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Capacitated closed-loop supply chain network design under uncertainty 

Abstract: This study optimizes the design of a closed-loop supply chain network, which 

contains forward and reverse directions and is subject to uncertainty in demands for new & 

returned products. To address uncertainty in decision-making, we formulate a two-stage 

stochastic mixed-integer non-linear programming model to determine the distribution center 

locations and their corresponding capacity, and new & returned product flows in the supply 

chain network to minimize total design and expected operating costs. We convert our model to 

a conic quadratic programming model given the complexity of our problem. Then, the conic 

model is added with certain valid inequalities, such as polymatroid inequalities, and extended 

with respect to its cover cuts so as to improve computational efficiency. Furthermore, a tabu 

search algorithm is developed for large-scale problem instances. We also study the impact of 

inventory weight, transportation weight, and marginal value of time of returned products by 

the sensitivity analysis. Several computational experiments are conducted to validate the 

effectiveness of the proposed model and valid inequalities. 

Keywords: capacitated closed-loop supply chain, conic quadratic programming, stochastic 

programming, valid inequalities, tabu search. 

1. Introduction

Customers’ required level of service has increasingly escalated with the improvement in a

living standard. In terms of delivery time, the demand for new products is more and more 

urgent. Companies provide remanufactured products, which are in a looking-new condition 

and favorable quality to satisfy consumer demand. Many well-known enterprises, such as HP, 

Xerox, and Kodak, design and operate their supply chains by jointly considering forward and 

reverse supply chains. These enterprises incorporate their remanufacturing processes into their 

regular production lines and operations (Taleizadeh et al., 2018). The closed-loop supply chain 

(CLSC) has drawn considerable attention from both the academia and the practitioners. 

The traditional supply chain management refers to decisions on efficient production and 

This is the Pre-Published Version.
The following publication Zhen, L., Wu, Y., Wang, S., Hu, Y., & Yi, W. (2018). Capacitated closed-loop supply chain network design under uncertainty. 
Advanced Engineering Informatics, 38, 306-315 is available at https://doi.org/10.1016/j.aei.2018.07.007.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/



 

2 

 

product transportation from suppliers to demand places through one or more distribution 

centers (Üster and Hwang, 2016). By contrast, a CLSC network consists of all necessary 

components to design, fabricate, sell, and recycle a product (Zhang et al., 2015). Thus, the 

CLSC network design should simultaneously consider operations of the forward and the 

reverse flows. The design of the CLSC network consists of several long-term and short-term 

decisions; the former determines whether a distribution center should be built and its 

corresponding capacity, whereas the latter determines the order assignment strategy 

(Haddadsisakht and Ryan, 2018). The CLSC design and operations management have attracted 

attention from the academia and industry over the last 20 years (Üster and Hwang, 2016). 

However, the increasing popularity of online shopping has improved the CLSC management 

to a highly profound level given the rapid development of internet technology. The retail 

platform of Alibaba Group in China announced that USD 25.3 billion of gross merchandise 

volume was settled through Alipay on November 11, 2017; this value reflects an increase of 

39% compared to 2016. However, its return rate is 62.9% according to unofficial statistics. 

Thus, a well-designed CLSC network is increasingly significant for online shopping companies, 

such as Alibaba and Amazon.  

This study is motivated by a real-world bottleneck problem encountered during online 

shopping. Now, with the advance of the internet technology, online shopping has become one 

of the most active ways for consumers to buy remanufactured products (Xu et al., 2017). The 

supply chain design and operations management is experiencing increasing competitive and 

regulatory pressures which also lead to new challenges. Hence, supply chain managers are 

concerned with a novel CLSC network which considers many realistic factors together 

simultaneously in order to obtain numerous financial benefits. This study investigates a three-

tiered supply network that considers capacitated distribution centers, uncertainty demands of 

new & returned products, risk-pooling strategy to buffer random demands, savings from 

collocating of a joint distribution center, value loss related to inventory and transportation time, 

and a linear relationship between distribution center capacity and cost simultaneously. We 

formulate our problem as a two-stage stochastic programming model in which the first stage is 

responsible for long-term decisions, such as distribution center locations and their 

corresponding capacities. The second stage corresponds to certain short-term decisions, such 
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as the product transportation assignment optimization under various scenarios. We then convert 

our original model to a conic quadratic mixed-integer programming (MIP) model and add 

certain valid inequalities, such as polymatroid inequalities considering the complexity of our 

problem. Then, we add extended cover cuts to strengthen the model formulation. Moreover, a 

tabu search algorithm is also suggested to solve the model with large-scale problem instances.  

The remainder of this study is organized as follows. Section 2 introduces an overview of 

related works. Section 3 proposes a non-linear MIP model about the CLSC design and converts 

it to a conic quadratic MIP model. In addition, certain valid inequalities are developed to 

improve the computational efficiency. Section 4 details the parts of the tabu search algorithm, 

which we use for large-scale problem instances. Section 5 discusses the computational 

experiments under our optimization strategy. Section 6 presents the conclusions drawn from 

this study. 

2. Related literature 

Numerous studies have been conducted on the CLSC design and optimization given the 

increasing consumer demand for environmentally friendly products. We review three streams 

of related literature on supply chain management problems. Readers who are interested in this 

area can refer to Fleischmann et al. (2001), Savaskan et al. (2004), Listeş (2007), Guide and 

Wassenhove (2009), Zhang et al. (2015), and Wu et al. (2018) to obtain a comprehensive 

overview on supply chain network design and operations management. 

The first research stream is related to capacity restrictions in the facility location problems. 

Facility location decisions significantly influence the strategic design of supply chain networks 

(Melo et al., 2009). Quantitative papers about the facility location problem have been published 

and the facility location problem has been a well-studied topic within operations research (Org, 

2007; Ljubić and Moreno, 2018). Facility location problems with minimizing marginal revenue 

have been studied from various perspectives (Drenzner et al., 2015). In addition, capacity 

restrictions in the facility location problems are an extension of the original problem and play 

a critical role (Zhang et al., 2015). Fischetti et al. (2016) use Benders decomposition without 

separability to conduct computational experiments for solving capacitated facility location 

problems. Mota et al. (2018) present a multi-objective MIP model that integrates several 
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decisions simultaneously, such as capacitated facility locations, supply chain network design, 

and technology allocation. From a number of related works, an increasing stream of research 

is aimed at integrating strategic and operational-level decisions in facility location problems. 

Furthermore, the role of facility locations in supply chain network management is becoming 

increasingly crucial in a realistic business environment; scholars are also required to develop 

further comprehensive decision models, which can jointly capture many realistic factors in the 

supply chain network management (Melo et al., 2009). 

The second topic of related works is concerned with the reverse logistics management issues 

for remanufactured products. Recently, supply chains with returned products are receiving 

increased attention in the operations management discipline. Reverse logistics is responsible 

for taking back returned products and recovering them efficiently and economically (Senthil et 

al., 2018). The recovery had a significant economic impact on the industry and society, thereby 

causing an increase in the type of literature in reverse logistics management issues for 

remanufactured products (Savaskan et al., 2004). Reverse logistics differs from traditional 

logistics because the former has unique characteristics, such as coordination requirement of 

two markets (Srivastava, 2007). Fleischmann et al. (1997) provide a first review of quantitative 

models for reverse logistics. Numerous studies related to reverse logistics use game theory to 

build remanufacturing models. Li et al. (2017) present a Stackelberg game model for 

considering forward and reverse supply chains as an integrated problem. Govindan et al. (2015) 

propose that we should focus on multi-objective problems by using new approaches to realize 

green, sustainable, and environmental objectives, such as pollution prevention and life-cycle 

assessment. 

The last stream of studies explores the CLSC design and optimization problem. In the 

modern structure of the supply chain network management, forward and reverse logistics are 

regarded as an integrated network rather than separate problems (Rezaei and Kheirkhah, 2017). 

A growing number of firms have realized the importance of CLSC optimization (Senthil et al., 

2018). Sahyouni et al. (2007) build three types of uncapacitated CLSC network design models 

that are aimed at minimizing fixed location and transportation costs. Jabbarzadeh et al. (2018) 

propose a stochastic robust CLSC design and optimization model, which considers lateral 

transshipment as a reactive strategy to address disruption risks; the authors also develop a 
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Lagrangian relaxation algorithm to solve the problem efficiently. Moreover, determining 

whether uncapacitated or capacitated CLSC network faces the same problem that the sub-

problems generated remain intractable and require several cutting-plane methods (Zhang et al., 

2015). 

