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Abstract 9 

Due to conservative design models and safe construction practices, infrastructure usually 10 
has unknown amounts of reserve capacity that exceed code requirements. Quantification 11 
of this reserve capacity has the potential to lead to better asset-management decisions by 12 
avoiding unnecessary replacement and by lowering maintenance expenses. However, such 13 
quantification is challenging due to systematic uncertainties that are present in typical 14 
structural models. Field measurements, collected during load tests, combined with good 15 
structural-identification methodologies may improve the accuracy of model predictions. In 16 
most structural-identification tasks, engineers usually select and place sensors based on 17 
experience and high signal-to-noise estimations. Since the success of structural 18 
identification depends on the measurement system, research into measurement system 19 
design has been carried out over several decades. Despite the multi-criteria nature of the 20 
problem, most researchers have focused only on the information gained by the 21 
measurement system. This study presents a framework to evaluate and rank possible 22 
measurement-system designs based on a tiered multi-criteria strategy. Performance criteria 23 
for the design of measurement systems include monitoring costs, information gain, ability 24 
to detect outliers and impact of loss of information in case of sensor failure. Through 25 
including conflicting criteria, such as cost of monitoring and information gain, the optimal 26 
measuring system becomes a Pareto-like choice that ultimately depends on asset-manager 27 
preference hierarchies. Several potential preference scenarios are generated and results are 28 
compared using a full-scale test study, the Exeter Bascule Bridge. The framework 29 
successfully supports an informed design of measurement systems by providing an 30 
extensive set of alternatives, including the best solution defined probabilistically and for 31 
specific conditions when other near-optimal solutions might be preferred. 32 
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1 Introduction 35 

