The study was applied in the 

context of BREAM assessment, which is a good example of multi-disciplinary and multi-

domain design decision making. The authors mention that when the SWRL rules are executed, 

the rules check only for failure case, thus suggesting to the users why it failed. This is a 

limitation of the Open World Assumptions (OWA). The users also have to complement missing 

data with input in many situations. A step further from this, Zhou and El-Gohary 2017 present 

a method which semi-automatically extracts information from design codes in order to facilitate 

the code-compliance schema against which models should be checked. However, this study is 

limited to the energy analysis domain. This could really speed up the process of interpreting 

design rules and regulations for automatic information retrieval. However, such methods are 

not suitable for the case of performance design review and feedback, where the ultimate 

decision lies with the designers.  

3. Methodology and system design  

Knowledge Mining is defined as “a derivation of human-like knowledge from data and prior 

knowledge” (Kaufman and Michalski 2005), which includes Databases, Knoweldge bases and 

Operators,as outlined in Table 1.  

Table 1 - The main components for Knowledge Mining concept as described by (Kaufman and Michalski 2005), and their roles 

in the current developed system (ONTOCS) 

Component Description ONTCS implementation 

Databases the raw data present across various 

sources of information 

information models which contain building 

and simulation data 

Knowledge 

bases 

the representation of existing 

knowledge  

ontology representations of the information 

models and processes for analysis and 

feedback 

Operators logical expressions used to 

supplement additional knowledge 

from existing knowledge bases 

Semantic Web Rule Language (SWRL) 

rules 

 

Following the concept of Kaufman and Michalski 2005, this research aims to improve the 

evaluation of building design evacuation evaluation by proposing a conceptual framework 
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which focuses on the knowledge mining of crowd simulation data. The framework aims to 

formalise the design knowledge using ontologies and to retrieve new knowledge back to the 

design loop in a BIM-oriented manner. There are several steps required, as listed below (see 

Figure 1), and which are presented in detail in section 4: 

1. Representing information models – concerning the data and extent of the knowledge 

domains and tools involved in the process; 

2. Representing the processes - concerning the design procedures and assumptions made 

for evaluating building performance related to human behaviour in fire evacuation; 

3. Rules construction – the operators required to define the creation of new knowledge 

from the existing resources;  

4. Integration of the system – requirement to achieve collaboration of system components. 

 

Figure 1 – The knowledge mining concept implemented in ONTOCS. 

Building on this knowledge mining framework for crowd simulation analysis, a software 

system was developed - Ontology Crowd Simulation (ONTOCS). Based on the system 

architecture, its 5 main components are: 

1) Input models – provides all relevant input from building model information, user 

preferences and design constraints. Any other additional data such as sensor data or 

design variable tables, depending on the context, can be included; 
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2) Ontology core – stores all the required definitions and information in RDF format. It 

includes the representations of various information models, the processes (described in 

section 3.4), the reasoning rules and the alignment of all the ontologies used; 

3) Output models – there are two types corresponding to the process stages (see section 

3.4). The first output model types include the generated scenarios and the results they 

provide after execution. The second output type is provided by the ontology reasoning 

for analysis feedback; 

4) System manager – the main application used to coordinate the process by bridging the 

interfaces and manage the server-side databases; 

5) Interfaces - the interfaces which are used for providing a user-friendly experience; they 

can be present at every application level, or as a web-service. 

 

Figure 2 – ONTOCS system components interaction, categorised by their functionality. 

The interaction of the system components is shown in Figure 2 above. The arrows indicate the 

flow of information and the collaboration between the several tools and ontologies. The process 

starts with the acquisition of all the necessary information via input models which are converted 

into RDF format for ontology processing. The ontology core is hosted on Stardog graph 

databases (Stardog Union 2017) and the ontologies shown reflect the process from Figure 1. 

The information models act as resources for the process stages. The automation stage ontology 

and rules make use of the underlying models and data to “understand” the model to a certain 
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degree and then use this to generate valid scenario models. The system manager program 

coordinates this process and outputs a file for the MassMotion (Oasys Limited 2017) crowd 

simulation software used. The MassMotion software runs all the scenario simulations and the 

relevant results are uploaded into the RDF resources for the next stage of the process. Finally, 

the feedback rules are used to generate new knowledge, which is presented for further decision-

making to the users. Considering the complexity of the entire process, and the several 

knowledge domains involved, it is preferred that the ontologies are developed on separate 

graphs, for easier maintenance, as recommended by Beach et al. 2015. These are mapped using 

several alignment ontologies as can be seen in Figure 2. 