In summary, many studies on CLSC optimization problems disregarded the uncertainty of 

new & returned products on network design. Many CLSC design and optimization problems 

excluded several realistic factors, such as integrated capacitated distribution center, risk 

pooling to buffer random demands, and value loss related to inventory and transportation time, 

although these studies have considered uncertainty problems. Several other factors were 

frequently ignored, such as the savings from constructing an integrated distribution center, and 

the relationship between distribution center capacity and cost given the economy of scale. 

However, these ignored factors are crucial to the real-world CLSC management. 

This study conducts a comprehensive investigation of a CLSC network design and 

optimization problem by considering several realistic factors, such as uncertain scenarios and 

value loss; these factors are related to inventory and transportation time. In addition, certain 

valid inequalities are added to strengthen the model formulation. In comparison to the existing 

literature, the model proposed in this study can provide more reasonable CLSC management 

plans in real-world application. 

3. Model formulation and reformulation 

We use a relatively simple three-tiered supply chain network as an example to explain the 

problem background of this study. Figure 1 illustrates that the underlying strategic and 

operational setting of our problem consists of three types of facilities, namely, a supplier, 

several capacitated distribution centers (DCs), and retailers, in this network. The relationship 

among these facilities flows in two directions, that is, forward and reverse. Specifically, the 

former is the flow of the retailer’s order for a product from the DC which is replenished from 

the supplier. By contrast, the latter is the flow of returned products from the retailer to the 

corresponding DC and then back to the supplier for remanufacturing. Clearly, DCs can hold 

stocks of both new & returned products. Thus, there are three types of DCs in the network: 

forward DCs which just store new products, reverse DCs which just store returned products, 
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and joint DCs which can store both new & returned products. Since satisfying the needs of 

overall demand in the designed CLSC network generates a certain cost, the goal of our problem 

is to minimize the total cost, including the fixed construction cost of each DC, transportation 

cost, working inventory cost, safety stock inventory cost and the time value of returned 

products. Our problem adopts the risk-pooling strategy, denoting that inventories are 

maintained at the DCs rather than retailers’ sites. Furthermore, in the real-world, a returned 

product could wait in excess of 3.5 months before remanufacturing. Products that are worth 

USD 1000 will lose nearly half of their original product value during this waiting time (Zhang 

et al., 2015). Hence, we also analyze the trade-off between reprocess efficiency and responsive 

costs when designing our bidirectional supply chain network. In summary, we first determine 

distribution center locations among alternative sites (denoted by 𝑑, 𝑑 ∈ 𝐷 ) and capacity 

expansion of each DC. Then, we decide the service allocation of retailers (denoted by 𝑟, 𝑟 ∈

𝑅) under various scenarios (denoted by 𝑠, 𝑠 ∈ 𝑆). 

Supplier

DC DC DC

Retailer Retailer Retailer Retailer Retailer Retailer

New product flow

Returned product flow

 

Figure 1: Structure of a three-tiered supply network 

3.1. Mathematical model formulation 

In this section, a non-linear MIP model is proposed for our problem. The following 

assumptions are considered in this study.  

(1) The demand for new & returned products of each retailer is uncertain and should be fully 
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satisfied.  

(2) The demand for new products is higher than the number of the returned products. 

(3) All related costs are deterministic and known. 

(4) Transportation capacity is sufficient. 

Before formulating the mathematical model for this problem, we list the notations used in 

this paper as follows. 

Indices and sets: 

𝑅    set of all retailers, 𝑟 = 1,2, … , |𝑅| 

𝐷    set of all candidate DC sites, 𝑑 = 1,2, … , |𝐷| 

𝑆    set of all scenarios, 𝑠 = 1,2, … , |𝑆| 

Parameters: 

𝑎𝑑
𝐹 , 𝑎𝑑

𝑅 cost per unit to ship between DC 𝑑 and the supplier for new/ returned products 

𝑏𝑟𝑑 cost per unit to ship between DC 𝑑 and retailer 𝑟 in forward/ reverse flows 

𝑐𝑑
𝐹 , 𝑐𝑑

𝑅 base distribution/ collection capacity at DC 𝑑 

𝑑𝑠𝑟  demand (daily) of new products at retailer 𝑟 under scenario 𝑠 

𝑒𝑑
𝐹 , 𝑒𝑑

𝑅 unit distribution/ collection capacity expansion cost at DC 𝑑 

𝑓  initial price of returned products 

𝑔𝑑
𝐹 , 𝑔𝑑

𝑅 allowed distribution/ collection capacity expansion at DC 𝑑 

ℎ  inventory holding cost per unit of products per year for each DC 

𝑖  weight factor associated with the inventory cost in forward/ reverse flows 

𝑘  daily transportation cost per unit of returned products 

𝑙𝑑  lead time in days at a DC 𝑑 

𝑚  returned products’ (daily) marginal value of time 

𝑁  number of days in a year 

𝑜𝑑
𝐹 , 𝑜𝑑

𝑅 fixed cost of placing an order of new/ returned products at DC 𝑑 

𝑃𝑠  probability of scenario 𝑠 

𝑟𝑠𝑟  demand (daily) of returned products at retailer 𝑟 under scenario 𝑠 

𝑠𝑑
𝐹 , 𝑠𝑑

𝑅 fixed (yearly) costs of locating a DC for forward/ reverse flow at DC 𝑑 

𝑠𝑑
𝐶  fixed location cost savings at joint DC 𝑑 

𝑡𝑑
𝐹 , 𝑡𝑑

𝑅 fixed transportation costs between supplier and DC 𝑑 for new/returned products 
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𝑡  weight factor associated with the transportation cost in forward/ reverse flows 

𝑣  weight factor associated with loss in value of returned products 

𝑊𝐼𝑠𝑑
𝐹 (∙) total annual cost of working inventory at forward DC 𝑑 under scenario 𝑠 

𝑊𝐼𝑠𝑑
𝑅 (∙) total annual cost of working inventory at reverse DC 𝑑 under scenario 𝑠 

𝑍𝛼  standard normal deviate such that 𝑃(𝑍 ≤ 𝑍𝛼) = 𝛼 

𝛼  desired percentage of retailer’s order satisfied 

Decision variables: 

𝜃𝑠𝑑
𝐹  shipment quantity of new products at DC 𝑑 under scenario 𝑠 

𝜃𝑠𝑑
𝑅  shipment quantity of returned products at DC 𝑑 under scenario 𝑠 

𝜏𝑑
𝐹 binary, which equals one if candidate 𝑑 is selected as a forward DC; zero, otherwise 

𝜏𝑑
𝑅 binary, which equals one if candidate 𝑑 is selected as a reverse DC; zero, otherwise 

𝜏𝑑
𝐶  binary, which equals one if candidate 𝑑 is selected as a joint DC; zero, otherwise 

𝛾𝑟𝑑𝑠
𝐹  binary, which equals one if demand of new products of retailer 𝑟 is served by DC 𝑑 

under scenario 𝑠; zero, otherwise 

𝛾𝑟𝑑𝑠
𝑅  binary, which equals one if returned products of retailer 𝑟 is served by DC 𝑑 under 

scenario 𝑠; zero, otherwise 

𝛾𝑑𝑠
𝑅  = (𝑌1𝑑𝑠

𝑅 , 𝑌2𝑑𝑠
𝑅 , … , 𝑌|𝑅|𝑑𝑠

𝑅 )𝑇 

𝛽𝑑
𝐹 amount of distribution capacity expansion at DC 𝑑 

𝛽𝑑
𝑅 amount of collection capacity expansion at DC 𝑑 

In our two-stage stochastic programming model, the first stage addresses design decisions 

to be made at present, whereas the second stage addresses decisions under uncertainty realized 

by a given set of scenarios. The location and capacity expansion decisions for the DCs belong 

to the first stage. Bidirectional network flow decisions belong to the second stage and are 

determined after a demand-and-return scenario is realized. Our model is designed to minimize 

the total cost of the first-stage design costs and expected second-stage costs over a given set of 

scenarios.  