Much civil infrastructure was built between the end of the 1800s and 1970, and therefore, many 36 
elements have reached the end of their theoretical lifetime [1]. Due to the scarcity of economic 37 
and material resources, evaluating the replacement of infrastructure is a critical challenge, 38 
requiring good asset-management decision making. As infrastructure is designed and built 39 
using justifiably conservative behavior models (usually a finite element model), there are often 40 
significant levels of reserve capacity in the as-built state [2]. Knowledge of true structural 41 
behavior ensures more informed asset management for tasks such as maintenance, replacement 42 
and intervention design. 43 
Continuous monitoring and periodic bridge load tests have been widely used in the previous 44 
decades to understand existing bridge behavior [3]. Since updated models need to be accurate, 45 
the interpretation of in-situ measurements is a critical task. However, the structural-parameter 46 
identification is a typical inverse problem where effects (measurements) are measured instead 47 
of causes (inputs of behavior models). The difficulties associated with such challenges have 48 
been recognized by many researchers, for example [4], [5]. 49 
Once field measurements are collected, a model-based structural-identification methodology 50 
is used to improve the knowledge of the true behavior of a structure. Many approaches for data 51 
interpretation are possible. For example, residual minimization [6] and Bayesian updating [7], 52 
[8] have been proposed. However, Pasquier et al. [9] observed that for a range of applications 53 
these model calibration methodologies, applied using traditional assumptions of independent 54 
zero-mean Gaussian error distribution forms, are often not applicable to civil infrastructure. 55 
Large systematic uncertainties present in behavior models often result in a biased identification 56 
of model parameters. Also, the magnitude of the bias modifies the correlation between 57 
measurements. To overcome such challenges, a multi-model approach has been proposed [10], 58 
[11], where outcomes are a set of candidate models that explain the measurements. 59 
A probabilistic extension of the multi-model approach, called error-domain model falsification 60 
(EDMF) was presented [12]. In a first stage, the behavior model of the structure is built based 61 
on prior engineering knowledge. Once model parameters to be identified are selected, a 62 
population of model instances is generated, where a model instance is unique set of model 63 
parameter values. Thresholds bounds, representing the maximum explainable differences 64 
between model predictions and measurements, are computed probabilistically from non-65 
parametric model uncertainties and measurement uncertainties. Eventually, candidate models 66 
that provide plausible explanations of field measurements are identified. This methodology has 67 
been successfully applied to tens of full-scale bridges in order to evaluate their reserve capacity, 68 
for example [13], [14]. Since outcomes of structural-identification methodologies depend on 69 
the choice of the sensor configuration, research into optimal-sensor-placement strategies is 70 
growing. The selection of good sensor locations has been proposed according to its information 71 
content, such as: maximizing the determinant of Fisher information matrix [15], [16], 72 
minimizing the information entropy in posterior model-parameter distribution [17], [18] and 73 
maximizing information entropy in multiple-model predictions [19], [20]. As the question of 74 
sensor placement usually involves large discrete sets of possible sensor locations, an 75 
optimization algorithm is required to find good solutions. Most authors have proposed reducing 76 
the computational effort using greedy optimization algorithms [21]. A hierarchical algorithm 77 
for sensor placement using the concept of joint entropy was introduced by [22] and was 78 
extended by [23] for structural identification to account for mutual information between sensor 79 
types and load tests. Although an optimal sensor configuration should involve multiple criteria, 80 
most studies have focused only on information-gain criteria. Additional features should also 81 
be taken into account in order to define good sensor configurations in practical situations. This 82 
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includes information effectiveness, costs, installation constraints and robustness of information 83 
gain to hazards that may deactivate sensors. 84 
Some studies have recognized tradeoffs between two sensor-placement criteria. The risk of 85 
over-instrumentation was investigated by comparing the cost of monitoring with information 86 
gain [24], [25]. A multi-criteria-decision-making approach to include several information-gain 87 
metrics and the cost of monitoring was presented by [26]. An adaptive sensor-placement 88 
methodology selecting first sensor locations according to their information content and giving 89 
freedom to engineers to place remaining sensors according to installation constraints was 90 
presented by [27]. Although [28] used the expected performance of a sensor configuration to 91 
detect outliers in sparse static measurements, this study did not provide insights for optimal 92 
sensor placement. A sensor configuration which is robust in terms of information gain to sensor 93 
failure for pipe-leaking detection using a model-free methodology was provided by [29].  94 
While some studies have investigated two attributes for optimal sensor placement, no work has 95 
involved a more comprehensive investigation of multiple characteristics of a sensor 96 
configuration. In the presence of multiple conflicting criteria that create complex tradeoffs, 97 
finding good solutions involves reference to asset-manager preferences. The potential of that 98 
Multiple Criteria Decision Analysis (MCDA) methods in civil engineering was shown by [30], 99 
[31].There are no studies that have adapted MCDA to sensor placement for structural 100 
identification. 101 
MCDA supports measurement-system design since it is an analysis that helps decision makers 102 
evaluate alternatives according to several and sometimes conflicting criteria [32]. Advantages 103 
of MCDA are that it aids transparent selection of important criteria, the inclusion of preferences 104 
of multiple stakeholders and the provision of a comprehensive evaluation of the alternatives in 105 
the form of a score, ranking or classification [33]. Several MCDA methods were developed 106 
over recent decades, including outranking strategies that are used by PROMETHEE [34], 107 
ELECTRE [35] and multi-attribute utility theory (MAUT) [36], [37]. Stochastic Multi-criteria 108 
Acceptability Analysis (SMAA) [38] accommodates possible ambiguities and uncertainties in 109 
model input and it provides a probabilistic evaluation (e.g., ranking, scoring, classification) of 110 
alternatives. Due to the increasing need for assessing robustness and credibility of decision 111 
recommendations, several approaches have been proposed to integrate SMAA with classical 112 
MCDA methods, including PROMETHEE [39], ELECTRE [40], Choquet integral [41] and 113 
stochastic ordinal regression [42]. 114 
This paper proposes a decision-support framework for measurement-system design. There are 115 
two principal objectives. First, a set of performance criteria for measurement system for 116 
structural identification is developed using a set of features that defines the optimal 117 
measurement system. Then, to provide an information-rich guidance in terms of recommended 118 
measurement system according to asset-manager preferences, a tiered strategy is proposed. The 119 
applicability of the framework is demonstrated using a full-scale test study and using several 120 
scenarios of possible asset-manager preferences. 121 
The study is structured as follow. First, background methodologies including the structural-122 
identification framework and the information-gain assessment of measurement systems are 123 
presented in Section 2. Then, the methodology to support decision in terms of recommended 124 
measurement-system design for structural identification is shown in Section 3. Section 4 125 
presents the full-scale case study and this is followed by results in terms of recommended 126 
number of sensors and number of load tests according to asset-manager preferences. Finally, 127 
results are discussed and compared with results from more traditional approaches for 128 
measurement-system design. Conclusions and recommendations for future research close the 129 
discussion.  130 
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2 Background 131 