4. ONTOCS framework development & implementation 

4.1. Representation of information models 

In its current state, the framework works with different information models (Table 2), including 

BIM models and Crowd Simulation Information Models (CSIM). Following the proposed 

methodology, other models can be included as well, depending on the application needs, and 

future extensibility to other design domains. 

Table 2 – The main information models used for ONTOCS. 

Information 

model 

Description Roles 

Building 

(BIM) 

ontology representation of the building environment 

which describes in detail its components, along 

with their geometry and other semantics 

provide data about the 

environment 

Crowd 

simulation 

(CSIM) 

ontology representation of the crowd simulation 

analysis domain, where agents are used to mimic 

human movement behaviours within building 

environments in various situations 

provide data about human 

behaviour in the environment 

Other ontology representations of other models or systems 

which can enhance or contribute overall to the 

aspect of human behaviour analysis knowledge 

domain (e.g.: building sensors ontologies) 

provide additional 

circumstantial data 

The BIM model is seen here as the central provider of information. The IfcOwl ontology 

(BuildingSMART 2017) was chosen to represent the building information and processes as it 

is best suited for design situations. The crowd simulation ontology was developed to work with 



11 

 

crowd simulation tools, the developed knowledge base includes 4 distinct categories (Figure 3) 

of concepts: 

1) Geometry classes – entities with geometric representations in the crowd simulation 

environment which have impact on the movement of the agents; 

2) Event classes – entities which imply actions taken by agents within the environment in 

finite periods of time; they generally describe movement of people from one point to 

another within the defined boundaries of the building environment; 

3) Agent classes – entities concerning characteristics of agent behaviour and movement; 

they are intended to mimic the desired human behaviour; 

4) Analysis classes – concerns entities which are used by designers to objectively assess 

the performance and behaviours of agents during events simulated within the building 

environment. 

Figure 3 outlines some of the links between the developed crowd ontology and IfcOwl. Due to 

different application domains, the ontology concepts can differ extensively. In fact, a relatively 

small number of classes are directly aligned. These are mostly those describing objects with 

geometric representations. Taking the example in Figure 3 below, the classes for IfcWall, 

IfcColumn, etc. are classified as a subClass of Barrier. Even though in the BIM domain they 

are distinct entities, they all fulfil the same role: blocking the movement of actors. The fact that 

there are multiple types of Barrier, which are distinct in IfcOwl, means that the sameAs axiom 

is not correct. The entities of IfcDoor, IfcStair and IfcSpace were identified as the only 

reasonable cases of declaring equivalency, where there is very little ambiguity. This approach 

is confirmed in part by crowd simulation tools which import the IFC format. 

The hierarchy of entities represented in IfcOwl is very complex as it reflects the IFC schema 

which is object-oriented. This gives rise to some limitations when expressed in ontology 

formats, as it can make rules and alignment of data and individuals challenging, as well as slow 

for extraction. From practical experience whilst conducting the research, this is especially true 

when referring to the geometry data. This issue is identified and addressed by Pauwels et al. 

2017. 

While the common objects are related to geometry, there can be major differences in how the 

geometry is represented. The most well-known crowd models (such as the cellular automata) 

rely on mesh geometry objects, which are different from the 2D and 3D representations of the 

IFC schema.  
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Figure 3 – Showing the difference in hierarchies between building ontology (IfcOwl) and crowd simulation ontology with 

common concepts and their alignment. 

In addition to that, the IFC schema expresses geometry in a compressed way to save memory. 

Because of this, the geometry extracted from the IfcOwl needs to be reconstructed in the crowd 

simulation ontology. A low level of detail for geometric objects is often more than sufficient to 

achieve this. However, even so, the SWRL rules for such a procedure were considered too 
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complex and have opted instead to convert the geometry via software code, which is then put 

into the crowd ontology resources explicitly. This process is more time efficient and a rule 

approach would not benefit the knowledge processes.  