Mathematical model (P1): 

Minimize ∑ (𝑠𝑑
𝐹𝜏𝑑

𝐹 + 𝑠𝑑
𝑅𝜏𝑑

𝑅 + 𝑒𝑑
𝐹𝛽𝑑

𝐹 + 𝑒𝑑
𝑅𝛽𝑑

𝑅 − 𝑠𝑑
𝐶𝜏𝑑

𝐶)𝑑∈𝐷 +

           ∑ ∑ 𝑃𝑠[∑ 𝑡𝑁𝑏𝑟𝑑𝑑𝑠𝑟𝛾𝑟𝑑𝑠
𝐹 + 𝑖ℎ𝑍𝛼√𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠

𝐹
𝑟∈𝑅 + 𝑊𝐼𝑠𝑑

𝐹 (𝐷𝑠𝑑
𝐹 , 𝜃𝑠𝑑

𝐹 ) +𝑟∈𝑅𝑑∈𝐷𝑠∈𝑆
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∑ 𝑡𝑁𝑏𝑟𝑑𝑟𝑠𝑟𝛾𝑟𝑑𝑠
𝑅 + 𝑊𝐼𝑠𝑑

𝑅 (𝐷𝑠𝑑
𝑅 , 𝜃𝑠𝑑

𝑅 )𝑟∈𝑅 ] + ∑ 𝑃𝑠[𝑣 ∑ 𝑅(𝛾𝑑𝑠
𝑅 , 𝜃𝑠𝑑

𝑅 )]𝑑∈𝐷𝑠∈𝑆       

               (1) 

s.t. ∑ 𝛾𝑟𝑑𝑠
𝐹

𝑑∈𝐷 = 1, ∑ 𝛾𝑟𝑑𝑠
𝑅

𝑑∈𝐷 = 1   ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆                 (2) 

𝛾𝑟𝑑𝑠
𝐹 ≤ 𝜏𝑑

𝐹 , 𝛾𝑟𝑑𝑠
𝑅 ≤ 𝜏𝑑

𝑅    ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆        (3) 

𝜏𝑑
𝐶 ≤ 𝜏𝑑

𝐹 , 𝜏𝑑
𝐶 ≤ 𝜏𝑑

𝑅    ∀𝑑 ∈ 𝐷              (4) 

𝜃𝑠𝑑
𝐹 + 𝑍𝛼√𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠

𝐹
𝑟∈𝑅 + 𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠

𝐹
𝑟∈𝑅 ≤ 𝑐𝑑

𝐹𝜏𝑑
𝐹 + 𝛽𝑑

𝐹   ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆 (5) 

𝜃𝑠𝑑
𝑅 ≤ 𝑐𝑑

𝑅𝜏𝑑
𝑅 + 𝛽𝑑

𝑅             ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆          (6) 

𝛽𝑑
𝐹 ≤ 𝑔𝑑

𝐹𝜏𝑑
𝐹     ∀𝑑 ∈ 𝐷              (7) 

𝛽𝑑
𝑅 ≤ 𝑔𝑑

𝑅𝜏𝑑
𝑅    ∀𝑑 ∈ 𝐷              (8) 

𝜏𝑑
𝐹 , 𝜏𝑑

𝑅 , 𝜏𝑑
𝐶 ∈ {0,1}      ∀𝑑 ∈ 𝐷                        (9) 

𝛾𝑟𝑑𝑠
𝐹 , 𝛾𝑟𝑑𝑠

𝑅 ∈ {0,1}       ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆          (10) 

𝜃𝑠𝑑
𝐹 , 𝜃𝑠𝑑

𝑅 ≥ 0    ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆       (11) 

𝛽𝑑
𝐹, 𝛽𝑑

𝑅 ≥ 0    ∀𝑑 ∈ 𝐷              (12) 

where : 

𝑊𝐼𝑠𝑑
𝐹 (𝐷𝑠𝑑

𝐹 , 𝜃𝑠𝑑
𝐹 ) =  {

𝑜𝑑
𝐹 𝐷𝑠𝑑

𝐹

𝜃𝑠𝑑
𝐹 + 𝑡(𝑡𝑑

𝐹 + 𝑎𝑑
𝐹𝜃𝑠𝑑

𝐹 )
𝐷𝑠𝑑

𝐹

𝜃𝑠𝑑
𝐹 +

𝑖ℎ

2
𝜃𝑠𝑑

𝐹 ,     𝜃𝑠𝑑
𝐹 > 0

0,                                                                  𝜃𝑠𝑑
𝐹 = 0

       (13) 

𝑊𝐼𝑠𝑑
𝑅 (𝐷𝑠𝑑

𝑅 , 𝜃𝑠𝑑
𝑅 ) =  {

𝑜𝑑
𝑅 𝐷𝑠𝑑

𝑅

𝜃𝑠𝑑
𝑅 + 𝑡(𝑡𝑑

𝑅 + 𝑎𝑑
𝑅𝜃𝑠𝑑

𝑅 )
𝐷𝑠𝑑

𝑅

𝜃𝑠𝑑
𝑅 +

𝑖ℎ

2
𝜃𝑠𝑑

𝑅 ,   𝜃𝑠𝑑
𝑅 > 0

0,                                                                  𝜃𝑠𝑑
𝑅 = 0

        (14) 

𝐷𝑠𝑑
𝐹 = 𝑁 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠

𝐹 ,  𝑟∈𝑅 𝐷𝑠𝑑
𝑅 = 𝑁 ∑ 𝑟𝑠𝑟𝛾𝑟𝑑𝑠

𝑅  𝑟∈𝑅           ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆    (15) 

𝑅(𝛾𝑑𝑠
𝑅 ,  𝜃𝑠𝑑

𝑅 ) = 𝑅𝑖𝑛𝑣(𝜃𝑠𝑑
𝑅 ) + 𝑅𝑡𝑟(𝛾𝑑𝑠

𝑅 ) = 𝑚𝑓 [
𝑁𝜃𝑠𝑑

𝑅

2
+ ∑ (

𝑏𝑟𝑑+𝑎𝑑
𝑅

𝑘
) 𝑁𝑟𝑠𝑟𝛾𝑟𝑑𝑠

𝑅
𝑟∈𝑅 ].   (16) 

The objective function (1) minimizes the total cost, including the fixed and expansion cost 

of each DC, transportation cost, working inventory cost, safety stock inventory cost and time 

value of the returned products. We rename the five types of cost defined by using the above 

parameters and decision variables to facilitate reading: 

i. Fixed and expansion cost : ∑ (𝑠𝑑
𝐹𝜏𝑑

𝐹 + 𝑠𝑑
𝑅𝜏𝑑

𝑅 + 𝑒𝑑
𝐹𝛽𝑑

𝐹 + 𝑒𝑑
𝑅𝛽𝑑

𝑅 − 𝑠𝑑
𝐶𝜏𝑑

𝐶)𝑑∈𝐷 ; 

ii. Transportation cost : ∑ 𝑃𝑠[∑ ∑ (𝑡𝑁𝑏𝑟𝑑𝑑𝑠𝑟𝛾𝑟𝑑𝑠
𝐹 + 𝑡𝑁𝑏𝑟𝑑𝑟𝑠𝑟𝛾𝑟𝑑𝑠

𝑅 )𝑟∈𝑅 ]𝑑∈𝐷𝑠∈𝑆 ; 

iii. Working inventory cost : ∑ ∑ 𝑃𝑠[𝑊𝐼𝑠𝑑
𝐹 (𝐷𝑠𝑑

𝐹 , 𝜃𝑠𝑑
𝐹 ) + 𝑊𝐼𝑠𝑑

𝑅 (𝐷𝑠𝑑
𝑅 , 𝜃𝑠𝑑

𝑅 )]𝑠∈𝑆𝑑∈𝐷 ; 

iv. Safety stock inventory cost : ∑ ∑ 𝑃𝑠(𝑖ℎ𝑍𝛼√𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠
𝐹

𝑟∈𝑅 )𝑠∈𝑆𝑑∈𝐷 ; 

v. Time value of returned products: ∑ 𝑃𝑠[𝑣 ∑ 𝑅(𝛾𝑑𝑠
𝑅 , 𝜃𝑠𝑑

𝑅 )]𝑑∈𝐷𝑠∈𝑆 . 
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The first kind of cost is the sum of the fixed costs of building a new DC and expansion costs 

of each DC and the fixed cost savings caused by the joint DC. The cost of forward flows sums 

the transportation, working inventory, and safety stock inventory costs, whereas the cost of 

reverse flows has the same cost components, except for the safety stock inventory cost. 

