
A Generative Design Technique for Exploring Shape
Variations

Shahroz Khana,∗, Muhammad Junaid Awana

aBrainlabs Software, Taxila, Pakistan DOI.

Abstract

Because innovative and creative design is essential to a successful product, this

work brings the benefits of generative design in the conceptual phase of the

product development process so that designers/engineers can effectively explore

and create ingenious designs and make better design decisions. We proposed

a state-of-the-art generative design technique (GDT), called Space-filling-GDT

(Sf-GDT), for the creation of innovative designs. The proposed Sf-GDT has the

ability to create variant optimal design alternatives for a given computer-aided

design (CAD) model. An effective GDT should generate design alternatives that

cover the entire design space. Toward that end, the criterion of space-filling is

utilized, which uniformly distribute designs in the design space thereby giving

a designer a better understanding of possible design options. To avoid creating

similar designs, a weighted grid search approach is developed and integrated

into the Sf-GDT. One of the core contributions of this work lies in the ability

of Sf-GDT to explore hybrid design spaces consisting of both continuous and

discrete parameters either with or without geometric constraints. A parameter-

free optimization technique, called Jaya algorithm, is integrated into the Sf-GDT

to generate optimal designs. Three different design parameterization and space

formulation strategies; explicit, interactive, and autonomous, are proposed to

set up a promising search region(s) for optimization. Two user interfaces; a

∗Corresponding author
Email address: shahrozkhan2020@gmail.com, khansh@brainlabssoft.com (Shahroz

Khan)

Preprint submitted to Elsevier October 24, 2018

https://doi.org/10.1016/j.aei.2018.10.005

web-based and a Windows-based, are also developed to utilize Sf-GDT with

the existing CAD software having parametric design abilities. Based on the

experiments in this study, Sf-GDT can generate creative design alternatives for

a given model and outperforms existing state-of-the-art techniques.

Keywords: Generative Design, Computer-Aided Design, Parametric Design,

Space-filling Design, Jaya Algorithm

1. Introduction

Engineering or industrial product design is a complex process in which a de-

sign arrives at its final form after passing through a series of design phases. The

conceptual phase is an initial and important component of these phases; it is rec-

ognized as a foundational step in any product development process. This phase5

can be complex and time-consuming if the appearance of the product under

consideration is valuable to its target customers. To select an appealing design,

designers often develop a number of design alternatives using two-dimensional

(2D) sketches. However, the formulation of these alternatives is a critical and

time-consuming task, especially for novice designers. To create these alterna-10

tives, designers have to develop and explore the entire design space effectively

within a product’s design requirements or the customer’s preferences.

Exploration of design alternatives is recognized as a major characteristic

of the conceptual design phase [1, 2]. Pahl et al. [3] categorized the concep-

tual phase into two sub-phases. In the first sub-phase, design alternatives are15

formalized based on the design requirements. In the second phase, these alter-

natives are ranked based on a preliminary analysis to select a potential design.

Computer-aided design (CAD) is rarely used during this phase; it is primarily

utilized later to analyze, validate, and fabricate the design [4]. For the most

part, design engineers convert a design selected at the conceptual phase into a20

CAD model when they explore a narrow design space in order to analyze the

performance of the design.

With recent advancements in artificial intelligence, optimization, design sim-

2

ulation, and parametric design techniques, the role of computers in the field of

design is changing. In comparison to traditional CAD modeling techniques,25

these new techniques allow designers and engineers to iterate through a large

number of design alternatives [5]. Generative design systems use these tech-

niques to provide a promising way to explore design space to create alternative

designs based on the specific performance objective defined by a user. A typi-

cal generative design system takes a problem definition as input and produce a30

single or set of optimal solutions for a given problem. Commercially available

generative design systems, such as Altair’s OptiStruct, solidThinking’s Inspire,

Siemen’s Frustum, and efiForm [6], etc., are based on the topology optimization

techniques [7]. These techniques are the mathematical methods that optimize a

layout of material distribution within a predefined design space. Mostly, in these35

systems, the objective is to maximize/minimize compliance, the temperature at

a certain point or globally, or minimize weight under volume, stress or displace-

ment constraints. Typically, a generative system involves three steps to set up a

problem. First, design engineer transforms 2D sketches into a three-dimensional

(3D) CAD model. Then, various constraints and properties are defined based40

on the design specifications. Later, the design engineer executes generations to

obtain a single or multiple optimization solutions. Different researchers have de-

veloped GDTs to create architectural structures [8], site layouts [9], and energy

efficient [10] and eco-friendly building designs [11]. However, few studies[12, 4]

have investigated how to create generative systems to explore designs based on45

their external form appearance.

Therefore, it is beneficial to develop a system that can automatically generate

a variety of unique design alternatives for the outer form of a product based on

its design requirements. The prime objective of this study is to develop a GDT

that can effectively explore a design space and generate optimal aesthetically50

convincing design alternatives for a product at the conceptual phase of the

design process. To develop the proposed technique, the following points were

considered in order to make it effective. The proposed technique should:

3

1. Have an effective search and generation strategy to generate optimum

design alternatives.55

2. Be able to autonomously set up a viable design space for a given model.

3. Be able to work with both continuous and discrete design parameters.

4. Be able to create uniformly distributed and variant designs from the entire

design space.

5. Have the ability to effectively explore both constrained and unconstrained60

design spaces.

By considering the points mentioned above, the present study proposes a

new generative design technique, Space-filling-GDT (Sf-GDT). Sf-GDT has the

ability to generate variant optimal designs. However, the decision on the selec-

tion of appropriate design parameters and setting a suitable design space for a65

given problem is critical. Therefore, Sf-GDT provides different space formula-

tion strategies for the users to obtain optimal designs. Generative formulation of

designs is a high-dimensional constrained optimization problem as there are gen-

erally a high number of design parameters and geometric constraints. Therefore,

there is a need for a simple yet effective optimization approach that can search70

different optimum designs. Among many well-known optimization techniques,

genetic algorithms have been widely used in generative systems. However, the

performance of the genetic algorithms extensively depends on the selection of

tuning parameters [13] and the proper tuning of these parameters requires an

entirely different set of expertise, which most designers do not possess [12]. For75

this reason, we selected a newly proposed simple, effective, and parameter-free

optimization approach called Jaya algorithm [14].

To generate N optimum design alternatives, the user first parameterizes the

given CAD model and define a viable design space based on any of the three

different proposed space formulation techniques. Within the defined design80

space, Sf-GDT randomly generates an initial population of solutions/designs,

which consists of a further N subpopulations, one for each design alternative.

Afterward, Sf-GDT applies the search strategy of the Jaya algorithm to each

4

subpopulation to converge the initial solutions to the optimum position in the

design space while minimizing a cost/objective function, which ensures uniform85

and diverse design exploration. A weighted grid search approach is proposed,

which enables Sf-GDT to maintain diversity between designs. Sf-GDT has also

the ability to explore design space by synthesizing the design with different style

forms, which can be implemented as discrete design parameters. To generate

designs from the constraint spaces, Sf-GDT uses Deb’s heuristic constrained90

handling rules [15]. Figure 1 illustrates the outcome of the proposed technique.

Following major contributions are made to Sf-GDT to enhance its ability for

optimal creation of designs.

1. The search strategy of Jaya algorithm is extended to generate N optimal

designs.95

2. A weighted grid search technique is embedded in Sf-GDT to maintain

diversity between designs.

3. The ability of Sf-GDT is enhanced to explore hybrid design spaces con-

sisting of continuous and discrete design parameters.

4. Different design parameterization and space formulation strategies are pro-100

posed for an effective creation of design space.

5. Deb’s [15] heuristic constraint handling rules are applied to generate de-

signs in constrained spaces.

6. A web-based and Windows-based user interfaces are developed to utilize

Sf-GDT with existing CAD software.105

Figure 1: Illustration of the outcomes of Sf-GDT.

5

The remainder of this paper is organized as follows: Section 2 gives a com-

prehensive review of the relevant literature. Section 3 discusses the proposed

approach to generating new designs. The numerical results of the proposed

technique are given in Section 4. Section 5 describes the usage of the proposed

technique with existing CAD software. Concluding remarks and opportunities110

for future work are presented in Section 6.

2. Related works

The proposed technique is inspired by the prior research in generative and

space-filling design techniques and is based on Jaya algorithm. Below, we discuss

some previous works done by different researchers in these fields.115

2.1. Jaya Algorithm

Most of the well-known meta-heuristic optimization techniques require algorithm-

specific parameters and proper tuning of these parameters is a critical factor,

which affects their performance [13]. For example, the genetic algorithm uses

selection operator, mutation and crossover probability; particle swarm optimiza-120

tion uses inertia weight, cognitive and social parameters; artificial bee colony

uses the number of onlooker bees, scout bees, and employed bees. The Jaya algo-

rithm does not require tuning of specific parameters except common controlling

parameters like population size and a number of generations. This simplicity

and tuning free nature of the Jaya algorithm make it suitable for generative125

design systems.