In this section, background methodologies that are necessary to understand this study are 132 
presented. First, the structural-identification methodology is presented in Section 2.1. Then, 133 
the hierarchical algorithm, based on the joint-entropy objective function for sensor placement, 134 
is described in Section 2.2.  135 

2.1  Structural identification – Error-domain model falsification 136 

Initially proposed in probabilistic terms by [12], error-domain model falsification (EDMF) is 137 
an easy-to-use structural-identification methodology. The method uses information provided 138 
by field measurements to identify plausible models among an initial set of possible model 139 
instances.  140 
First, an initial population of model instance	𝛩# is generated by sampling indeterminate 141 
parameters of behavior models θk=[θ1,θ2,…,θn]T within range, which are defined using prior 142 
knowledge on the structure. Then, for each measurement location, 𝑖 ∈ 	 1, … , 𝑛* , model-143 
instance predictions of the structural response are compared with field measurements. Since 144 
model-prediction uncertainties 𝑈𝑖,𝑔	and measurement uncertainties 𝑈-,* are unavoidable, the 145 
model prediction 𝑔# 𝑖, Θ#  and the field measurement 𝑦- at a sensor location i, are linked to 146 
the true behavior Ri using the following equation: 147 

  𝑔# 𝑖, Θ# 	+ 	𝑈-,12 = 	𝑅- = 	 𝑦- + 	𝑈-,*	∀𝑖 ∈ 	 1, … , 𝑛* .   (1) 148 

Following [11], modeling and measurement uncertainties (𝑈𝑖,𝑔	and 𝑈𝑖,𝑦) are combined in a 149 
unique distribution Ui,c and Equation (1) can be rewritten in Equation (2). The difference 150 
between the model prediction and the field measurement at a sensor location i is called the 151 
residual ri.  152 

 𝑔# 𝑖, Θ# − 𝑦- = 	𝑈-,7 = 	 𝑟-.    (2) 153 

EDMF selects plausible behavior model instances by falsifying those for which residuals 154 
exceed threshold bounds, according to a confidence level fixed at 95% of the combined 155 
uncertainty. Model instances for which residuals do not exceed threshold bounds at each sensor 156 
location are included in the candidate model set (CMS). As the available information is usually 157 
not sufficiently accurate to justify any further discrimination, model instances belonging to the 158 
CMS are considered to be equivalently likely [43].  159 
If all initial model instances are falsified, the entire model class is falsified. The model class is 160 
a parameterized behavior model, where model-parameter values need to be assign in model 161 
instances.  This means that no model instance is compatible with observations given the current 162 
estimation of model and measurement uncertainties. This is a sign of possible incorrect 163 
assumptions in the model-class definition and uncertainty estimation. Complete falsification 164 
leading to subsequent re-evaluation of assumptions one of the main advantages of EDMF 165 
compared with other structural-identification methodologies, such as residual minimization or 166 
Bayesian updating [44].  167 

2.2 Sensor-placement algorithm – Hierarchical algorithm 168 

Prior to measuring a structure, a sensor-placement strategy has the potential to identify optimal 169 
sensor locations when a limited knowledge of model-parameter values is available. Once the 170 
numerical model is built and the model class is selected, prediction data from a population of 171 
model instances is a typical start to evaluate information gained by sensor locations.  172 
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The information entropy, from information theory, was introduced as a sensor-placement 173 
objective function for system identification [18]. At each sensor location i, the range of 174 
prediction is divided in intervals based on the combined uncertainty Ui,c (Equation (2)). The 175 
probability that model instance mi,j falls inside the jth interval in 𝑁:,- intervals is equal to: 176 
𝑃 𝑦-,< = 𝑚-,< 𝑚-,<. The information entropy 𝐻 𝑦- 	is evaluated for a location i as: 177 

 𝐻 𝑦- = − 𝑃 𝑦-,< logB 𝑃 𝑦-,< .
DE,F
<GH       (3) 178 

To consider the redundancy of information gain between sensor locations, a new sensor-179 
placement objective function called joint entropy was introduced by [22]. The joint entropy 180 
assesses the information entropy between sets of predictions taking into account the mutual 181 
information between them. For a set of two sensors, it is defined as: 182 
  𝐻 𝑦-,-IH = − 𝑃 𝑦-,<, 𝑦-IH,# logB 𝑃 𝑦-,<, 𝑦-IH,#