Equation (13) represents the working inventory cost of new products, which consist of fixed 

costs for handling orders, supplier-to-DC shipping costs, and the average order holding costs 

per year. In addition, the working inventory cost of returned products is formulated as Equation 

(14). Equation (15) states the process for calculating 𝐷𝑠𝑑
𝐹  and 𝐷𝑠𝑑

𝑅 . We assume that 𝐷𝑠𝑑
𝑅  is 

the total number of returned products of each DC under various scenarios. 𝑅(𝛾𝑑𝑠
𝑅 ,  𝜃𝑠𝑑

𝑅 ), as 

expressed in Equation (16), is the average time value loss of returned products per year; this 

loss is related to the marginal value of time of returned products. A detailed description of 

Equations (13), (14), and (16) can be found in Shen et al. (2003), Geyer et al. (2007), and 

Blackburn et al. (2004), respectively.   

 Constraints (2) guarantee that each retailer is served by only one DC. Constraints (3) ensure 

that only open DCs can be assigned. Constraints (4) state that if a DC is assigned to provide 

both forward and reverse services, then such DC acts as a joint DC. Constraints (5) are the 

capacity restrictions of each forward DC which summarizes the new product, safety stock 

under the assumption of normal demands, and covers stock-outs that occur with a probability 

of α or less and average demand during lead times. Notably, 𝑍𝛼 is the 100𝛼th percentile of 

a standard normal distribution, i.e., 𝑃(𝑍 ≤ 𝑍𝛼) = 𝛼 where 𝑍 is a standard normal random 

variable. A detailed description of Constraints (5) can be found in Ozsen et al. (2010). 

Constraints (6) are the capacity restrictions of each reverse DC. Constraints (7)−(8) stipulate 

that the design expansion capacity is less than its corresponding expansion capacity limit. 

Lastly, Constraints (9)−(12) define the value range of decision variables. 

3.2. Model reformulation 

Our problem is formulated as a non-linear MIP model, and finding its optimal solutions in a 

reasonable amount of time is difficult. We note that our previous model belongs to a new 

version of the family of joint location-inventory models, which were first proposed by Shen et 

al. (2003). From Zhang et al. (2015), we can linearize our original model as an equivalent conic 
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quadratic mixed-integer programming (CQMIP) model, which can be directly solved by the 

CPLEX. 

Definition 1. A CQMIP model is an optimization problem of the form: 

Minimize  𝑎′𝑥 

s.t.  ||𝐵𝑖𝑥 + 𝑐𝑖||2 ≤ 𝑑𝑖
′𝑥 + 𝑒𝑖,     𝑖 = 1, … , 𝑝 

where 𝑥 ∈ 𝑍𝑛 × 𝑅𝑚, 𝑎 ∈ 𝑅(𝑛+𝑚), 𝐵𝑖 ∈ 𝑅𝑛𝑖×(𝑛+𝑚), 𝑐𝑖 ∈ 𝑅𝑛𝑖 , 𝑑𝑖 ∈ 𝑅(𝑛+𝑚), 𝑒𝑖 ∈ 𝑅, || · ||2  is 

the Euclidean norm, and all parameters are rational. 

Proposition 1. The following CQMIP model (P2) is equivalent to the previous non-linear 

MIP model (P1). 

CQMIP (P2): 

Minimize ∑ (𝑠𝑑
𝐹𝜏𝑑

𝐹 + 𝑠𝑑
𝑅𝜏𝑑

𝑅 + 𝑒𝑑
𝐹𝛽𝑑

𝐹 + 𝑒𝑑
𝑅𝛽𝑑

𝑅 − 𝑠𝑑
𝐶𝜏𝑑

𝐶)𝑑∈𝐷 +

           ∑ 𝑃𝑠𝑠∈𝑆 {∑ (𝑖ℎ𝑍𝛼𝑥𝑠𝑑 +
𝑖ℎ

2
𝑦𝑠𝑑)𝑑∈𝐷 + ∑ ∑ [𝑡𝑁(𝑏𝑟𝑑 + 𝑎𝑑

𝐹)𝑑𝑠𝑟𝛾𝑟𝑑𝑠
𝐹 +           (𝑡 +𝑟∈𝑅𝑑∈𝐷

𝑣𝑚𝑓

𝑘
)(𝑏𝑟𝑑 + 𝑎𝑑

𝑅)𝑁𝑟𝑠𝑟𝛾𝑟𝑑𝑠
𝑅 +

𝑣𝑚𝑓𝑁+𝑖ℎ

2
𝑧𝑠𝑑]}       (17) 

s.t. ∑ 𝛾𝑟𝑑𝑠
𝐹

𝑑∈𝐷 = 1, ∑ 𝛾𝑟𝑑𝑠
𝑅

𝑑∈𝐷 = 1   ∀𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆                   (18) 

𝛾𝑟𝑑𝑠
𝐹 ≤ 𝜏𝑑

𝐹 , 𝛾𝑟𝑑𝑠
𝑅 ≤ 𝜏𝑑

𝑅    ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆        (19) 

𝜏𝑑
𝐶 ≤ 𝜏𝑑

𝐹 , 𝜏𝑑
𝐶 ≤ 𝜏𝑑

𝑅    ∀𝑑 ∈ 𝐷              (20) 

𝛽𝑑
𝐹 ≤ 𝑔𝑑

𝐹𝜏𝑑
𝐹     ∀𝑑 ∈ 𝐷              (21) 

𝛽𝑑
𝑅 ≤ 𝑔𝑑

𝑅𝜏𝑑
𝑅    ∀𝑑 ∈ 𝐷              (22) 

𝑥𝑠𝑑
2 ≥ 𝑙𝑑 ∑ 𝑑𝑠𝑟𝑟∈𝑅 (𝛾𝑟𝑑𝑠

𝐹 )2    ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆          (23) 

1

2
(𝑦𝑠𝑑 + 𝜃𝑠𝑑

𝐹 )2 ≥
2(𝑜𝑑

𝐹+𝑡𝑡𝑑
𝐹)

𝑖ℎ
𝑁 ∑ 𝑑𝑠𝑟(𝛾𝑟𝑑𝑠

𝐹 )2 +
3

2
(𝜃𝑠𝑑

𝐹 )2 +
1

2𝑟∈𝑅 𝑦𝑠𝑑
2  ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆(24) 

1

2
(𝑧𝑠𝑑 + 𝜃𝑠𝑑

𝑅 )2 ≥
2(𝑜𝑑

𝑅+𝑡𝑡𝑑
𝑅)

𝑣𝑚𝑓𝑁+𝑖ℎ
𝑁 ∑ 𝑟𝑠𝑟(𝛾𝑟𝑑𝑠

𝑅 )2 +
3

2
(𝜃𝑠𝑑

𝑅 )2 +
1

2𝑟∈𝑅 𝑧𝑠𝑑
2  ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆 (25) 

𝜃𝑠𝑑
𝐹 + 𝑍𝛼𝑥𝑠𝑑 + 𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠

𝐹
𝑟∈𝑅 ≤ 𝑐𝑑

𝐹𝜏𝑑
𝐹 + 𝛽𝑑

𝐹            ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆 (26) 

𝜃𝑠𝑑
𝑅 ≤ 𝑐𝑑

𝑅𝜏𝑑
𝑅 + 𝛽𝑑

𝑅             ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆          (27) 

𝜏𝑑
𝐹 , 𝜏𝑑

𝑅 , 𝜏𝑑
𝐶 ∈ {0,1}      ∀𝑑 ∈ 𝐷                        (28) 

𝛾𝑟𝑑𝑠
𝐹 , 𝛾𝑟𝑑𝑠

𝑅 ∈ {0,1}       ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆         (29) 

𝜃𝑠𝑑
𝐹 , 𝜃𝑠𝑑

𝑅 ≥ 0    ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆       (30) 

𝛽𝑑
𝐹, 𝛽𝑑

𝑅 ≥ 0    ∀𝑑 ∈ 𝐷.              (31) 

  Proof: In order to convert our previous model P1 into the CQMIP model P2, we add a conic 
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transformation. First, we introduce three sets of auxiliary variables, named 𝑥𝑠𝑑 , 𝑦𝑠𝑑 , 𝑧𝑠𝑑, which 

satisfy the following inequalities: 

𝑥𝑠𝑑 ≥ √𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠
𝐹

𝑟∈𝑅               (32) 

𝑖ℎ

2
𝑦𝑠𝑑 ≥ (𝑜𝑑

𝐹 + 𝑡𝑡𝑑
𝐹)

𝐷𝑠𝑑
𝐹

𝜃𝑠𝑑
𝐹 +

𝑖ℎ

2
𝜃𝑠𝑑

𝐹              (33) 

(
𝑣𝑚𝑓𝑁

2
+

𝑖ℎ

2
) 𝑧𝑠𝑑 ≥ (𝑜𝑑

𝑅 + 𝑡𝑡𝑑
𝑅)

𝐷𝑠𝑑
𝑅

𝜃𝑠𝑑
𝑅 + (

𝑣𝑚𝑓𝑁

2
+

𝑖ℎ

2
)𝜃𝑠𝑑

𝑅 .          (34) 

Because 𝛾𝑟𝑑𝑠
𝐹  is a binary variable and 𝛾𝑟𝑑𝑠

𝐹 = (𝛾𝑟𝑑𝑠
𝐹 )2, we can convert previous inequalities 

again as follows: 

𝑥𝑠𝑑
2 ≥ 𝑙𝑑 ∑ 𝑑𝑠𝑟𝑟∈𝑅 (𝛾𝑟𝑑𝑠

𝐹 )2              (35) 

1

2
(𝑦𝑠𝑑 + 𝜃𝑠𝑑

𝐹 )2 ≥
2(𝑜𝑑

𝐹+𝑡𝑡𝑑
𝐹)

𝑖ℎ
𝑁 ∑ 𝑑𝑠𝑟(𝛾𝑟𝑑𝑠

𝐹 )2 +
3

2
(𝜃𝑠𝑑

𝐹 )2 +
1

2𝑟∈𝑅 𝑦𝑠𝑑
2      (36) 

1

2
(𝑧𝑠𝑑 + 𝜃𝑠𝑑

𝑅 )2 ≥
2(𝑜𝑑

𝑅+𝑡𝑡𝑑
𝑅)

𝑣𝑚𝑓𝑁+𝑖ℎ
𝑁 ∑ 𝑟𝑠𝑟(𝛾𝑟𝑑𝑠

𝑅 )2 +
3

2
(𝜃𝑠𝑑

𝑅 )2 +
1

2𝑟∈𝑅 𝑧𝑠𝑑
2 .        (37) 

After placing related parts with these three sets of auxiliary variables, we can obtain our 

equivalent CQMIP model, and it can be solved by the CPLEX directly because it is a linear 

model. 

3.3. Valid inequalities 

Generally, commercial software packages use a branch-and-bound algorithm for solving 

CQMIP models, and the performance of these packages can be significantly improved by 

strengthening the models with certain cuts (Atamtürk et al., 2012). This section therefore 

applies two types of structural cutting planes. 

  The first type is polymatroid inequalities, which utilize submodularity and reformulate 

Constraints (23)−(25) to strengthen the convex relaxation of our CQMIP model. Inequalities 

𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠
2

𝑟∈𝑅 ≤ 𝑥𝑠𝑑
2   and √𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠𝑟∈𝑅 ≤ 𝑥𝑠𝑑  are equivalent because 𝑥𝑠𝑑 > 0, ∀𝑠 ∈

𝑆, ∀𝑑 ∈ 𝐷 , and 𝛾𝑟𝑑𝑠
2 = 𝛾𝑟𝑑𝑠, ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷, ∀𝑠 ∈ 𝑆 . The latter inequalities demonstrate a 

submodular form given the concavity and the non-negativity of the square root function. 

Several definitions are introduced before showing polymatroid inequalities. We drop the 

superscripts 𝐹 and 𝑅 in the following description to simplify the notation. 

Definition 2. A set function 𝑔: 2𝐼 → 𝑅  is submodular if 𝑔(𝑀) + 𝑔(𝑁) ≥ 𝑔(𝑀 ∪ 𝑁) +

𝑔(𝑀 ∩ 𝑁) for all 𝑀, 𝑁 ∈ 𝐼. 
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Definition 3. For a submodular function 𝑔 on 𝐼, the polyhedron 𝐸𝑃𝑔 ≔ {𝜋 ∈ 𝑅𝐼: 𝜋(𝑀) ≤

𝑔(𝑀), ∀𝑀 ⊆ 𝐼} is regarded as the extended polymatroid related to 𝑔 if 𝑔(∅) = 0, 𝜋(𝑀) =

∑ 𝜋𝑖𝑖∈𝑀 . 

For an extended polymatroid 𝐸𝑃𝑔 , Atamtürk and Narayanan (2008) present that the 

extended polymatroid inequalities 𝜋𝑦 ≤ 𝑤  with 𝜋 ∈ 𝐸𝑃𝑔  are valid for the lower convex 

envelope of 𝑔 : 𝑄𝑔 ≔ conv{(𝛾, 𝑥) ∈ {0,1}|𝐼| × 𝑅: 𝑔(𝛾) ≤ 𝑥} . When the inequalities are 

defined by the extreme points of the extended polymatroid 𝐸𝑃𝑔 , they are called extremal 

extended polymatroid inequalities.  

Proposition 2. Let 𝑄𝑓 denote the lower convex envelope of the sets of solutions that satisfy 

constraints (23): 𝑄𝑓 = conv{(𝛾𝑑𝑠, 𝑥𝑠𝑑) ∈ {0,1}|𝐼| × 𝑅: 𝑥𝑠𝑑 ≥ 𝑔(𝑀) = √𝑙𝑑 ∑ 𝑑𝑠𝑟𝑖∈𝑀  ∀𝑀 ⊆ 𝐼}. 

So, the inequality ∑ 𝜋𝑟𝛾𝑟𝑑𝑠 ≤ 𝑥𝑠𝑑𝑟∈𝑅   is valid for 𝑄𝑓 , where 𝜋𝑟 = √𝑙𝑑 ∑ 𝑑𝑠𝑟𝑟∈𝑀(𝑟) −

√𝑙𝑑 ∑ 𝑑𝑠𝑟𝑟∈𝑀(𝑟−1) ∈ 𝐸𝑃𝑔 , 𝑀 = {𝑟|𝛾𝑟𝑑𝑠 = 1}, 𝑀(𝑟) = {(1), (2), … , (𝑟)}, 1 ≤ 𝑟 ≤ |𝑅|  for 

some permutation. This valid inequality is an extremal extended polymatroid inequality of 𝑄𝑓.  

Proposition 3. Let 𝑄𝑢 denote the lower convex envelope of the sets of solutions that satisfy 

constraints (24)−(25). The inequality ∑ 𝜋𝑟𝛾𝑟𝑑𝑠 ≤ 𝑦𝑠𝑑 + 𝜃𝑑𝑟∈𝑅  is valid for the lower convex 

envelope of the sets of solutions that satisfy constraints (24) − (25), where 𝜋𝑟 =

√8𝐻𝑑𝑁 ∑ 𝑑𝑠𝑟𝑟∈𝑀(𝑟) − √8𝐻𝑑𝑁 ∑ 𝑑𝑠𝑟𝑟∈𝑀(𝑟−1)  , (𝐻𝑑
𝐹 =

2(𝑜𝑟
𝐹+𝑡𝑡𝑟

𝐹)

𝑖ℎ
, 𝐻𝑑

𝑅 =
2(𝑜𝑟

𝑅+𝑡𝑡𝑟
𝑅)

𝑣𝑚𝑓𝑁+𝑖ℎ
) , for 𝑀 =

{𝑟|𝛾𝑟𝑑𝑠 = 1}, 𝑀(𝑟) = {(1), (2), … , (𝑟)}, 1 ≤ 𝑟 ≤ |𝑅|  for some permutation. This valid 

inequalities is also an extremal extended polymatroid inequality of 𝑄𝑢. 