Apart from the geometric information used to represent the environment, the IFC schema 

provides insufficient contextual information, which is vital for defining the Agent and Event 

entity types, needed to represent the actions and behaviours of agents within a specific crowd 

simulation scenario under analysis. In some cases, classes such as IfcProperty can provide 

partial information. This can be stated explicitly as values, and need to be present in the BIM 

in the first place. Example of potential properties are occupancy or densities of spaces, intended 

use of the spaces, or which spaces are designated for fire refuge.  

4.2. Representation of processes 

Representing knowledge concerning the process of creating and analysing crowd simulation 

scenarios is the second step required to facilitate knowledge mining. This usually requires 

several iterations of modelling and analysis and relies on the information models from the 

previous step. There are 2 main processes involved here: 

1. Scenario generation – the process of understanding the building environment and creating 

valid simulation scenarios from this, where several assumptions are made according to 

analysis requirements; 

2. Analysis feedback – the process of analysing scenario results and providing feedback for 

design decision-making. 

4.2.1. Scenario generation 

BIM model data is limited to geometry as most of the actual context information is not present 

explicitly. This information is usually provided by expert designers, who manually construct 

scenarios according to different objectives of the analysis stage. This knowledge is present with 

the designer, or sometimes in different design procedure guides which offer a concentrated 

summary of best practices and recommendations. It can be represented by ontologies in order 

to simulate the process of generating valid realistic crowd simulation models. 

When considering the creation of simulation scenarios and as shown in Figure 4.a, two main 

categories of information input were identified which are required for valid scenarios: 
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Figure 4 – a. shows the concepts which provide the relevant information for a fully functioning scenario with emphasis on 

contextual data types which are influenced by other information domains shown below; b. shows the four domains which 

influence the concepts in a. and their identified relevant factors. 
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1. Geometric – provided by objects with geometry representation within the simulated 

environment; see section 4.1 above. 

2. Contextual – information which defines the circumstances of the simulated environment, 

such as: numbers of inhabitants, exit choices, agent characteristics, etc. 

The importing of geometric information, which appears to be a typical format conversion and 

interoperability issue, has been explored by several research studies mentioned in section 2. 

These related works have failed however to address the implicit information which can be 

reasoned using the appropriate rules, whereby the ontology system is able to “understand” the 

BIM and therefore create a context for the CS domain. 

As opposed to geometry, context information provides important assumptions about each 

scenario and directly influences Agent and Event entities within our ontology. To benefit from 

fully automatic ways of creating simulation scenarios, it is necessary to define the relevant 

contextual information for crowd analysis and how it can be acquired using ontology methods. 

Contextual information can be hard to compute, due to its various sources. The minimum 

requirements for a functional crowd simulation scenario were identified, as shown in Figure 3b.  

Four principal domains which can provide information input emerge: 

A. User input – refers to the choices that the designer is using to generate a variety of 

scenarios which are relevant to the situation. For example, the designer should specify 

what type of scenario is chosen, what is the desired simulated building capacity, or 

which data sets and ontologies are used to do reasoning or for importing data; 

B. IFC model data – provides relevant building data, from geometric to contextual 

information. The data should be stated explicitly through specific properties. There are 

no defined standards for crowd simulation purposes, but the IFC schema allows the 

custom creation of properties at object level; 

C. Design guides & documentation – when it comes to scenario assumptions, a variety 

of documentation guides and published documents can provide an overview of the 

factors to be considered. However, due to their indicative nature, much of the 

information is highly interpretable and circumstantial. The available information is 

spread across several documents. For instance, the PD 7974 2004 part 6 is one of 7 

documents published in the UK which were used to gather knowledge for our ontology 

representations of the process. However, information concerning occupant densities was 

vague, so local official regulation documents were required.  
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D. Building data – live or historical data which refers to occupant traffic that might be 

relevant to the simulated building environment, e.g. data recorded from sensors, traffic 

cameras or exact numbers of occupants per space within a facility.  

4.2.2. Analysis feedback  

The second part in representing the knowledge processes looks at the act of evaluating 

simulation model data. This resembles the act of knowledge mining whereby gathered 

simulation data is analysed by the ontology rules and returned to designers. The feedback is 

highly dependent on the inputs provided in the system from the generation stage and it needs 

to be tailored to designer’s objectives. This means that the feedback stage must consider the 

user input (Figure 4.b) for the generation of relevant knowledge. 

To assess design performance objectively, certain performance indicator factors need to be 

established, as they can allow both ontology reasoners and human decision-makers to 

distinguish between different scenarios.  