DE,F
<GH

DE,FJK
#GH    (4) 183 

where 𝑘 ∈ 1,… ,𝑁:,-IH  and NI,i+1 is the maximum number of prediction intervals at the i+1 184 
location and 𝑖 + 1 ∈ 1,… , 𝑛M  with the number of potential sensor locations ns. The joint 185 
entropy is less than or equal to the sum of the individual information entropies of the sets of 186 
predictions. Equation (5) presents the joint entropy of two sensors, where I is the mutual 187 
information between sensors i and i+1. 188 
   𝐻 𝑦-,-IH = 𝐻 𝑦- + 𝐻 𝑦-IH − 𝐼 𝑦-,-IH      (5) 189 
The hierarchical algorithm [22] is a sequential algorithm (greedy search) and organizes model 190 
instances in a tree structure. At each step of the calculation, the hierarchical algorithm selects 191 
the location with the largest joint-entropy value. It was shown to outperform traditional 192 
sequential algorithms with forward or backward strategies. In addition, the quality of structural 193 
identification is also affected by the excitation (i.e. static load test). A modification of the 194 
hierarchical algorithm was proposed in [23] to consider mutual information between load tests 195 
based on joint entropy. Equation (6) describes the joint-entropy evaluation for a sensor location 196 
i with two load tests, where 𝑗 ∈ 1,… , NQ,RS  and 𝑁:,-T is the maximum number of intervals at 197 
the location i associated with a load test l, 𝑘 ∈ 1,… , NQ,RSJK  and 𝑁:,-TJK is the maximum number 198 
of intervals at the location i associated with another load test 𝑙 + 1 ∈ 1,… , nWX  with the 199 
number of potential load tests 𝑛YZ. The hierarchical algorithm is able to evaluate information 200 
gained by a measurement system, composed of a sensor configuration and a set of load tests.  201 
  𝐻 𝑦-T,-TJK = − 𝑃 𝑦-T,<, 𝑦-TJK,# logB 𝑃 𝑦-T,<, 𝑦-TJK,#

DE,-T
<GH

DE,FTJK
#	GH    (6) 202 

3 Framework for multi-criteria analysis for measurement-system 203 
recommendation  204 

In order to assess accurately the reserve capacity of a structure, the estimation of various 205 
unknown physical and geometrical properties and boundary conditions is required. The aim of 206 
field measurements is to enhance knowledge of uncertain model parameters and then improve 207 
accuracy of behavior-model predictions. Choices in terms of sensor types, sensor locations and 208 
load tests, constituting altogether a measurement system, are critical to do an effective 209 
structural-identification assessment. 210 
The design of the appropriate measurement system is challenging due to its multi-criteria 211 
nature and large amount of possible sensor configurations. Although the second problem was 212 
acknowledged in the literature and often solved using a sequential search [21], most studies 213 
focus only on the information-gain criterion of the measurement system. In the present study, 214 
a framework is proposed to consider a multi-criteria approach for measurement-system design 215 
without compromising the effective computation developed in previous studies. The 216 
framework for measurement-system design is built upon three phases (Figure 1). First, the 217 
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relevant possible measurement-system options are identified and the set of criteria to evaluate 218 
their performance is chosen (Phase 1). Then, an iterative procedure to select the relevant 219 
MCDA method is conducted (Phase 2). Eventually, a stepwise process to recommend a 220 
measurement system is presented (Phase 3). Each phase will be described in detail in Sections 221 
3.1 to 3.3. 222 

 223 
Figure 1: Structure of the framework for multi-criteria measurement system design. Phase 1: 224 
task definition; Phase 2: MCDA method selection; Phase 3: measurement-system 225 
recommendation. 226 

3.1 Phase 1: Task definition 227 

This section presents the first phase of the framework, which involves defining the set of 228 
options for the MCDA. This phase is divided into three parts. First, monitoring constraints in 229 
terms of available sensor types, possible sensor locations and load tests are defined in order to 230 
generate inputs of possible measurement systems. Then, the information-gain is assessed with 231 
respect to number of sensors to reduce the number of possible options to consider in the 232 
MCDA. Eventually, other performance criteria for the MCDA are defined and each remaining 233 
option is evaluated for each criterion independently.  234 