The optimization process in Jaya starts by randomly generating a population

P of initial solutions for a given size s within the n−dimensional defined design

space. In order to achieve an optimum solution during the search, the algorithm

always tries to move towards the best solution and moves away from the worst130

solution. Suppose for a specific problem there are n number of design parameters

(i.e. j = 1, 2, . . . , n) and s is the number of solutions (i.e. k = 1, 2, . . . , s). If

6

the value of the jth parameter for the kth solution during the ith iteration is

represented as Xj,k,i, then this value is updated according to Equation (1).

X ′j,k,i = Xj,k,i + r1,k,i(Xj,best,i − |Xj,k,i|)− r2,k,i(Xj,worst,i − |Xj,k,i|) (1)

Xj,best,i and Xj,worst,i are the updated values of the parameter j for the best135

and worst solutions, respectively. X ′j,k,i is the updated value of Xj,k,i, and r1,k,i

and r2,k,i are the two random numbers in the range [0,1]. At the end of each

iteration i if X ′j,k,i is better than Xj,k,i then it is accepted otherwise rejected.

Several improvements have also been made on the Jaya algorithm in order

to improve its performance and to expend its application in different fields. For140

example, Huang and Wang [16] introduced an elite opposition-based Jaya algo-

rithm called EO-Jaya. EO-Jaya is a swarm intelligence based algorithm with

no specific parameters to tune its performance. The elite opposition learning

strategy was incorporated into EO-Jaya’s solution updating phase, which en-

hances the solution diversity. A hybrid parallel Jaya algorithm for a multi-core145

environment called HHCP was developed by Michailidis [17]. HHCP Jaya has

a hierarchical cooperation search mechanism to solve large-scale global opti-

mization problems. Another version of Jaya called SAMP-Jaya algorithm was

introduced by Rao and Saroj [18] for solving the constrained and unconstrained

numerical and engineering optimization problems.150

Jaya algorithm and its variations have also been implemented to different

fields of science and engineering such as manufacturing [19], classification [20],

power [21], combinatorial optimization [22] and topology optimization of truss

structures [23].

2.2. Generative Design155

To date, the field of generative design has been passed through the various

advancements for different applications. Several GDTs have been proposed by

different researchers for architectural applications and for the creation of a spe-

cific class of products. Apart from the techniques developed for the architectural

7

applications, here, we discuss some recent studies that are close to the proposed160

technique.

An exhaustive searched based GDT was proposed by Krish [12] for creat-

ing design alternatives. In which, designs are randomly searched in the design

space and to generate dissimilar designs, the designer defines a threshold value,

which is set on the Euclidean distance, between the generated designs. A major165

drawback of this technique lies in its exhaustive search strategy, which hinders

designers from exploring and creating optimum design options. A practical gen-

erative design system called DreamSketch was developed by Kazi et al. [4] to

support generative design at the conceptual phase. In DreamSketch, a user cre-

ates an initial design by sketching and then its alternatives are generated in the170

sketched context. In order to benefit from DreamSketch, a user requires pos-

sessing digital sketching abilities. A shape sampling technique, similar to ours,

have been proposed by Gunpinar and Gunpinar [24], and Khan and Gunpinar

[25]. However, these techniques lack the ability to work with discrete param-

eters and present no practical approach to design parametrization and design175

space formulation. Furthermore, the sampling technique of [25] is computation-

ally expensive compared to the proposed technique. A biologically motivated

algorithm was developed by Runions et al. [26] for the generative creation of

leaf venation patterns. Sousa and Xavier proposed a symmetric-based genera-

tive technique for digital fabrication of geometric shapes like a triangular prism,180

cuboctahedron, and rhombicuboctahedron, etc.

In literature, techniques like shape grammars [27], shape syntheses [28] and

L-systems [29] have been utilized by researchers to develop generative systems.

Shape grammars are a generative method for creation of design alternatives by

incorporating geometric logics/rules and have been utilized in different appli-185

cations such as product design [30], architectural design [27], and embroidery

design [31], etc. Despite being its usage for different application, shape gram-

mars’ usage is limited to the industry because of its computational complexity

and difficulty in developing user interfaces [32]. L-systems are a variation of

shape-grammars and has been used for different design problems such as com-190

8

plex city planning [33] and computer pattern design [34]. L-systems are also

based on the design rules applied in the form of a string. Among these meth-

ods, shape syntheses are preferable for creating a higher design variation of

a given design. However, these techniques can only be employed for creating

variations of existing designs/shapes. In which system is first trained on a large195

dataset of existing designs/shapes that are then synthesized to create variations.

2.3. Space-filling Design

There is a considerable amount of research that has been done on the opti-

mal selection of space-filling Design of Experiments (DoE). However, most works

done by researchers are proposed for the unconstrained design spaces. The re-200

search problem becomes more complicated when a selection of designs has to

be performed in a constrained and high-dimensional design space like in the re-

search of this paper. Fuerle and Sienz [35] proposed a method to produce designs

in constrained spaces. However, this method is not feasible for high-dimensional

problems more than 3D. Draguljić et al. [36] proposed a CoNcaD algorithm for205

constructing non-collapsing and space-filling designs for bounded nonrectangu-

lar design spaces. Trosset [37] and Stinstra et al. [38] used maximin criterion

for the construction of space-filling designs in the constrained 10-dimensional

design space. The technique proposed by Trosset [37] and Stinstra et al. [38]

does not guarantee the sampled DoE to be non-collapsing.210

3. Proposed Technique

This section presents details of the proposed Sf-GDT that explores a design

space to generate N designs. We first outline the core idea behind Sf-GDT

approach and then the ability of Sf-GDT to explore constrained spaces with

continuous and discrete design parameters will be explained.215

3.1. The Sf-GDT

Basic terminologies are described first in relation to problem setting. A CAD

modelm can be represented by n number of design parameters xm,1, xm,2, xm,3, . . . , xm,n.

9

Each design parameter defines a dimension in the design space. To form the

design space limits, the upper and lower bounds for each design parameter are220

set. [xlm,j] and [xum,j] represents the lower and upper bounds of the jth design

parameter, respectively, where j = 1, 2, 3, . . . , n. Therefore, a n− dimensional

design space is formed by a set of n design parameters along with their lower

and upper bounds.

To generate an optimal set of N design alternatives with the appropriate225

degree of dissimilarity, designs must be uniformly distributed with the maximum

separating distance within the n− dimensional design space. Therefore, a cost

function based on the Audze and Eglais [39] technique is utilized, which follows

a physical analogy: Molecules in a space exert repulsive forces on each other

that lead to potential energy in a space. These molecules are in equilibrium in230

case of minimum potential energy. The analogous potential energy U1(B) for

the creation of the space-filling designs is defined as:

U1(B) =

N−1∑
p=1

N∑
q=p+1

1

L2
pq

(2)

where

Lpq =

√√√√ n∑
j=1

(xp,j − xq,j)2 (3)

Here, Lpq is the distance between the designs p and q, and xp,j and xq,j

are the scaled parameter values for the jth dimension of these designs, which235

are computed by scaling parameter values between 0 (i.e., lower bound for the

parameter) and 1 (i.e., upper bound for the parameter). The design space

formed from these bounds is called scaled design space. Recall that N is the

number of designs to be generated and n is the number of dimensions in the

design space.240

The optimization problem for Sf-GDT can be formulated as the minimiza-

tion of U1(B) to generate N optimum solutions (or designs). However, stan-

dard Jaya algorithm provides a single optimal solution by guiding the ini-

10

tial population of individuals to an optimum position. Therefore, the search

strategy of Jaya algorithm has to modify in order to provide N optimum so-245

lutions. The optimal design creation process of Sf-GDT starts by creating

the random initial population P consisting of N subpopulations (i.e., P =

[(p1)s×n, (p2)s×n, (p3)s×n, . . . (pN)s×n]T). pL = [X1, X2, . . . Xs]
T denotes

the Lth subpopulation of P and L = 1, 2, 3, . . . , N . Each subpopulation consists

of s solutions and the sth solution Xs is comprised of n design parameters (i.e.,250

Xs = [xs,1, xs,2, . . . xs,n]).

For each solution, there is a subpopulation of size s, during convergence all

the N subpopulations are guided to their optimum position with Equation (1)

under the consideration of their best and worst solutions. N worst and best

solutions are selected, one from each subpopulation. The best and the worst255

solutions are the individuals that minimize and maximizes the cost function,

receptively. The cost function is calculated based on the best solutions of the

subpopulations. The division of population P into subpopulations is similar

to [18, 25]. Let B = [B1, B2, . . . , BN] and W = [W1,W2, . . . ,WN] are sets of

best and worst solutions, respectively, and BL and WL is the best and worst260

solution for the Lth subpopulation. For the selection of N best and worst initial

solutions, there are 2 × sN combinations. This means that the cost function

has to be evaluated 2× sN times. For instance, at N = 10 and s = 40 setting,

2 × 10485760000000000 evaluations of cost function has to be performed for

the selection of B = 10 and W = 10 solutions. This can result in a high265

computational cost if N or s are assigned to a larger value. Therefore, an

initial-designs-selection strategy is utilized for the selection of N initial worst

and best solutions.