The detailed proof description of the abovementioned valid inequalities can be found in 

Zhang et al. (2015). Although there are exponentially many extremal extended polymatroid 

inequalities, only a small subset of them is needed in the branch-and-bound search tree. It is 

noted that, given a solution, a violated polymatroid cut can be found by employing the 

separation problem. Specifically, we use a greedy algorithm introduced by Edmonds (1971) 

and Atamtürk et al. (2012). Main steps of Edmond’s greedy algorithm are described as follows. 

For each 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, do: 

1. Given 𝛾𝑑𝑠
∗ ∈ [0,1]|𝑅| and 𝑥𝑑𝑠

∗ , sort 𝛾𝑟𝑑𝑠
∗  in nonincreasing order 𝛾(1)𝑑𝑠

∗ ≥ 𝛾(2)𝑑𝑠
∗ ≥ ⋯. 
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2. For 𝑟 = 1, … , |𝑅| , let 𝑀𝑟 = {(1), (2), … , (𝑟)}  and 𝜋𝑟𝑠 = √𝑙𝑑 ∑ 𝑑(𝑘𝑠)𝑘∈𝑀(𝑟) −

√𝑙𝑑 ∑ 𝑑(𝑘𝑠)𝑘∈𝑀(𝑟−1) . 

3. If 𝜋𝛾𝑑𝑠
∗ > 𝑥𝑑𝑠

∗ , we add the extended polymatroid cut 𝜋𝛾𝑑𝑠 ≤ 𝑥𝑠𝑑 to the formulation. 

  Besides the abovementioned extended polymatroid inequalities, we also present some 

extended cover cuts which are derived from non-linear knapsack relaxations of the formulation. 

To this end, we relax the left-hand side of Constraints (26) by dropping 𝜃𝑠𝑑
𝐹   and 𝐹 , and 

replace the right-hand side with 𝐶 to obtain the 0-1 knapsack constraint as follows. 

𝑍𝛼√𝑙𝑑√∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠𝑟∈𝑅 + 𝑙𝑑 ∑ 𝑑𝑠𝑟𝛾𝑟𝑑𝑠𝑟∈𝑅 ≤ 𝐶𝑑         (38) 

  In order to simplify the notation, we drop the subscripts 𝑑  and 𝑠  when defining the 

inequalities. For inequality (38), define the set function 𝑔: 2𝐼 → 𝑅 , where 𝑔(𝑆) =

𝑍𝛼√𝑙√𝑑(𝑆) + 𝑙𝑑(𝑆), 𝑑(𝑆) ≔ ∑ 𝑑𝑟𝑟∈𝑆  . Using submodularity of 𝑔 , Atamtürk et al. (2012) 

present cover and extended cover cuts for the submodular knapsack set, 

 Γ = {𝛾 ∈ {0, 1}|𝑅|: 𝑔(𝛾) ≤ 𝐶} = {𝛾 ∈ {0, 1}𝑅: 𝑍𝛼√𝑙√∑ 𝑑𝑟𝛾𝑟𝑟∈𝑅 + 𝑙 ∑ 𝑑𝑟𝛾𝑟𝑟∈𝑅 ≤ 𝐶} . And 

they show that given a subset of indices 𝑆 ⊆ 𝐼 and the conic quadratic 0-1 knapsack set 𝑌, we 

can find valid cover inequalities which depend on the cover set. 

Definition 4. 𝑆 ⊆ 𝐼 is called a cover for 𝑌 if 𝑍𝛼√𝑙√𝑑(𝑆) + 𝑙𝑑(𝑆) > 𝐶. 

The corresponding cover inequality of cover 𝑆 : ∑ 𝛾𝑟𝑟∈𝑆 ≤ |𝑆| − 1  is valid for 𝛾 

according to Atamtürk and Narayanan (2008). Besides, cover inequalities can be strengthened 

by extending them with non-cover variables. Before introducing extended cover inequalities, 

we first define the difference function and the notion of extension. 

Definition 5. Given a set function 𝑔 on 𝐼 and 𝑖 ∈ 𝐼, the difference function 𝑝 is defined 

as 𝑝𝑖(𝑆) ≔ 𝑔(𝑆 ∪ 𝑖) − 𝑔(𝑆) for 𝑆 ⊆ 𝐼\𝑖. 

Definition 6. Let 𝜋 = (𝑘(1), … , 𝑘(|𝐼|−|𝑆|)) be a permutation of the indices in 𝐼\𝑆. Define 

𝑆𝑙 = 𝑆 ∪ {𝑘(1), … , 𝑘(𝑙)}  for 𝑙 = 1, … , |𝐼| − |𝑆| , where 𝑆0 = 𝑆 . The extension of 𝑆 

corresponding to permutation 𝜋 is 𝐸𝜋(𝑆) ≔ 𝑆 ∪ 𝑈𝜋(𝑆), where 𝑈𝜋(𝑆) = {𝑘(𝑙): 𝑝𝑘(𝑙)
(𝑆𝑙−1) ≥

𝑝𝑖(∅), ∀𝑖 ∈ 𝑆}. 

Given cover 𝑆  and permutation 𝜋 , the corresponding extended cover inequality 
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∑ 𝛾𝑟𝑟∈𝐸𝜋(𝑆) ≤ |𝑆| − 1  is valid for 𝛾  (Atamtürk et al., 2012). We will add abovementioned 

valid inequalities to our model to speed up the solution process. 

4. Tabu search algorithm 

Notably, the CLSC design and optimization problem can be classified as the class of NP-

hard problem (Krarup and Pruzan, 1983; Schrijver, 2003), in which computational complexity 

increases exponentially with the growth in the number of retailers, DCs, and scenarios. Large-

scale problem instances of our problem cannot be solved by the commercial solver, such as 

CPLEX, within a reasonable time. Occasionally, the solution is suspended by an “out-of-

memory” error. From Atamtür et al. (2012), we find that our equivalent CQMIP model can be 

added some valid inequalities to speed up the solving process for small-scale instances while 

solving large-scale instances is still time-consuming. Hence, utilizing heuristics and 

metaheuristics in solving large-scale instances of the CLSC problem is unavoidable. Some 

studies related to the CLSC problem (Easwaran and Üster, 2009; Noham and Tzur, 2018; 

Punyim et al., 2018) find that the tabu search algorithm performs exceptionally well, and 

optimal solutions are obtained in almost all cases according to their computational results. 

Therefore, we design a tabu search algorithm for solving the proposed model. 

Glover (1989) initially proposes the tabu search algorithm, which is an adaptive local 

iteration search within a search space, by for solving several combinatorial optimization 

problems. The core idea of tabu search algorithm is to prevent the search process from being 

trapped in the local optimum by avoiding cycling. The tabu attribute moves from one solution 

to another and diversifies the solutions iteratively to find an improved version (Vivaldini et al., 

2016). In each iteration, the tabu search algorithm is applied to explore its neighborhood to 

avoid the local optimum and improve its quality. Additionally, the optimum admissible 

movement is that of the minimum evaluation in the neighborhood of the current solution 

(assuming that a minimizing problem is being solved). Several main steps in the tabu search 

algorithm are presented as follows. 

4.1. Solution encoding and evaluation 



 

16 

 

An encoding scheme is necessary for a solution to be compatible with the tabu search 

representation. Our encoding scheme consists of two segments that control two decision 

variables, namely, 𝜏𝑑
𝐹 and 𝜏𝑑

𝑅. Simultaneously, another decision variable, 𝜏𝑑
𝐶 , equals one if 

both 𝜏𝑑
𝐹 and 𝜏𝑑

𝑅 equal one and zero otherwise. For the example in Figure 2, we assume that 

the number of total DCs is three. We first generate six random numbers with the range [0, 1] 

as genes (the first three values are responsible for 𝜏𝑑
𝐹, whereas the last three values correspond 

to 𝜏𝑑
𝑅). Then, we estimate our genes by comparing with 0.5. We designate one gene value as Y 

if this gene value is greater than 0.5, else we evaluate the gene value as N. Then, we assign 1 

to all decision variables, which estimate is Y, and assign 0 to all decision variables, which 

estimate is N. Finally, we obtain 𝜏1
𝐹 = 𝜏2

𝐹 = 𝜏3
𝑅 = 0 and 𝜏3

𝐹 = 𝜏1
𝑅 = 𝜏2

𝑅 = 1. Moreover, DCs, 

which both 𝜏𝑗
𝐹 and 𝜏𝑗

𝑅 equal one, are lacking; thus, we obtain 𝜏1
𝐶 = 𝜏2

𝐶 = 𝜏3
𝐶 = 0. 