After careful consideration, table 1 shows a list of concepts which can act as performance 

indicator factors (PIF) when assessing crowd behaviour in evacuation scenarios. The main 

sources in developing these performance indicators are dependent upon design guidance on 

assessing evacuation performance, available data provided by the simulation software and ad-

hoc factors sought by designers. 

Table 3 – Identified PIFs which are used to assess building performance during evacuation scenarios. 

 
PIF Description Visual representation Source 

1  

travel   

 time 

the time it takes for agents to 

reach a destination point from a 

specific origin in the 

environment. 

 

 

BS7974 

2  

exit 

capacities 

the flow capacity of a corridor, 

door or exit portal 

the total time required by agents 

to reach a safe point 

 

 

BS7974 
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3  

escape  

time 

 

the total time required by agents 

to reach a safe point 

 

 

BS7974 

4  

population 

density 

density factor at a specific point 

in time, in a specific area of the 

environment 

 

 

BS7974 

5 Fruin’s 

Levels of 

Service 

(LOS) 

a way to quantify traffic density, 

describing the service state of a 

specific area in the environment 

 

 

Simulation 

tools 

6 Other PIFs situational or ad-hoc factors N/A N/A 

 

The combination of various inputs which constitute the contextual information can lead to a 

variety of different scenarios. This makes the iteration of the design easier and faster through 

automation. However, as the entire process is dependent on user input, there is a limit to the 

degree of automation which can be achieved.  

One building design is usually tested in several performance scenarios. When considering such 

large numbers of scenarios under evaluation, data can accumulate very quickly and it needs to 

gain certain structure within the system. This means that certain mechanisms need to be in place 

for this sort of system to handle the large amounts of generated data and structured information.  

IFC models are considered central information providers, which is then leveraged using 

ontology representations and rules. In turn, this means that for every IFC model iteration, a 

multitude of simulation scenario models will emerge, as shown in Figure 5. As such, it is 

important to describe the difference between the two types of models in use: 

 Static models – versions of the building models under design assessment; 

 Dynamic models – extensions of the static models, which bring in additional analysis 

related data, information and knowledge. 
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Figure 5 - Static and dynamic information model’s progression with design change. 

A link between the two types of models is necessary as in practice, the static model and its 

dynamic models refer to the same real-life object. If an ‘IfcSpace_01’ object represented in the 

IFC model refers to an actual space, its correspondents in simulation models each contain data 

about the same actual space, but in different circumstances. This can create conflicts of identity 

across multiple OWL individuals which refer to the same ‘IfcSpace_01’. 

4.3. Rules construction 

An ontology representation of model data brings forth the opportunity to apply reasoning and 

infer additional information and knowledge with the right rules in place. The two types of 

information as defined by Xiao Hang Wang et al. 2004, are: 

 Explicit – it refers to data which is directly stated in a model, such as: “IfcSpace_01 has 

Area_01 as 2 m2”. This sort of data is usually related to geometry components, element 

properties and connections, and is always present and stated as “true” in the BIM model; 

 Implicit – it refers to data and information which is not directly stated in the model, but 

is something that might be inferred by logical reasoning as being “true”, if the evaluated 

rules are “true”. Figure 6 below shows one example of implicit information being 

created from some basic building element properties, which are used for the scenario 

generation stage of the ONTOCS system. 
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Figure 6 – Example of retrieving implicit information; the green heavy arrows indicate how certain BIM data can describe 

contextual data. 

Explicit information is required to correctly extract the context from the above defined sources 

(Figure 4.b). However, if the information is not found or doesn’t exist, user input and validation 

is required.  

Relying solely on performance factors is not always enough to make decisions regarding certain 

design. At times, some factors may not explain the cause of certain results and their behaviour. 

As such, it is required to leverage the embedded knowledge and the relationships that exist 

between the different assumptions. Let’s consider the example of a forming bottleneck in a 

certain area in a building, like Space 3 shown in Figure 7. High traffic density in certain areas 

is caused by the influx of agents provided by various origin points, i.e. Spaces 1 and 2. 

However, determining which origin point has more impact in causing the bottleneck is a 

complicated problem, as it is dependent on many factors such as agent characteristics, geometry 

of the spaces, distribution of agents, etc. Complex rules in place could be represented in 
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ontology knowledge that could help determine the causes of such circumstances, thus indicating 

higher degree of implicit knowledge.  