The initial-designs-selection strategy for the selection of N best initial so-

lutions is based on the fact that the best individuals have the ability to select270

other exceptional individuals from a group. Following the similar analogy, N

is first set to 2 in the cost function, and two individuals of the first two sub-

populations that minimize the cost are selected as best solutions B1 and B2.

Afterward, a solution that minimizes the cost function is selected as the best

11

solution B3 from the third subpopulation. This solution is selected under the275

consideration of the preselected solutions B1 and B2 by setting N = 3. The

selection process is repeated in a similar manner until N best solutions from the

N number of subpopulations are determined. Similarly, this selection strategy

is utilized to select N worst solutions, which maximizes the cost function. Note

that this selection strategy checks 2 × s2 +
∑N

2 s individuals’ combinations to280

select each set of N best and worst initial solutions.

In Sf-GDT, the optimization process in any iteration is completed by per-

forming the N number of sub-iterations, one for each subpopulation. Each

subpopulation moves towards the better position in design space individually

while keeping the best and worst solutions of other subpopulations the same.285

During optimization, a new position for a solution is found using Equation (1).

Let Xk and X ′k be the current and new positions of a solution in the first sub-

population, respectively. The new position of the solution is accepted if the cost

value of B′ = [X ′k, B2, . . . , BN] is less than B = [Xk, B2, . . . , BN]. The best B

and worst W solutions are updated after each sub-iteration for the subpopula-290

tion. The best solution is an individual having a minimum cost value (computed

with the best solutions of other subpopulations) among the other solutions in

the same subpopulation. Sub-iterations in other subpopulations are performed

in the same way. An iteration is completed when a sub-iteration for each of the

subpopulation is performed. After Sf-GDT stops the convergence process the295

best solutions of the subpopulations are regarded as final optimal designs.

Furthermore, the alternatives obtained from Sf-GDT can work as Design

of Experiments (DoE) for physics simulations, which can be run for validation

of designs’ functionality, structural integrity, and usability. DoE are crucial

in physical analyses, which has the major goal of determining which design300

parameters have more effect on the simulation results. Most analyses are com-

putationally expensive, and running the analysis for collapsing designs and non-

space-filling would ultimately result in an unnecessary computational effort [36].

12

3.2. Weighted Grid Search Technique

Minimization of U1(B) favors placement of the designs at the maximum305

separating distance from each other. In the case of high-dimensional design

space, this function itself locates some designs at the boundaries of the design

space [40]. This will result in the violation of a non-collapsing criterion [36] (i.e.,

designs not sharing any parameter values within a specific interval), thereby

generating similar designs.310

For generative designs, it is desired to spread designs evenly also in the

inner portions of the design space. Therefore, the non-collapsing criterion for

the generated designs should be satisfied as much as possible. A weighted grid

search technique is introduced in order to generate non-collapsing designs in the

design space. A new term, U2(B), is included in the cost function, which is as315

follows:

U2(B) = α×
N−1∑
p=1

N∑
q=p+1

n∑
j=1

f(yp,j , yq,j) (4)

f(yp,j , yq,j) =

1 if yp,j = yq,j

0 otherwise

(5)

where

if xep,j ≤ xp,j < xe+1
p,j then yp,j = e

if xeq,j ≤ xq,j < xe+1
q,j then yq,j = e

(6)

The term U2(B) is based on the degree of violation for the non-collapsing

criterion. Here, α is a user-defined parameter adjusting weight of the U2(B)

term. yp,j and yq,j in Equation (4) are the corresponding integer coordinate320

values for xp,j and xq,j in the jth dimension, respectively. To calculate yp,j and

yq,j the range of each design parameter is partitioned into N equal intervals

(levels) as follows: [xlm,j = x1
m,j , x

2
m,j , . . . , x

N
m,j = xum,j] and an integer coordi-

nate e is assign to them using Equation (6), where e ranges from 1 to N . Based

13

on these integer values, the piecewise function f in Equation (5) decides if the325

designs p and q are collapsing or non-collapsing.

Maximum value for this term can be n×
(
N
2

)
.
(
N
2

)
represents the combina-

tions between designs, which is as follows:
(
N
2

)
= N !

2!(N−2)! . Setting the param-

eter α to small values will lead to semi non-collapsing designs and larger values

will produce more non-collapsing designs. The cost function U(B), which is330

given in Equation (7), have to minimize to create space-filling and non-collapsing

designs. This function is overall composed of a parameter α, and U1(B) and

U2(B) for space-filling and non-collapsing criteria, receptively. Algorithm 1

summarizes the step-wise procedure of Sf-GDT.

Minimize U(B) =

N−1∑
p=1

N∑
q=p+1

1

L2
pq

+ α×
N−1∑
p=1

N∑
q=p+1

n∑
j=1

f(yp,j , yq,j) (7)

Figure 2 (a) shows a 3D CAD model parameterized with two design param-335

eters x1 and x2. The design parameter and their parametric ranges ([xl1] ≤

x1 ≤ [xu1] and [xl2] ≤ x2 ≤ [xu2]) forms a 2D design space. 20 design alterna-

tives for this CAD model are created using the proposed Sf-GDT under the

space-filling criterion (Equation 2), Non-collapsing criterion (Equation 4) and

combined space-filling and non-collapsing criteria (Equation 7), which are shown340

in Figure 2 (b), (c) and (d), respectively. It should be noted that each point/dot

in the Figure 2 represents a position of a design in the design space. In Figure

2 (a), it can be seen that the design alternatives are spread evenly in the design

space, therefore, space-filling designs can be obtained using Sf-GDT. However,

in this case, there are more designs are the boundary of the design. Therefore,345

exploration performed only based on this criterion may not produce satisfactory

designs because during space exploration designer desires to obtain designs that

also evenly covers the inners regions of the design spaces. Furthermore, the

design alternatives in Figure 2 (c) are created with the only non-collapsing cri-

terion and has resulted in designs with the poor space-filling property. It can be350

observed in the Figure 2 (c) that the better space exploration is achieved when

the when both space-filling and non-collapsing properties are considered (i.e.

14

when space exploration is performed using the Equation 7, which involves both

space-filling and non-collapsing criterion). Later, the 3D CAD model in Figure

2 (e) is parameterize with design parameters x1, x2 and x3. Here, these three355

design parameters form a 3D design space. 20 design alternatives are created

in the 3D space using the Sf-GDT (see Figure 2 (f)). Again, the points in this

space represent the positions of the 20 design alternatives.

Figure 2: Design alternatives for a 3D CAD model with two design parameters (a) are obtained

in 2D spaces considering; (b) only space-filling criterion, (c) only non-collapsing criterion, and

both space-filling and non-collapsing criteria using Sf-GDT (d). Design alternatives for the

same CAD model with three parameters (e) are generated in 3D design space using Sf-GDT

while considering both space-filling and non-collapsing criteria (f).

3.3. Sf-GDT for Discrete Parameters

Sf-GDT also gives the ability to the designer to explore design space by360

synthesizing the design with different ”style” profiles (e.g., round, triangular,

and rectangular, etc). The designer can add an option for variable base styles

that can be implemented as discrete design parameters. Sf-GDT is customized

in the following way in order to be employed for the discrete design parameters.

Suppose, an integer value (round→1, rectangular→2, and triangle→3) is365

15

Algorithm 1 The pseudo-code of Sf-GDT

1: Create an input CAD model and parameterize it with n design parameters

(x1, x2, . . . , xn).

2: Initialize the number of parameters (n), parameter ranges, number of design to be

created (N), subpopulation size (p) and parameter α.

3: Randomly create an initial population P of feasible solutions/designs within the

parametric ranges consisting of N subpopulations (pL)s×n of size s, where 1 ≤
L ≤ N .

4: Obtain set of N initial best (B) and worst (W) designs, one from each subpopu-

lation based on the initial-designs-selection strategy.

B = [B1, B2, . . . , BN], W = [W1,W2, . . . ,WN]

5: while termination criterion is not satisfied do

6: for L = 1 to N do

7: for k = 1 to s do

8: Update the design Xk of (pL)s×n using Equation 1 based on the BL and

WL and obtain an updated/new design X ′k.

9: Calculate the cost value U(B′) and U(B) using Equation 7 for B =

[X ′1, B2, . . . , BN] and B = [X1, B2, . . . , BN].

10: if U(B′) < U(B) then

11: Accept the design X ′k.

12: else

13: Accept the design Xk.

14: end if

15: end for

16: Obtain the updated (pL)s×n, which is (p′L)s×n.

17: Find the new best B′L and worst W ′L solutions from (p′L)s×j .