0.2 0.4 0.8 0.7 0.6

1 2 3

Genes 

N N Y Y Y  Estimate

Assignment 0 0 1 1 1

0.3

0

N

1 2 3Index of DCs

Figure 2: The encoding and decoding scheme 

The solutions are evaluated in accordance with their objective function value, that is, the 

minimization of total costs. The corresponding solutions are improved when the objective 

function value is smaller. 

4.2. Initialization 

Initially, we require an initial CLSC network design as a seed for representing a point within 

the search space. This initial solution is either the current or the best-known solution. We 

generate a set of random genes, as discussed in Section 4.1, and consider these genes as the 

initial solution. Then, a set of neighboring solutions is generated from the current one to search 

for an enhanced solution. 
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4.3. Moves 

A neighborhood structure for moving from the current to other solutions must be established 

after generating an initial solution. To this end, we use a stochastic descent method in which 

numerous neighboring solutions are stochastically generated in accordance with the multi-swap 

neighborhood process. In this process, we generate a set of random numbers within the range 

[0, 1] and use the multi-swap neighborhood structure if this number is greater than 0.5, as 

demonstrated in Figure 3. The number of swaps is set to be high at the beginning of the search 

process but decreases with the increase in the iterations. Figure 3 exhibits the three swap 

neighborhood structures as an example. The optimum non-tabu and admissible solution is 

selected from the neighboring solutions and set as the current solution after generating the 

neighboring solutions. 

0.7 0.7 0.2 0.7 0.4

1 2 3

Before

0.2 0.4 0.7 0.3 0.7After

0.3

0.7

1 2 3index of DCs

Figure 3: The multi-swap neighborhood procedure (example of 1 ↔ 3, 2 ↔ 5, 4 ↔ 6) 

4.4. Tabu list 

A tabu list of size 𝑚, as an essential element of the tabu search algorithm, remains the last 

𝑚 moves of the previous search and prevents their repetition. Specifically, the tabu list is a 

dynamic memory, which stores the attributes of new solutions and blocks them to be revisited 

until a number of iterations have been executed. The tabu attributes are released on a first-

in−first-out basis after each iteration; the most recent move is added into the tabu list. The tabu 

list is checked, and a move is permitted only if it is not in the tabu list when a multi-swap 

neighborhood procedure occurs. 

4.5. Aspiration criterion 

We sometimes override the tabu status of a move when it is satisfied to ensure an increased 
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flexibility in our search process. If an improved solution (move) is generated by the attributes 

that are already in the tabu list and should not be allowed by previous rules, then the solution 

will be accepted in accordance with the aspiration criterion. 

4.6. Diversification 

We adopt a diversification method to widely explore and find an improved new solution. All 

newly generated solutions should be compared with the optimum existing solution. The best-

known solution will be updated if a generated solution is better than the best-known solution. 

If the best-known solution has not been improved for a certain number of iterations, then our 

search process will be directed to another area of the solution space by randomly generating a 

new solution (Zhen et al., 2016). Hence, a diversification constantly leads to an increase in the 

number of swaps, which can generate added diverse solutions. 

4.7. Stopping criterion 

The stopping criterion determines the end time of our algorithm. In this study, we use two 

stopping criteria, that is, the maximum number of iterations searched by using the tabu search, 

and the variance of the solutions smaller than a given threshold (Zhen, 2016). The tabu search 

algorithm stops if one of the above mentioned stopping criterion is satisfied. 

5. Computational experiments 

This section presents the computational experiments conducted to evaluate the proposed 

model and verify the manner which adding valid inequalities accelerates the computation. 

5.1. Experimental setting 

We summarize our parameter values, where most of which are similar to Zhang et al. (2015). 

𝑑𝑠𝑟 and 𝑟𝑠𝑟 (demand and returned products at retailer 𝑟 under scenario 𝑠) follow a uniform 

distribution (~U (10, 20)). 𝑃𝑠  is determined by the number of scenarios, 𝑃𝑠 =

1

the number of scenarios
. In addition, Table 1 and Table 2 list the parameter values of the proposed 

model and tabu search algorithm, respectively. 
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Table 1: Parameter values of the model 

Parameter Value Parameter Value Parameter Value 

𝑏𝑟𝑑 ~U(0.5,2.9) ℎ 10 𝑘 100 

𝑣 1 𝑁 365 𝑚 10% 

𝑍𝛼 1.96 𝛼 97.5% 𝑐𝑑
𝐹 , 𝑐𝑑

𝑅 10 

𝑙𝑑 1 𝑡 0.001 𝑔𝑑
𝐹 , 𝑔𝑑

𝑅 10 

𝑓 1 𝑖 0.1 𝑆𝑑
𝐹 , 𝑆𝑑

𝑅 10 

𝑜𝑑
𝐹 , 𝑜𝑑

𝑅 10 𝑡𝑑
𝐹 , 𝑡𝑑

𝑅 10 𝑎𝑑
𝐹 , 𝑎𝑑

𝑅 5 

Table 2: Parameter values of tabu search algorithm 

Parameter Value 

𝑚𝑎𝑥 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 30 

𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡 𝑠𝑖𝑧𝑒 15 

𝑁 𝑠𝑖𝑧𝑒 10 

The mathematical model is implemented by CPLEX 12.5.1 (Visual Studio 2015, C#) on a 

PC (Intel Core i7, 2.6 G Hz; Memory, 8 G). 

5.2. Performances of the model 

In our study, the number of scenarios has an important effect because our DC location 

problem is a stochastic programming model. The determination of the most appropriate number 

of scenarios by testing various numbers of scenarios is considered a critical step. Five sets of 

scenarios under the scale of three DCs and ten retailers, that is, 10, 20, 50, 80, and 100, are 

provided. Each set has ten randomly generated cases. Table 3 summarizes the computational 

results, including the minimum (Min), maximum (Max), gap (Gap Max-Min), average (Avg.), 

and standard deviation values (S. D.), and average CPU running time (Avg. CPU time). It is 

noted that the gap and standard deviation values decrease with the increase in the number of 

scenarios. The standard deviation values do not decrease rapidly when the number of scenarios 

exceeds 80, although the CPU running time increases sharply with the number of scenarios. 

Hence, in the following computation experiments, we set the number of scenarios to 80. 

Table 3: Testing the proposed model under different numbers of scenarios 

Number of Scenarios Min Max Gap Max-Min Avg. S.D. Avg.CPU Time(s) 

10 578 602 24 594.8 20.79006 0.9 
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20 577 678 101 590.3 31.33680 1.5 

50 728 778 50 772.2 15.54778 785.5 

80 777 778 1 777.1 0.333333 1386.4 

100 777 778 1 777.1 0.252982 3519.3 

Table 4 displays the results solved through three methods: using CPLEX directly 

(abbreviated to CPLEX), CPLEX with added valid inequalities (abbreviated to CPLEX+cuts), 

and the tabu search algorithm (abbreviated to Tabu). The results of the first two methods 

contain objective (OBJ) gap and CPU running time. In particular, the tabu method results 

consist of OBJ values and CPU running time. 