 

Figure 7 – Example of objects and properties (contextual and geometric) influencing the final analysis result. The red arrows 

indicate how certain knowledge rules can be embedded to provide more relevant feedback. 

When considering such rules, careful consideration is required along with validation of the 

rules. The retrieval of such knowledge is complex, and it is limited by the reasoning types that 

ontologies and SWRL rules can provide. This is mainly due to the OWA which governs 

ontology reasoning, where evaluation of rules can not only be “true” and “false”, but also 

“unknown”.  

This is also important when considering results across multiple platforms or other design 

domains in the context of iBIM, in similar terms as described by Hou et al. 2015. 

5. Case study 

The purpose of this case study is to show the benefits of using the developed ONTOCS system 

which uses an ontology approach for aggregating simulation and BIM data in an automatic 

manner, while also providing insight about the building design performance in accordance to 

design objectives. To show this, a test case of a building is presented, as an example of its 

functionality. 

The developed system was tested on a simplified model from an existing Cardiff University 

building. The building environment was modelled using Autodesk Revit 2017 and exported to 

IFC. The IFC file was converted using a third party software (OpenBIMstandards 2017a) to the 



21 

 

IfcOwl format and then put on the system. The interface guides the users through the entire 

process via web browser pages.  

5.1. Building model analysed 

The tested building model can be seen in Figure 8 below. The building is a representation of an 

academic environment with a good mix of offices, lecture rooms and a common room. The 

areas in red represent other parts of the building, as divided by fire compartments. Should a fire 

event occur, people are expected to evacuate to a safe refuge place to either of the adjacent 

departments. Each of the space types has a value for occupancy attached as a property in the 

IFC model being exported, also shown below. 

 

Figure 8 – Plan view of the case study building being tested, split by space functionality. The areas in light grey are assumed 

to have no inhabitants, as per regulations. 
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The design problem is to assess the evacuation travel times of agents under various population 

capacity conditions. An initial design population was prescribed (Figure 8 legend), which was 

then multiplied in order to determine the limits of the building design and establish a realistic 

egress time. 

5.2. Scenarios setup and assumptions 

The model defined above was put into the ONTOCS system where several scenarios were 

created, each with a gradual increase in population. Each scenario was given to simulate the 

environment for 5 minutes. The native MassMotion agent profile was chosen, along with other 

default settings. The assumptions can be seen in Figure 9, as part of the system interface. The 

agents were chosen to appear spontaneously, meaning that from each entrance portal in the 

model, all agents would be present at the beginning of the simulation. Any additional data was 

provided by the IFC model itself, which is processed by ontology rules and the software itself. 

For example, an ontology rule was used to determine egress destinations, which was described 

by the Uniclass (NBS 2017) code for each space. This is part of the scenario generation stage, 

as described in section 4.2.1.  

Initial assumptions were set for 20 scenarios, with varying population multipliers from 10 to 

200%. After this, the scenarios were generated and executed for simulation results. All created 

scenarios were generated successfully, creating independent model files for the crowd software 

to use. These were validated via the interface and in the MassMotion software, to check for any 

scenario generation inconsistencies or errors. The simulation files were then executed 

automatically and generated databases of results for each scenario. These results were used for 

the analysis feedback stage. 
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Figure 9 – ONTOCS system assumptions page. Each scenario can be set with different assumptions and added for generation and analysis. 
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5.3. Objectives and reasoning results 

For this step, several objectives were set in order to assess an appropriate egress time for the 

building department, along with a maximum population cap, as seen in Table 4 below. Each set 

includes 2 separate objectives, each answering specific questions:  

a. Total egress time – what is the total time for all the agents to travel to the exits? 

b. Capacity egress – by what time can x% of the population be evacuated?  

Table 4 - Objective sets for the feedback analysis stage. Each row describes 2 separate objectives, which both have to be met 

Objectives a. Total egress time 

(s) 

b. Capacity egress Valid 

scenarios population (%) time limit (s) 

1 90 50 45 1 to 9 

2 90 75 45 1 to 5 

3 120 75 60 1 to 10 

4 120 95 90 1 to 13 

 

By applying several rules, the system was able to provide answers for the sets of objectives 

chosen. After the simulations were executed, overall results are stored in various resources 

graphs and presented on the interface in a table, as can be seen in Figure 10. Below that, analysis 

objectives can be chosen by designers, which is submitted and evaluated using ontology 

reasoning.  