18: Replace BL and WL with B′L and W ′L in the initial set (B = [B′1, B2, . . . , BN],

B = [W ′1,W2, . . . ,WN]).

19: end for

20: end while

21: Final N optimal designs are obtained.

assigned to each of three styles. Let xp,d be the dth discrete parameter of design

p containing t styles and [xlp,d] and [xup,d] are the lower and upper bounds for

xp,d, respectively. In the above case, t = 3, [xlp,d] = 1 and [xup,d] = 3. Instead

of dividing this parameter into N number of intervals, it should be divided into

16

t number of styles. Now, the range of xp,d is divided into t equal number of370

intervals as follows: [xlp,d = x1
p,d, x

2
p,d, . . . , x

t
p,d = xup,d]. After Sf-GDT converge,

all the design parameters, including xp,d, of each design consists of continuous

values. The parameter xp,d contains the style profiles in the form of discrete

values and required to be converted to discrete values. Otherwise, no decision

can be made on the selection of the style shape. Therefore, after generating N375

designs, continuous values of xp,d for each design will be converted into discrete

values by using Equation (8).

if xrp,d ≤ xp,d < xr+1
p,d then xp,d = r (8)

Here, r in an integer number ranging from 1 to t.

3.4. Generation of Design from Constrained Spaces

The design space consists of feasible and infeasible regions in the presence380

of geometric constraints. Feasible regions consist of feasible designs that satisfy

the predefined constraints. Infeasible designs are located in the infeasible re-

gions. There are different types of constraint handling techniques are available

in the literature, such as the incorporation of static penalties, dynamic penal-

ties, adaptive penalties etc. In this study, Deb’s heuristic constrained handling385

method [15] is adopted in order to avoid Sf-GDT from selecting designs from

constrained spaces. Deb’s method uses a tournament selection operator in which

two solutions are selected and compared with each other. A design p is said to

be constrained-dominate other design q if any of the following heuristic rules

are true:390

1. Design p is feasible and design q is not.

2. Designs p and q both are infeasible but design p violate less number of

constraints.

3. Designs p and q both are feasible but design p has better cost function

value.395

17

If design p constrained-dominate design q then design p is selected. This

domination is checked at the end of each sub-iteration. There can be the case

when both designs, p and q, are infeasible and have the same number of con-

straint violations then the design with better cost value is selected. In case of

constraint space, Sf-GDT generates an initial population P consisting of only400

feasible solutions. So, during the selection of the initial best and worst solutions,

the initial-designs-selection strategy does not have to check these constrained

handling rules.

3.5. Design Parameterization

An effective design parameterization of a CAD model is required to create405

variant designs. All the important features of the design should be parameter-

ized with the appropriate number of parameters. However, a decision on the

suitable set of parameters is a critical step in the parametrization, which re-

quires the strong understanding of the design requirement and key attributes.

There are different techniques available in the literature on how to form a well-410

structured parametric model [41]. A well-structured model can enable the de-

signer to create a variety of design alternatives within its design requirement

than a poorly structured model. The high number of design parameters may

not keep the original form of the design. As mostly designers desire to keep the

common underlying structure of the model while generating its alternatives. On415

the other hand, less number of parameters can narrow down the design space

and larger variation of designs may not be achieved. Therefore, the decision on

the selection of appropriate design parameters should be carefully made.

One strategy, which the designer can follow, is to first detect the important

features of a given model and then these features can be parametrized with420

a relatively higher number of parameters and designs can be generated with

these parameters. Later, after some trials, the designer can detect quixotic

parameters and eliminate them by directly modifying the CAD model. Such

capability of the generative design system is recognized as ’designerly’ method,

which allows designers to modify the model under consideration and use its425

18

generative capabilities at any phase of the design process [12]. After exploring

the designs based on the important features, later, if required, design space can

be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by the430

number of the design parameters and their bounds. The dimensionality of the

design space depends on the number of design parameter used to define the CAD

model and the limits of the design space are set by defining the upper and lower

bounds for each design parameter. However, formulation of a suitable design

space is a decisive task as the performance of a technique in term of creating435

better design alternatives mainly depends on it. Setting up the design space

should be carefully done in order to achieve the maximum performance of the

Sf-GDT and should have sufficient high potential region. If design space is too

narrow then Sf-GDT will result in the creation of similar/same designs. On the

other hand, a vast design space can result in the waste of computational effort440

in exploring undesirable regions of the design space. Typically, a design space is

set up by defining the upper and lower bounds of the design parameters. Where

each parameter represents a dimension in the design space. Defining the upper

and lowers bounds usually done based on the initial design specifications and

designers’ understanding of the design.445

In Sf-GDT, design space formulation can happen in three different way;

explicit formulation, autonomous formulation, and interactive formulation.

Explicit Formulation: The explicit formulation of the design space hap-

pens when the design specifications are known at the conceptual stage and based

on these specifications the designer limits the space.450

Autonomous Formulation: The autonomous formulation helps to coarsely

form the design space as a percentage of the initial parameter values of the de-

sign. This formulation happens when no primary understanding of the design

specifications are available in the conceptual phase. The autonomous formula-

tion gives a good initial guess of suitable space limits. With this formulation,455

19

the designer can first inadequately build up an initial map of promising regions

of the design space and then explore designs in that space. Afterward, the de-

signer can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously formalized

space, but this can be overridden by implementing geometric constraints.460

Figure 3: Interactive formulation of design space.

Interactive Formulation: In the interactive formulation of the design

space, the designer creates multiple spaces and gradually proceeds to a final

design. First, the designer can autonomously form an initial design space around

the given CAD model and creates designs in this space. Afterward, the designer

can select a design and then formalize an autonomous space around that design.465

In this way, the designer can interactively proceed by selecting designs and

forming the design spaces until he/she achieves a final desired design. For

example, Figure 3 gives the illustration of the interactive formulation of the

design space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space and then470

a new space (design space 2) is formed around the previously selected design.

This process continues until the final design is achieved. During selection, if the

designer selects more than one design, then a new design space is created around

the centroid of the selected designs. The designer can also refine or shrinks the

space after each interaction as he/she approaches the final design. Once the475

final design is selected then, if desired, it can be further modified easily due to

its parametric nature.

20

4. Results and Discussion

In this section, we first demonstrated a step-wise procedure for implementing

Sf-GDT on a simple 3D CAD model and then discuss the performance of Sf-480

GDT for different test models and settings. The proposed technique has also

been compared with the existing state-of-the-art techniques.

4.1. Implementation of the Sf-GDT

To generate design alternatives with Sf-GDT, first, develop an input CAD

model, shown in Figure 2 (e). This CAD represents a celling lamp and parame-485

terized with three design parameters, x1, x2 and x3. Each design parameter de-

notes the radius of the circular region of the lamp model. Then, form an explicit

design space for this model my defining the parametric ranges as 1 ≤ x1 ≤ 20,

1 ≤ x2 ≤ 20 and 1 ≤ x3 ≤ 15, and finally, perform following steps to generate

design alternatives for this CAD model:490

Step 1: Initialize the following parameters:

– Subpopulation size (s) = 2

– Number of designs (N) = 4

– Weight parameter (α) = 5

– Number of design parameters (n) = 3495

– Ranges of design parameters

Step 2: Randomly generate a population P consists of N subpopulations. Each

subpopulation contains s = 2 initial designs/solutions Xg
1 and Xg

2 . The

super script g represents the subpopulation to which these solutions be-

long. The initial population is shown below:

P =
[
(p1)2×3 (p2)2×3 (p3)2×3 (p4)2×3

]T

21

(p1)2×3=

X
1
1

X1
2

=

6.4 9.8 5.0

3.9 16.1 13.6

 (p2)2×3=

X
2
1

X2
2

=

13.6 2.5 5.3

19.1 5.4 10.3



(p3)2×3=

X
3
1

X3
2

=

 7.4 11.9 3.7

10.9 17.0 12.7

 (p4)2×3=

X
4
1

X4
2

=

16.6 18.4 5.6

19.8 17.0 10.7


Step 3: Select an initial set of best and worst solutions, one from each subpopu-

lation, using the initial-designs-selection strategy described in Section 3.

This strategy works as follows:

1. Calculate the cost value U(B) using Equation 7 for s2 = 4 combina-500

tions of solutions in population p1 and p2. Then select a combination

which gives lowest (highest) value of the cost as best (worst) solu-

tion. First, calculate the potential energy U1(B) using Equation 2

and number of collapsing designs U2(B) using Equation 4 and then

input these values in Equation 7 to calculate U(B).505

Calculate cost value for B = [X1
1 , X

2
1]:

Scale X1
1 and X2

1 between 0 and 1 X1
1=

[
6.4
9.8
5.0

]T
→
[

0.28
0.46
0.29

]T
X2

1=

[
13.6
2.5
5.3

]T
→
[

0.66
0.08
0.31

]T
U1(B)=

∑1
p=1

∑2
q=p+1

1
L2
pq

= 1

L2
12

Distance between first and second design of B=L12=
√

(0.28−0.66)2+(0.46−0.08)2+(0.29−0.31)2=0.54

U1(B)= 1

L2
12

=3.4 U2(B)=1.0

Cost function U(B)=U1(B)+α×U2(B)=8.4

Similarly, calculate cost for B = [X1
1 , X

2
2], B = [X1

2 , X
2
1] and B =

[X1
2 , X

2
2]:

B=[X1
1 ,X

2
2]→U(B)=9.5

B=[X1
2 ,X

2
1]→U(B)=0.9

B=[X1
2 ,X

2
2]→U(B)=1.0

Solution set [X1
2 , X

2
1] ([X1

1 , X
2
2]) give lowest (highest) cost, therefore,

X1
2 (X1

1) and X2
1 (X2

2) are regarded as the best (worst) solutions of

p1 and p2, respectively.