Table 4: Results solved through three methods 

Case ID 
CPLEX CPLEX+cuts Tabu 

OBJ Gap Time(s) OBJ Gap Time(s) OBJ  Time(s) 

3-10-1 0.01 92 0.01 33 817 927 

3-10-2 0.01 255 0.01 125 812 892 

3-10-3 0.01 119 0.01 37 817 984 

3-15-1 0.01 212 0.01 138 1025 1317 

3-15-2 0.01 175 0.01 60 1005 1089 

3-15-3 0.01 264 0.01 115 995 1161 

5-15-1 0.1833 3600limit 0.0931 3600limit 967 2981 

5-15-2 0.3692 3600limit 0.1042 3600limit 1025 3006 

5-15-3 0.3519 3600limit 0.0888 3600limit 1015 2976 

5-20-1 0.3005 3600limit 0.0775 3600limit 1210 3209 

5-20-2 0.2999 3600limit 0.0774 3600limit 1195 3379 

5-20-3 0.2046 3600limit 0.0771 3600limit 1205 3380 

6-20-1 0.4008 3600limit 0.2451 3600limit 1351 3600limit 

6-20-2 0.4042 3600limit 0.2962 3600limit 1459 3600limit 

6-20-3 0.3996 3600limit 0.2664 3600limit 1302 3600limit 

6-30-1 0.7346 3600limit 0.3552 3600limit 2183 3600limit 

6-30-2 0.7280 3600limit 0.4237 3600limit 2195 3600limit 

6-30-3 − 3600limit 0.4431 3600limit 2008 3600limit 

Note: In ‘Case ID’, the first two values denote the number of DCs and retailers, respectively. The en dash 

means we did not find any solution within the time limits. 

We find that the CPU running time increases with the instance scale. We note that the OBJ 

gap values are much larger in the CPLEX method than in the CPLEX with valid inequalities. 

The time of CPLEX with valid inequalities is half that of the time of CPLEX method, thereby 

indicating that valid inequalities, including polymatroid inequalities and extended cover cuts, 

can accelerate the model solving process and improve the performance of the solution quality. 
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However, finding the optimal solution is difficult when the CPLEX directly solves large-scale 

problem instances under 3600 seconds limit, such as 5-15-1. Meanwhile, the tabu method can 

find an improved solution when solving large-scale problem instances. We summarize the 

lower and upper bounds of the abovementioned methods in Figures 4 and 5, respectively to 

compare the results solved by CPLEX directly, CPLEX with valid inequalities, and the tabu 

search algorithm. The value of the upper and lower bounds of the tabu search algorithm is the 

same OBJ value as displayed in Table 4. Furthermore, we did not find any solution for the last 

one sets of problem instances (6-30-3) when using the CPLEX directly within the time limits. 

Hence, Figures 4 and 5 do not exhibit these values of the CPLEX method. 

 
Note: Case id 3-10-1 means the first computational example of 3 DCs and 10 retailers.  

Figure 4: Solution lower bound comparison between results of CPLEX, CPLEX with valid 

inequalities and tabu search algorithm 

In Figure 4, we find that the solution lower bound is lower in the CPLEX method than in the 

CPLEX with valid inequalities, thereby denoting that valid inequalities can accelerate the 

model solving process and provide a fast means with which to find an improved solution. In 

addition, the tabu search algorithm outperforms the CPLEX in terms of large-scale problem 

instances. 
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Note: Case id 3-10-1 means the first computational example of 3 DCs and 10 retailers.  

Figure 5: Solution upper bound comparison between results of CPLEX, CPLEX with valid 

inequalities and tabu search algorithm 

In Figure 5, we find that the solution upper bound is higher in the CPLEX method than in 

the CPLEX with valid inequalities, thus demonstrating that valid inequalities can improve the 

performance of the solution quality. The tabu search algorithm can also find acceptable 

solutions when solving large-scale problem instances within a reasonable amount of time. 

5.3. Sensitivity analysis 

This study considers many realistic factors simultaneously, which means the model will have 

many different set of input parameters. Hence, we use the sensitivity analysis to study how 

sensitive the model result would be with different input parameters. We start by varying the 

inventory and transportation weights as shown in Table 5. The subsequent analysis studies the 

impact of the marginal value of time of returned products as shown in Table 6−7.  

Studying the impact of the inventory and transportation weights, we take an example of 2 

DCs and 5 retailers, other input settings are similar with the Table 1 except the inventory and 

transportation weights. As shown in Table 5, we find that total cost, and CPU time increase 

when inventory weight (𝑖) or transportation weight (𝑡) increase.  

Table 5: Sensitivity analysis of the inventory and transportation weights 

𝑖 𝑡 Objective value CPU time (s) 
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0.1 0.001 642 5 

0.1 0.002 643 5 

0.1 0.003 643 5 

0.1 0.004 644 5 

0.1 0.005 644 6 

0.2 0.002 666 28 

0.5 0.005 718 470 

1 0.005 783 1938 

2 0.005 881 2844 

5 0.005 1097 3565 

Next is the impact of returned products’ marginal value of time. Time sensitivity of the 

returned products’ price has an influence on products’ marginal value of time. We take an 

example of 5 DCs and 15 retailers. Table 6 lists the parameters of this experiment. Table 7 

demonstrates the effect of value of time (𝑚) given daily transportation cost per unit 𝑘 = 500. 

The marginal value of time ( 𝑚 ) is set to 1%, 10%, 30%, 50%, 70%, and 90% . 

DCF, DCR, and DCC record the number of open forward DCs, reverse DCs, and joint DCs, 

respectively. As shown in Table 7, we find that fewer reverse DCs are needed for highly time-

sensitive (higher 𝑚) returned products, which is because the storage time of time-sensitive 

returned products has been reduced to get more salvage value from them. This means highly 

time-sensitive returned products need more shipments of smaller quantity. At the same time, 

the storage space needed decreases. Besides, total cost, and CPU time increase when marginal 

value of time 𝑚 increases. In most cases, joint DCs are preferred because of the cost saving. 

Table 6: Parameter values in the experiment of the impact of marginal value of time 

Parameter Value 

𝑣 10 

𝑖 0.1 

𝑡 

𝑘 

0.005 

500 

Table 7: Sensitivity analysis of returned products’ marginal time value 
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𝑚(%) Objective value CPU time (s) DCF DCR DCC 

1 780 29 1 2 1 

10 1059 3474 1 1 1 

30 1394 876 1 1 1 

50 1628 901 1 1 1 

70 1819 1351 1 0 1 

90 1983 1320 1 0 1 

6. Conclusion 

This study investigates the CLSC network design and optimization problem and is aimed at 

minimizing total costs, including fixed and expansion cost of each DC, transportation cost, 

working inventory cost, safety stock inventory cost, and time value of returned products. We 

also consider the trade-off between reprocess efficiency and responsive costs when making 

location decisions. Owing to the complexity of our problem, we build a two-stage stochastic 

non-linear model and transform the previous model into a conic quadratic MIP model. This 

model can be solved efficiently in certain cases by using the CPLEX directly. Certain valid 

inequalities, such as polymatroid inequalities and extended cover cuts, are added to improve 

the efficiency of the branch-and-cut algorithm and quality of the solutions. We also utilize the 

tabu search algorithm to solve large-scale problem instances efficiently. 

We have made three main contributions with respect to the related literature despite 

numerous studies on the CLSC network design.  

(1) This study integrates several interconnected decisions: capacitated distribution centers, 

uncertainty demands of new & returned products, risk pooling to buffer random demands, 

savings from collocating a joint distribution center, value loss related to inventory and 

transportation time, relationships between distribution center capacity and cost, facility 

location and capacity determination, services provided by the DCs selection, and product 

recovery and remanufacturing. Few studies have considered the abovementioned realistic 

factors simultaneously. A novel model for the CLSC network design is proposed and then 

converted to a conic quadratic MIP model. 

  (2) We find that valid inequalities, such as polymatroid inequalities and extended cover cuts, 
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are computationally beneficial for the proposed model based on extensive quantitative 

computational experiments. 

  (3) After conducting quantitative computational experiments, we conclude several 

interesting managerial insights that can be of great significance in practical application. For 

example, from the DC type perspective, joint DCs are preferred because of the cost saving. 

Besides, marginal value of time of returned products has an influence on the location and 

inventory decisions, fewer reverse DCs are needed for highly time-sensitive returned products. 

We also show the effects of inventory and transportation cost on total cost. 

However, this study also has limitations. In our future study, we can consider additional 

realistic factors. For example, this model can be naturally extended to incorporate multiple 

periods and multiple products. We can also incorporate related decision issues, such as ordering, 

backlogging, and forecasting problems. Moreover, we can consider three pillars of 

sustainability as objective functions, that is, economic through Net Present Value, 

environmental through a Life Cycle Analysis methodology (i.e., ReCiPe), and social through a 

developed GDP-based metrics. 
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