Once the Evaluate button (Figure 10) is pressed, the application sends SPARQL queries to the 

RDF databases. The process time increases with the complexity of the rules in place, as well as 

with the number of tested scenarios. Figure 11 shows the two rules responsible for answering 

the two types of objectives (Table 4) under analysis. The rules work with classes and properties 

defined in a developed feedback ontology.
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Figure 10 – ONTOCS initial results reporting & objectives page
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Figure 11 – Example feedback SWRL rules for assessing which scenarios have valid results. The ‘fbo’ prefix stands for the 

developed feedback ontology 

The system is able to query data across various databases from simulations, and process the 

results with reasoning flags, categorising each scenario in accordance to user objectives, as seen 

in Figure 12. The results are summarised in Table 4, showing which scenarios meet both 

objectives. 

Reasoning results are then reported back and presented on page in Figure 12. The basic 

functionality here is to categorise the various scenarios in accordance to each rule. It appears 

that some scenarios are both valid and invalid under certain sections. This is because certain 

scenarios can achieve one objective but fail another. Therefore, it can belong to both categories 

at the same time. To mitigate this limitation, another rule is put in place which checks that all 

objectives are met, categorising it as a “FullyValidScenario” class within the developed 

feedback ontology. 
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Figure 12 – ONTOCS reasoning results page. 
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5.4. Validating the results 

The results received by the rules were checked against the raw data generated by the crowd 

simulation software. The data showing the progress of the evacuation procedure was plotted in 

Figure 13. Only scenarios from 9 to 20 are shown, to achieve better clarity on the chart. The 

trend lines for each scenario look quite similar, suggesting no anomalies or large bottlenecks 

forming. However, as the population increases, it becomes clear that the evacuation time 

increase significantly, which puts more pressure on the exit capacities of the building. 

The light green dotted line and the light green shaded rectangle show the area in which results 

are met for objective set 3, from Table 4. While objective 3.a is met for most scenarios, the 

amount reduces significantly when a secondary objective is present. Objective 3.b is more 

relevant to finding out how much time is left before the exit capacities become problematic, 

thus increasing the evacuation time. From these results it can be observed that the reasoning 

results are performing correctly. However, with more design restrictions, it is possible that at 

times no result is found, should data not be present for one of the objectives to be met. 
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Figure 13 – Plotted results of the egress progression for each tested scenario. Scenario 10 is depicted by the red dotted line, 

which assumes 100% population capacity for the building. 

6. Discussion 

Due to the multi-disciplinary nature of the design involving human behaviour assessment, it is 

clear that an ontology approach would greatly benefit the integration of all the required data 

and information concepts, in order to achieve a BIM-based way of working. This would bring 

forth the benefits of more automation and therefore faster and more efficient ways of evaluating 

building performance. However, the same multi-disciplinary nature creates a complex system, 

ranging from software, data transfer protocols, human factors and design procedures. Each of 

these factors are research and practical problems on their own. While the data models can rely 
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heavily on IFC, software tools used for analysis will evolve and change, and so can design 

procedures.  

The IFC format is essentially a representation of structured data for the use in the construction 

sector. Due to its standardised schema, it can provide a reliable base for constructing 

information automation rules and ontology representations. However, structured data still needs 

to be specified in the first place, especially when trying to create the context for simulation 

scenarios, as discussed in section 4.2.1. For example, in an IFC model there is no specific 

property defined as “Number of Occupants” for a specific space, and therefore this property 

needs to be defined explicitly by a BIM platform or tool, and its corresponding value be inputted 

by the user.  In this context, ontology rules and representations must be based on existing and 

already defined properties within the BIM model. This implies that rules are highly dependent 

on model templates and its source modelling platform, as each modelling platform might export 

IFC defined differently. This presents a serious limitation to using ontologies for this purpose, 

which ends up with high maintenance costs. A standardised way is recommended for providing 

and expressing data referring to building occupancy use. Alternatively, more complex rules can 

be set in place, which are able to identify the functionality of model objects based on their 

names, descriptions or even geometric arrangement and relationships with other objects within 

the model.  