2. Under the consideration of X1
2 (X1

1) and X2
1 (X2

2) find a best (worst)

solution of p3.510

Calculate cost for B = [X1
2 , X

2
1 , X

3
1]:

X1
2=

[
3.9
16.1
13.6

]T
→
[

0.15
0.79
0.90

]T
X2

1=

[
13.6
2.5
5.3

]T
→
[

0.66
0.08
0.31

]T
X3

1=

[
7.4
11.9
3.7

]T
→
[

0.34
0.57
0.19

]T

22

U1(B)=
∑2

p=1

∑3
q=p+1

1
L2
pq

= 1

L2
12

+ 1

L2
23

L12=
√

(0.15−0.66)2+(0.79−0.08)2+(0.90−0.312=1.06

L23=
√

(0.66−0.34)2+(0.08−0.57)2+(0.31−0.19)2=0.85

U1(B)= 1

L2
12

+ 1

L2
23

=2.3 U2(B)=1.0

U(B)=U1(B)+α×U2(B)=7.3

Similarly, calculate cost for B = [X1
2 , X

2
1 , X

3
2]:

B=[X1
2 ,X

2
1 ,X

3
2]→U(B)=24.1

The solution X3
1 (X3

2) give lowest (highest) cost value and thus re-

garded as best solution of p3

3. Select the best (worst) solution of the subpopulation p4

B=[X1
2 ,X

2
1 ,X

3
1 ,X

4
1]→U(B)=20.7

B=[X1
2 ,X

2
1 ,X

3
1 ,X

4
2]→U(B)=14.2

The best (worst) solution of p4 is X4
2 (X4

1).

4. The initial best (worst) solution set isB = [B1, B2, B3, B4] = [X1
2 , X

2
1 , X

3
1 , X

4
2]

(W = [W1,W2,W3,W4] = [X1
1 , X

2
2 , X

3
2 , X

4
1]).515

Step 4: Update solution X1
1 of p1 based on its best and worst solutions using

Equation 1.

X ′11 = X1
1 + r1(B1 − |X1

1 |)− r2(W1 − |X1
1 |) =


4.9

12.3

9.6


T

Where

r1 =


0.6

0.4

0.5


T

r2 =


0.02

0.5

0.6


T

Step 5: Calculate the cost U(B′) and U(B) for B = [X ′11 , B2, . . . , BN] and B =

[X1
1 , B2, . . . , BN], respectively.

B′ = [X ′11 , B2, B3, B4]→ U(B′) = 23.7

B = [X1
1 , B2, B3, B4]→ U(B) = 64.1

As U(B′) < U(B) so accept the new solution X ′11 and reject the old

solution X1
1 .

23

Step 6: Similarly, update the solution X1
2 of p1.

X ′12 = X1
2 + r1(B1 − |X1

2 |)− r2(W1 − |X1
2 |) =


3.8

19.6

12.7


T

Step 7: Calculate the cost U(B′) and U(B) using B = [X ′12 , B2, . . . , BN] and

B = [X1
2 , B2, . . . , BN], respectively.

B′ = [X ′12 , B2, B3, B4]→ U(B′) = 14.0

B = [X1
2 , B2, B3, B4]→ U(B) = 14.2

U(B′) < U(B), so accept the new solution X ′12 .

Step 8: Obtain the updated subpopulation p′1

(p′1)2×3 =

X ′11
X ′12

 =

4.9 12.3 9.6

3.8 19.6 12.7


Step 9: Find the new best (B1) and worst (W1) solutions of p′1.

B1 = X ′11 =


4.9

12.3

9.6

 W1 = X ′12 =


3.8

19.6

12.7


Step 10: Replace B1 and W1 with B′1 and W ′1 in the initial set (B = [B′1, B2, B3],520

B = [W ′1,W2,W3]).

Step 11: Repeat the steps 4 to 10 to obtain p′2, p′3 and p′4.

Step 12: Repeat the steps 4 to 11 until the change in the cost function becomes

negligibly small between a few consecutive iterations. After 13th itera-

tion algorithm converges and the best solution of each subpopulation is525

regarded as final optimum design.

Step 13: Obtain final design alternatives, which are shown below:

24

B′ = [B1, B2, B3, B4]

B1 =


1.1

17.3

15


T

=


x1

x2

x3


T

→ B2 =


13.6

2.5

4.5


T

→ B3 =


5.8

11.2

3.6


T

→ B4 =


19.9

17.2

10.7


T

→

4.2. Test Models

Figure 4: CAD models of (a) speaker and (b) Motorbike with their design parameters.

To validate the performance of Sf-GDT we also utilized more test models,

such as a speaker, a motorbike, a ceiling lamp, and a wine glass, which are shown530

in Figure 4 (a), (b), Figure 6 (a) and Figure 7 (a), respectively. These models

were selected based on their aesthetic importance. A wine glass defines elegance

of the wine drinker, an aesthetic ceiling lamp and an elegant speaker box and

motorbike design can attract more customers. Except for the motorbike, these

models are single component 3D designs. Where the bike model is composed535

of several design components. For the complex test model like a motorbike, a

user can first work on the low-level details of the design and then can move to

the high-level details. For example, the user can first explore the form outline

of the design using Sf-GDT and once a collection of different initial base forms

is selected, the designer can then explore further design details by keeping the540

base form constant. The user may also first explore the design space to create

design alternatives for each component and then assembles these alternative

parts to create the final design. For the motorbike model, only components for

that outer appearance is considered to be significant are created such as fuel

25

tank, seat, wheels, headlight, backlight, handlebars and speedometer dock. 3D545

surfaces of the wine glass, ceiling lamp, speaker, fuel tank and seat of motorbike

models are created by interpolating Coons patches between spline curves and

design parameters are defined with these curves. The motorbike’s front and rare

wheels are the 3D solid models.

The speaker model shown in Figure 4 (a) is represented using 22 design550

parameters (n = 22). The speaker model is created using three spline curves.

First, a quarter section of the speaker model is created using these spline curves.

Then, this section is mirrored first along the x-y plane and then mirrored along x-

z plane. Curve 1 lies in x-y plane and position of its control points is represented

by the parameter xS1 , yS1 , xS2 , yS2 , xS3 , yS3 , xS4 and yS4 and Curve 2 lies in x-z555

plane and parameters xS5 , zS1 , xS6 , zS2 , xS7 , zS3 , xS8 and zS4 denote the position of

its control points. Similarly, xS11, zS7 , xS10, zS6 , xS9 and zS5 represents the control

point position of curve 3. The parameter ranges of the speaker model are given

in Table 1.

Each component of the motorbike model is parameterized separately and560

consist of total 42 design parameters (n = 42), which are shown in Figure 4

(b). Back wheel is parameterized with 6 continuous design parameter (xM1 ,

yM1 , xM2 , yM2 , yM3 and rM1) and one discrete parameter (rM2), and front wheel is

created as copy of the back wheel. xM1 ,xM2 and yM1 ,yM2 represent the position of

control points in x-axis and y-axis, respectively, and yM3 and rM1 are the width565

of the tire and radius of the wheel. The discrete parameter, rM2 , defines the

number of spokes. The fuel tank is created using three spline curves, one in

the y-x plane and two in x-z plane and represented with 14 design parameters.

Similarly, the seat of the motorbike is parameterized with 8 parameters and

created using two spline curves, one in 3D space and other in the x-y plane.570

The design parameters xM7 and yM13 denotes the width of the speedometer dock

in x-axis and y-axis. The backlight and headlight are represented with xM8 , xM9 ,

yM14 , yM15 and xM13 , yM18 , receptively, where xM9 and yM14 adjusts the length and

width of the backlight. The handlebars are also created with spline curves with

design parameters xM10 , xM16 , xM11 , xM17 and xM12 representing the position of control575

26

points. The parametric ranges of each design parameter are provided in Table

1.

Table 1: Parameter ranges for the test models

Speaker Model

5 ≤ xS1 ≤ 150 5 ≤ yS1 ≤ 90 5 ≤ xS2 ≤ 150 5 ≤ yS2 ≤ 90 5 ≤ xS3 ≤ 150

5 ≤ yS3 ≤ 90 5 ≤ xS4 ≤ 150 5 ≤ yS4 ≤ 90 5 ≤ xS5 ≤ 150 5 ≤ zS1 ≤ 90

5 ≤ xS6 ≤ 150 5 ≤ zS2 ≤ 90 5 ≤ xS7 ≤ 150 5 ≤ zS3 ≤ 90 5 ≤ xS8 ≤ 150

5 ≤ zS4 ≤ 90 5.0 ≤ xS9 ≤ 90 5 ≤ zS5 ≤ 90 5 ≤ x10S ≤ 90 5 ≤ zS6 ≤ 90

5 ≤ x11S ≤ 90 5 ≤ zS7 ≤ 90

Motorbike Model

6 ≤ rM1 ≤ 11 20 ≤ xM1 ≤ 25 3.5 ≤ yM1 ≤ 6 20 ≤ xM2 ≤ 25 3.5 ≤ yM2 ≤ 5

1.8 ≤ yM3 ≤ 2.3 1 ≤ xM3 ≤ 2 5 ≤ yM4 ≤ 7 3 ≤ xM4 ≤ 8 6 ≤ yM5 ≤ 12

2 ≤ xM5 ≤ 6 6 ≤ yM6 ≤ 12 10 ≤ xM6 ≤ 12 6 ≤ yM7 ≤ 12 4 ≤ zM2 ≤ 6

4 ≤ zM3 ≤ 6 3 ≤ zM4 ≤ 5 3.5 ≤ zM5 ≤ 5.5 3 ≤ zM6 ≤ 6 3.5 ≤ zM7 ≤ 5

15 ≤ yM8 ≤ 20 17 ≤ yM9 ≤ 23 15 ≤ y10M ≤ 20 8 ≤ yM11 ≤ 13 10 ≤ yM12 ≤ 15

3 ≤ zM8 ≤ 7 3 ≤ zM9 ≤ 6.5 2 ≤ zM10 ≤ 6 2 ≤ xM7 ≤ 3.5 2 ≤ yM13 ≤ 3.5

1.5 ≤ yM14 ≤ 3 2.5 ≤ xM8 ≤ 4 1 ≤ yM15 ≤ 2 4 ≤ xM9 ≤ 6 2 ≤ xM10 ≤ 5

0.8 ≤ yM16 ≤ 3 1 ≤ xM11 ≤ 4 2 ≤ yM17 ≤ 4 7.5 ≤ xM12 ≤ 12 4 ≤ xM13 ≤ 7

2 ≤ yM18 ≤ 5 1 ≤ rM2 ≤ 7

Celling Lamp Model

1 ≤ yL1 ≤ 10 1 ≤ yL2 ≤ 10 1 ≤ yL3 ≤ 10 1 ≤ rL1 ≤ 20 1 ≤ rL2 ≤ 20

Sf-GDT was tested for both constrained and unconstrained design spaces

with different algorithm setting and design space formulation. Design alterna-

tives for the speaker and motorbike models were created with the application580

of Sf-GDT in the explicitly formalized unconstrained space and can be seen in

Figure 5. A careful inspection of the designs in Figure 5 can reveal that the gen-

erated alternatives by Sf-GDT for each model are distinct from each other to a

great extent. This validates the ability of Sf-GDT to create distinct designs for

any given CAD model. Table 2 provides the algorithm settings and the values585

of various parameters/criteria such as design alternative (N) and design param-

eters (n) for the test models, U1(B) and U2(B) values, computational time and

number of iterations (i) performed while creating the designs alternatives.

27

Figure 5: Design alternatives generated by Sf-GDT for (a) speaker and (b) motorbike models.

4.2.1. Sf-GDT With Discrete Parameters

A ceiling lamp model (see Figure 6 (a)) is used to demonstrate the per-590

formance of Sf-GDT for continuous and discrete parameters. The continuous

parameter, yL1 , yL2 , and yL3 , represents the vertical length of the lamp along the

y-axis, and rL1 and rL2 are the radii of upper and lower circular region of the

lamp. Where, discrete parameters, rd1 and rd2 , each containing five style forms

(t = 5). These style forms, circle→1, square→2, ellipse→3, hexagon→4 and595

Table 2: Algorithm setting and the results obtained from Sf-GDT for CAD models utilized

for experimentation.

Designs N n U1(B) U2(B) Maximum value of U2(B) CT (minutes) i

Figure 5 (a) 20 22 46.43 10 4180 3.72 500

Figure 5 (b) 20 7 151.97 60 1330 1.47 300

Figure 7 (b) 20 10 109.79 0 1900 1.92 300

Figure 7 (c) 20 10 107.94 2 1900 2.10 300

Figure 7 (d) 40 10 487.02 2 7800 21.74 1500

28

octagon→5, are defined on the profile-1 (P1) and the profile-2 (P2) of the lamp

model. Figure 6 (b) shows the design alternatives generated by Sf-GDT based

on both discrete and continuous parameters. The ranges of the continuous de-

sign parameters of ceiling lamp model are given in Table 1. It was observed that

the designs with both continuous and discrete parameters have more variation600

compared to the designs with only continuous parameters.

Figure 6: (a) Parametric CAD model of ceiling lamp. (b) Design alternatives of ceiling lamp

model generated using Sf-GDT with continuous and discrete parameters.

4.2.2. Sf-GDT in Constrained Design Spaces

Sf-GDT can generate a variety of designs for a given model in the con-

strained and unconstrained design spaces. Both the design specifications and

user preferences can be represented by constraints. To validate the performance605

of Sf-GDT, design specification such as the capacity of a wine glass to store a

certain amount of wine, was given as a geometric constraint. The parametric

representation of the wine glass model is shown in Figure 7 (a). 10 design pa-

rameters (n = 10) are used to represent this model. The design parameter yG0

is the vertical length of glass stem and the design parameter xG1 , xG2 , yG1 , xG3 ,610

yG2 , xG4 , yG3 , xG5 and yG4 represent the 2D position of the control points of spline

curve used to create the profile of the glass.

The glass design alternatives in Figure 7 (b) and (c) can store less than or

equal to 200 (≤ 200) and greater than or equal to 700 (≥ 700) milliliter (ml)

of wine, respectively. No design in Figure 7 (b) and (c) have violated these615

geometric constraints.

29

Figure 7: (a) Parametric representation of a wine glass model. Design alternatives of glass

model generated by Sf-GDT in constrained space with (b) constraint-1 (c) constraint-2. (d)

Design alternatives of glass model generated by utilizing Sf-GDT in an autonomously formed

design space.

4.2.3. Performance of Sf-GDT in Different Design Space Formulations

The performance of Sf-GDT is also validated under different design space

formulation (i.e. explicit, autonomous, and interactive) for the wine glass. The

wine glass designs in Figure 7 (d) are generated by Sf-GDT in an autonomously620

formed design space with 50% extension of initial design. It can be observed

from Figure 7 (d) that the underlined designs are implausible. These designs

may not be feasible as a final market product. As mentioned before, one way

to overcome this issue is to define geometric constraints.

Figure 8: Design alternatives generated for the wine glass model in an interactively formalized

design space.

In interactive space, an initial envelope can be set up either explicitly or625

autonomously. For example, Figure 8 demonstrate the interactive formulation

of designs. In Figure 8, set-1 contains 17 design alternatives for the wine glass

model. These designs were generated in a space that was created with a 50%

30

autonomous extension of the initial design. This set contains both plausible and

implausible designs. From this set, one design was selected (checked in red). In630

the next step, this design was considered as new input model and a new set

(set 2) of designs were created again with 50% autonomous extension of space

around the new design. Note that set 2 contains all the plausible designs. From

this set, two designs were select and new space was formed around the centroid

of these two designs with 30% extension. Afterward, again 30% extension was635

done for the creation of designs in set-4 and from this final design was selected

and the interactive process was stopped.

4.3. Computational Time (CT)

A PC having an Intel Core i7-5500 CPU, 2.4 GHz processor and 16 GB

memory was used for the experiments in this study, and C++ programming640

language along with Siemens’ Parasolid APIs were utilized for implementation

and testing of Sf-GDT. We measured the CT taken to obtain results in Figure

5, 6 and 7, which is shown in Table 2; it varied between 1.47 and 21.74 minutes.

The study on the effects of these parameters on CT is important in order to

effectively utilize Sf-GDT. In the proposed approach, CT mainly depends on645

the number of designs to be generated (N), the dimensionality of the design

space (n) and the size of the subpopulations (s). Increase in the values of these

parameters will increase Sf-GDT’s processing time. As the values of either N

or s increases CT for Sf-GDT to create designs increases.

4.4. Parameter Tuning650

For the experiments in this study, α was set equal to 10 except for the

motorbike model for which α = 20 was utilized because of the high number of

design parameter (n = 42). We recommend the users to set an initial value of

α equal to n/2, which can be altered later depending on the users’ intention to

create complete or semi-non-collapsing designs.655

It is noteworthy that the value of U2(B) can be high for the problems with

discrete parameters compared to the same problem with discrete parameters.