Apart from the advantages of automation and reasoning, the main limitation of this approach is 

that the extent to which knowledge needs to be represented is quite large. This implies a need 

for validation of the ontologies, which is currently still ongoing. However, once validated, an 

ontology approach offers great extensibility to this methodology, allowing multiple design 

domains to merge. The same way as ONTOCS allows the view of a model in IFC or in CS, it 

would allow a view of the model in energy analysis or other analysis models. The IFC schema 

is a good example of a robust structured data format, however it lacks these things in the crowd 

simulation analysis domain. The diverse information which is required in this domain comes 

from the 4 main sources discussed in section 4.3.1. While user preferences will always change, 

the extent of the available options can be narrowed down quite easily and is not expected to 

change. Design regulations and guides differ by region, meaning that some local occupancy 

factors or assessment objectives need to be represented separately. This can lead to the 

assessment of the same model in different contexts. However, the maintenance of these 

ontologies and their rules requires extensive knowledge of the involved domains and their 

interactions.  
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The simplified example in the case study tries to showcase the benefits of automation and the 

use of multi-objective design assessment. This mainly tries to solve the problem of aggregating 

data across multiple models, while the BIM model acts as the single point of truth from the 

designer’s perspective. The ontology representation of the models is beneficial when the correct 

mapping is in place, essentially allowing the formation of a comprehensive building model in 

various dimensions. However, for more advanced processing, such as reasoning rules for 

feedback, providing new knowledge about the design can be achieved in various ways. The one 

explored in section 5 involved simpler rules, where answers are provided based on threshold 

values limited by objectives. This effectively provides knowledge by notifying the designers of 

which scenarios are performing in accordance to their performance standards and which are 

not. This can be useful when evaluating several scenarios iteratively. However, a more 

meaningful way for feedback is detecting the cases of design problems and bringing them 

forward as new knowledge, as suggested in section 4.3. This however can become problematic, 

as each it is hard to determine if an answer is always true or false, in order to express a valid 

ontology rule. 

7. Conclusion and future work 

From the literature in section 2.1, working with crowd analysis for building design is lacking 

behind in BIM standards, being effectively limited to geometry, with little consensus on 

common data formats, apart from the use of IFC as a source model. Because of the multi-

disciplinary nature of fire safety and its process requiring multiple sources of information input, 

an ontology approach is proposed, as it is suited best for both interoperability and knowledge 

representation and retrieval. Similar ontology models and methodologies were also reviewed in 

section 2.2., and IfcOwl was identified as the most suitable representation of the building 

environment. A methodology on knowledge representation and mining about building 

performance is introduced in section 3, along with the prototype system architecture 

(ONTOCS) which was developed for testing. This approach was described conceptually as a 

framework to achieve interoperability, representing information models, a design process for 

crowd simulation analysis and a way to perform knowledge mining using rules on top in section 

4. An initial alignment between a CS domain and the IfcOwl is proposed, along with factors 

influencing the input for the CS analysis domain, in section 4.1. Using these identified sources 

of information, scenario rules are created to allow the ONTOCS system to “understand” the 

models and create valid scenarios for further analysis, in section 4.2. The feedback stage 
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presents the complexities of aligning user design objectives as well as the capabilities of rules 

to bring forth new knowledge about the designs, and how the knowledge models and objects 

interact conceptually, in section 4.3. 

The framework was tested on a on a building model representing an academic-office 

department, in section 5. The case study shows the design process for identifying a suitable 

overall building capacity in terms of its population. Some rules which are used to assess 

scenario results are presented, and how they can provide knowledge about the building 

performance by aggregating the relevant results data. The expressivity of the SWRL language 

allows for some basic categorisation of scenarios into valid or invalid types, which are in-line 

with design objectives. The results are limited to the available data and assumptions due to 

OWA, and the cost of reasoning increases with the number of rules applied in conjunction with 

each other, as well as with the number of scenarios evaluated.  

The overall limitations of this approach are discussed in section 6. The multi-disciplinary nature 

of fire safety assessment results in a complex system with inter-dependent components. While 

the web ontologies bring overall greater interoperability and reasoning capabilities, they are 

hard to maintain. 

Ongoing work involves the validation of the ontologies developed used in the system, along 

with a case study on a live building in different scenarios to test the capabilities and limitations 

of this approach and assess to what degree new knowledge can be retrieved using rules. 
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