31

Instead of dividing the discrete parameter(s) into N intervals, we divide these

parameters divided into t intervals, where t is the number of style profiles. If t

is less than N , then, the number of collapsing designs will increase, which will660

result in a high value of U2(B). In order to have a low number of collapsing

designs, t should be greater than or equal to N (t ≥ N). However, t < N does

not affect the space-filling quality of the designs.

The size of the subpopulations (s) also plays an important role in the gener-

ation of space-filling designs. High values of s create diverse initial solutions for665

Sf-GDT, which facilitates its search for the global optimum solutions. In con-

trast, the application of Sf-GDT with the high values of s can result in a higher

CT. We recommend setting s to a value higher than n. For the experiments in

the current study, s was set equal to 15 except for the designs in Figure 5 (b).

For that s = 23 was selected.670

4.5. Convergence of Sf-GDT

The quality of any optimization technique mainly depends on its ability to

provide an optimum solution or a solution close to the global optimum. The

global optimum is a point in search space where the best solution(s) exists.

As the Sf-GDT is based on the optimization technique, therefore, in order to675

verify the convergence ability to a global optimum its performance is observed

against the number of iterations i it performs. The convergence ability of Sf-

GDT is analyzed on different test models shown in Figure 5. Sf-GDT stops the

optimization process when there is no improvement in the cost function U(B) for

some consecutive iterations (i); at this point, the designs being created reach the680

optimal position, and the algorithm is considered to converge to its optimality.

Figure 9 shows the plot for U(B) versus i for the designs in Figure 5, 6 and 7.

A large number of iterations were performed for these models to analyze the

convergence of Sf-GDT. No improvements were observed in U(B) after some

consecutive iterations. For the designs in Figure 6 (b), 7 (b) and 7 (c) there685

was no improvement occurred after approximately 300th iteration and for the

designs in Figure 5 (a), (b) and 7 (d) Sf-GDT converged at 500, 1200 and 1500

32

number of iterations, respectively. The convergence rate of Sf-GDT depends on

the number of designs (N), the dimensionality of the design space (n), and the

total number of geometric constraints.690

Figure 9: Plot showing the cost values versus number of A-GDT iterations for the models in

Figure 5 (a), (b), Figure 6, 7 (b), (c) and (d)

4.6. Comparison with Existing Works

We compared the performance of Sf-GDT with the existing state-of-the-art

techniques in the literature that have been proposed for generative and space-

filling designs. First, we compared the performance of Sf-GDT with Krish’s

GDT [12]. Figure 10 (a) and (b) shows the design points representing designs695

generated by Krish’s technique for the speaker model in Figure 4 (a) in a 2D

design space. The designs in the 2D space give a better perspective to readers

on how designs generated by [12] are spread in the design space. As mentioned

in section 2, Krish utilized a threshold value, ranging from 0.0 to 1.0, to create

dissimilar designs. The designs in Figure 10 (a) and (b) are created with thresh-700

old values of 0.5 and 1.0, respectively. It can be seen from the Figure 10 (a) and

(b) that the design points (N = 30) are not uniformly distributed in the design

space especially when the threshold value is 1.0. The designs in Figure 10 (a)

and (b) have space-filling of 7149.9 and 44015, respectively. In case of threshold

equal to 1.0 designs are clustered at the two corners of the design space and705

approximately more than 90% of space is left empty. In this case, designs are

33

also generated by Sf-GDT, which are shown in Figure 10 (c). This gives a com-

parative view to the readers on how Sf-GDT produces design alternatives for

the same CAD model in 2D space. Note that the designs generated by Sf-GDT

had space-filling of 2492.29, which is less than the designs generated by [12].710

Figure 10: Design points created in 2D space by utilizing the technique of [12] with threshold

values of (a) 0.5 and (b) 1.0. (c) Design points created using Sf-GDT. (d) Design alternative

for speaker model created by utilizing the technique of [12].

4.6.1. User Study

Figure 10 (d) shows the designs created by Krish’s technique [12] for the

speaker model in Figure 4 (a) within a 22-dimensional design space, which were

created to visually compare the results of Krish’s technique and Sf-GDT. For

this visual comparison, a user study was conducted to obtain the human per-715

ception about the quality of designs generated from the two techniques. This

user study included 12 participants to compare the designs in Figure 10 (d) and

5 (a), which are obtained using Krish’s technique and Sf-GDT, respectively. Six

participants had more than two years of design experience in product devel-

opment, and others were selected from the Amazon Mechanical Turk platform.720

The participants were asked to rate each design in Figure 10 (d) and 5 (a) based

on a Likert scale, with anchors ranging from ”very poor” to ”very good” (1: very

poor, 2: very good, 3: fair, 4: good, 5: very good). The participants involved in

the study had not any information about the techniques used to generate these

designs. This was done to minimize the possibility of a bias decision during725

design rating. In this study different set of rules was applied to the participants

to ensure the reliability of the obtained results. The designs in Figure 10 (d)

and 5 (a) were shuffled randomly and presented in two surveys, each with 25

34

designs. There was a repetition of five designs in each survey. For any partici-

pant, if there was no consistency in the ratings given to the designs and survey730

was completed in less than five minutes, then that participant’s results were

excluded from the study. Note that the design space utilized for the generation

of alternatives in 10 (d) and 5 (a) was same.

Table 3 summarizes the user study’s results. From the table, it can be ob-

served that the average rating given by the participants to the designs generated735

with Krish’s technique is lower than those obtained using Sf-GDT. Ten out of

12 participants preferred the designs generated using Sf-GDT, including the

experience designers.

Table 3: Results of the user study

Average Grade

User 1 2 3 4 5 6 7 8 9 10 11 12

Sf-GDT 4.55 2.70 3.60 3.25 3.50 3.75 4.00 4.15 4.15 3.10 4.10 3.90

Krish [12] 2.10 3.20 3.65 2.25 3.10 2.45 2.95 4.10 3.75 2.55 2.80 2.75

Space-filling σ µ Skewness p-value

Sf-GDT 46.430 0.630 3.020 0.12
0.00718

Krish [12] 55.039 0.520 3.730 -0.40

A t-test was utilized to statistically examine the results of the user study.

The data obtained from the user study were normally distributed, as the skew-740

ness value was close to zero and their mean values were approximately equal.

The null hypothesis states that there is no significant difference between the rat-

ings given to the designs generated using Krish’s technique and Sf-GDT. The

p-value obtained from the t-test is less than the significance level of 0.05, this

indicates a stronger evidence against the null hypothesis.745

From the results of the user study and statistical test, it can also be con-

cluded that Sf-GDT outperforms the Krish’s technique in term of creating ap-

pealing design alternatives for the users.

35

5. Usage of Sf-GDT with existing CAD software

Sf-GDT can be easily utilized with existing CAD software having parametric750

modeling functionality and can create a design table in the form of a spreadsheet

such as Microsoft XL. CAD software such as SolidWorks has the ability to create

and read external XL based design tables. A user interface called DesignN is

developed to integrate Sf-GDT with such CAD software, which is shown in

Figure 11. The design parameters of a model can be stored in the design table755

using build-in CAD functions. These parameter values can be given as input to

DesignN to create design alternatives and their parameter values can be stored

in a CSV file. These parameter values can be transferred to the design table

that can then read by the CAD software to create designs. Data in the design

table can also be structured in other formats required by the analytical software.760

Figure 11: Window-based interface to integrate Sf-GDT with SoildWorks.

Figure 11 demonstrates the steps involved in the creation of designs for the

wine glass model in SolidWorks via the window-based interface of DesignN. The

wine glass model is first sketched and the design parameters are defined on this

sketch. 3D surface model of the wine glass is created using Swept Surface fea-

ture of SolidWorks. Initial design parameter values are inputted to DesignN765

and designs are created in 50% autonomously formed design space. The param-

eter values of the generated designs are stored in the CSV file and are copied

to the design table. SolidWorks read these parameter values and generate de-

signs that are presented to the user within a Design Tree. Through this tree,

each design can be visually inspected by the user for the final selection. A770

36

web-based interface of DesignN is also developed, which can be accessed from

https://geometric.brainlabsgp.com and a tutorial to use DesignN with Solid-

Works can be found at https://youtu.be/QDcW2FPvq-Q.

6. Conclusions and Future Works

This paper proposes a state-of-the-art generative design technique for the775

automatic search and generation of design variations for a given CAD model

based on its design specification. From these design alternatives, users can

select a design(s) based on their aesthetic preference. Sf-GDT has the ability

to generate designs in constrained and unconstrained design spaces. To obtain

distinct and uniformly distributed designs in the design space, designs with780

space-filling and non-collapsing criteria are favored during the search process.

To generate N optimal designs based on these criteria, Jaya algorithm is utilized

and modified. Sf-GDT, first, randomly generate a subpopulation of solutions

and improves these solutions using search approach of Jaya algorithm. Finally,

Sf-GDT is compared with other existing techniques in the literature. The results785

of this paper show that Sf-GDT outperforms these techniques.

As a future work, we would like to integrate the users’ preference and aes-

thetic judgment into Sf-GDT so that they can create designs based on their

preference and aesthetic perception. The proposed technique will be extended

for the generative creation of complex 3D character models. Finally, the perfor-790

mance of the different optimization techniques will be studied for this specific

problem.

References

[1] Y.-C. Liu, A. Chakrabarti, T. Bligh, Towards an idealapproach for concept

generation, Design Studies 24 (4) (2003) 341–355.795

[2] J. Wang, Improved engineering design concept selection using fuzzy sets,

International Journal of Computer Integrated Manufacturing 15 (1) (2002)

18–27.

37

[3] G. Pahl, W. Beitz, Engineering design: a systematic approach, Springer

Science & Business Media, 2013.800

[4] R. H. Kazi, T. Grossman, H. Cheong, A. Hashemi, G. Fitzmaurice, Dreams-

ketch: Early stage 3d design explorations with sketching and generative

design, in: Proceedings of the 30th Annual ACM Symposium on User In-

terface Software and Technology, ACM, 2017, pp. 401–414.

[5] N. Umetani, T. Igarashi, N. J. Mitra, Guided exploration of physically valid805

shapes for furniture design., ACM Trans. Graph. 31 (4) (2012) 86–1.

[6] K. Shea, R. Aish, M. Gourtovaia, Towards integrated performance-driven

generative design tools, Automation in Construction 14 (2) (2005) 253–264.

[7] A. Nana, J.-C. Cuillière, V. Francois, Towards adaptive topology optimiza-

tion, Advances in Engineering Software 100 (2016) 290–307.810

[8] M. Turrin, P. von Buelow, R. Stouffs, Design explorations of performance

driven geometry in architectural design using parametric modeling and

genetic algorithms, Advanced Engineering Informatics 25 (4) (2011) 656–

675.

[9] J. J. L. Kitchley, A. Srivathsan, Generative methods and the design process:815

A design tool for conceptual settlement planning, Applied Soft Computing

14 (2014) 634–652.

[10] L. Caldas, Generation of energy-efficient architecture solutions applying

gene arch: An evolution-based generative design system, Advanced Engi-

neering Informatics 22 (1) (2008) 59–70.820

[11] V. Granadeiro, J. P. Duarte, J. R. Correia, V. M. Leal, Building envelope

shape design in early stages of the design process: Integrating architec-

tural design systems and energy simulation, Automation in Construction

32 (2013) 196–209.

38

[12] S. Krish, A practical generative design method, Computer-Aided Design825

43 (1) (2011) 88–100.

[13] Á. E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolu-

tionary algorithms, IEEE Transactions on evolutionary computation 3 (2)

(1999) 124–141.

[14] R. V. Rao, G. Waghmare, A new optimization algorithm for solving com-830

plex constrained design optimization problems, Engineering Optimization

49 (1) (2017) 60–83.

[15] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiob-

jective genetic algorithm: Nsga-ii, Ocean Engineering 136 (2017) 243–259.

[16] L. Wang, C. Huang, A novel elite opposition-based jaya algorithm for pa-835

rameter estimation of photovoltaic cell models, Optik-International Journal

for Light and Electron Optics 155 (2018) 351–356.

[17] P. D. Michailidis, An efficient multi-core implementation of the jaya opti-

misation algorithm, International Journal of Parallel, Emergent and Dis-

tributed Systems (2017) 1–33.840

[18] R. V. Rao, A. Saroj, A self-adaptive multi-population based jaya algo-

rithm for engineering optimization, Swarm and Evolutionary computation

37 (2017) 1–26.

[19] R. V. Rao, D. P. Rai, J. Balic, Multi-objective optimization of abrasive

waterjet machining process using jaya algorithm and promethee method,845

Journal of Intelligent Manufacturing (2017) 1–27.

[20] R. R. Kurada, K. P. Kanadam, Automatic unsupervised data classification

using jaya evolutionary algorithm, Adv. Comput. Intell.: Int. J 3 (2016)

35–42.

[21] S. P. Singh, T. Prakash, V. Singh, M. G. Babu, Analytic hierarchy process850

based automatic generation control of multi-area interconnected power sys-

39

tem using jaya algorithm, Engineering Applications of Artificial Intelligence

60 (2017) 35–44.

[22] R. Buddala, S. S. Mahapatra, Improved teaching–learning-based and jaya

optimization algorithms for solving flexible flow shop scheduling problems,855

Journal of Industrial Engineering International (2017) 1–16.

[23] S. Degertekin, L. Lamberti, I. Ugur, Sizing, layout and topology design

optimization of truss structures using the jaya algorithm, Applied Soft

Computing.

[24] E. Gunpinar, S. Gunpinar, A shape sampling technique via particle tracing860

for cad models, Graphical Models 96 (2018) 11–29.

[25] S. Khan, E. Gunpinar, Sampling cad models via an extended teaching–

learning-based optimization technique, Computer-Aided Design 100 (2018)

52–67.

[26] A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan,865

P. Prusinkiewicz, Modeling and visualization of leaf venation patterns,

ACM Transactions on Graphics (TOG) 24 (3) (2005) 702–711.

[27] M. Ruiz-Montiel, J. Boned, J. Gavilanes, E. Jiménez, L. Mandow, J.-L.

PéRez-De-La-Cruz, Design with shape grammars and reinforcement learn-

ing, Advanced Engineering Informatics 27 (2) (2013) 230–245.870

[28] E. Kalogerakis, S. Chaudhuri, D. Koller, V. Koltun, A probabilistic model

for component-based shape synthesis, ACM Transactions on Graphics

(TOG) 31 (4) (2012) 55.

[29] P. Prusinkiewicz, M. Shirmohammadi, F. Samavati, L-systems in geomet-

ric modeling, International Journal of Foundations of Computer Science875

23 (01) (2012) 133–146.

[30] M. C. A. H. H. CHAU, A. MCKAY, A. DE PENNINGTON, Combining

evolutionary algorithms and shape grammars to generate branded product

40

design, in: Design Computing and Cognition06, Springer, 2006, pp. 521–

539.880

[31] J. Cui, M.-X. Tang, Integrating shape grammars into a generative system

for zhuang ethnic embroidery design exploration, Computer-Aided Design

45 (3) (2013) 591–604.

[32] S. C. Chase, Generative design tools for novice designers: Issues for selec-

tion, Automation in Construction 14 (6) (2005) 689–698.885

[33] G. Kelly, H. McCabe, Interactive generation of cities for real-time applica-

tions, in: ACM SIGGRAPH 2006 research posters, ACM, 2006, p. 44.

[34] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch,

P. Prusinkiewicz, Self-organizing tree models for image synthesis, ACM

Transactions on Graphics (TOG) 28 (3) (2009) 58.890

[35] F. Fuerle, J. Sienz, Formulation of the audze–eglais uniform latin hypercube

design of experiments for constrained design spaces, Advances in Engineer-

ing Software 42 (9) (2011) 680–689.

[36] D. Draguljić, T. J. Santner, A. M. Dean, Noncollapsing space-filling designs

for bounded nonrectangular regions, Technometrics 54 (2) (2012) 169–178.895

[37] M. W. Trosset, Approximate maximin distance designs, in: Proceedings of

the Section on Physical and Engineering Sciences, 1999, pp. 223–227.

[38] E. Stinstra, D. den Hertog, P. Stehouwer, A. Vestjens, Constrained max-

imin designs for computer experiments, Technometrics 45 (4) (2003) 340–

346.900

[39] P. Audze, V. Eglais, New approach for planning out of experiments, Prob-

lems of dynamics and strengths 35 (1977) 104–107.

[40] V. R. Joseph, E. Gul, Maximum projection designs for computer experi-

ments, Biometrika 102 (2) (2015) 371–380.

41

[41] J. D. Camba, M. Contero, P. Company, Parametric cad modeling: An anal-905

ysis of strategies for design reusability, Computer-Aided Design 74 (2016)

18–31.

42

View publication statsView publication stats

https://www.researchgate.net/publication/328428520

	Introduction
	Related works
	Jaya Algorithm
	Generative Design
	Space-filling Design

	Proposed Technique
	The Sf-GDT
	Weighted Grid Search Technique
	Sf-GDT for Discrete Parameters
	Generation of Design from Constrained Spaces
	Design Parameterization
	Formulation of design space

	Results and Discussion
	Implementation of the Sf-GDT
	Test Models
	Sf-GDT With Discrete Parameters
	Sf-GDT in Constrained Design Spaces
	Performance of Sf-GDT in Different Design Space Formulations

	Computational Time (CT)
	Parameter Tuning
	Convergence of Sf-GDT
	Comparison with Existing Works
	User Study

	Usage of Sf-GDT with existing CAD software
	Conclusions and Future Works