3.1.1 Initial prediction sets for measurement-system design  235 

In order to perform a model-based measurement-system-design strategy, several steps are 236 
required to generate initial sets of predictions. First, a numerical behavior model, such as a 237 
finite element model of a bridge, is built to obtain quantitative predictions of measurable 238 
variables. As any numerical model requires geometrical and mathematical simplifications, a 239 
significant amount of non-parametric uncertainty is involved. Non-parametric uncertainties, 240 
influencing the evaluation of measurement data, must be estimated quantitatively. Model 241 
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parameters, which have the highest impact on model predictions, are selected through 242 
sensitivity analyses. Then, available sensors and their respective possible locations are 243 
identified along with possible load tests. 244 
Once these assumptions are chosen, multiple model instances are generated using a sampling 245 
technique to obtain a discrete population of model-parameter values within plausible ranges. 246 
For each set of load tests, model-instance predictions at each possible sensor locations are 247 
computed, constituting the prediction sets used in the information-gain assessment (Section 248 
3.1.2). 249 

3.1.2 Information-gain assessment and option selection 250 

Once prediction sets are generated (Section 3.1.1), evaluations of measurement systems in 251 
terms of performance criteria can be completed. However, the number of measurement-system 252 
combinations has a computational complexity O(2n), where n is the number of possible sensor 253 
locations [22]. Additionally, if several performance metrics are evaluated for each 254 
measurement system, the computational time for each iteration may increase significantly 255 
compared to a single objective-function evaluation. Therefore, it was chosen to reduce the set 256 
of measurement-system options using a single objective function based on information-gain 257 
assessment. For each set of load tests, the hierarchical algorithm described in Section 2.2 is 258 
used to find a near-optimal sensor configurations with respect to number of sensors. The aim 259 
is to reduce the set of possible measurement systems to options providing a significant amount 260 
of information. As the sensor-placement algorithm uses a greedy approach for sensor 261 
placement, the complexity is O(n2) with respect to the number of possible sensor locations, 262 
reducing considerably the computational time of MCDA [22]. If multiple sets of load tests 263 
exist, the hierarchical algorithm must be performed for each set independently. For each set of 264 
load tests, joint-entropy values as function of the number of sensor are shown as in Figure 2, 265 
where results of four sets of load tests are presented. Each mark corresponds to a specific 266 
measurement system that could be evaluated in the MCDA (Phase 3, Figure 1).  267 

 268 
Figure 2 Information-gain assessment as function of number of sensors for load-test 269 

configurations using the hierarchical algorithm (Section 2.2). 270 
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gain of information is expected. Secondly, the measurement system should be cost effective to 274 
avoid expenses that are not justified by the information gained. Then, the sensor installation 275 
should be taken into account as it may disturb the traffic, generate additional costs and increase 276 
the risk of sensor failure. Eventually, assessing a full-scale structure in its environment requires 277 
consideration of the possibility of sensor failures. Typically, 20% of sensors are expected to 278 
fail and to not provide useful measurements [45]. The robustness to test hazards of the 279 
measurement system has not been treated in the literature on measurement-system design. In 280 
the present study, two new performance criteria to include the robustness to test hazards are 281 
introduced: the ability of the measurement system to identify outlier measurements and the loss 282 
of information gain in case of failure of the best sensor. Therefore, five performance criteria 283 
will be used and their characteristics are presented in Table 1. Measurement-system-design 284 
criteria are presented in sub-sections below.  285 

Table 1 Characteristics of the measurement system with respect to performance criterion. 286 

Performance 
criterion 

Characteristic of the measurement system 

Informative Practical 
installation 

Robust to 
test hazards 

Cost  
effective  

Information gain ✓    
Costs of monitoring    ✓ 

Ability to detect outliers    ✓  
Loss of information in 
case of sensor failure   ✓  

Installation constraints  ✓   
 287 
3.1.3.1 Information gain 288 
In order to evaluate the informative characteristic of a measurement system, the information 289 
gain is assessed using the hierarchical algorithm (Section 2.2). The joint-entropy metric 290 
evaluates the ability of a measurement system to discriminate between candidate and falsified 291 
model instances. The joint-entropy value is bounded between [0;𝑙𝑜𝑔B 𝑁 ], where N is the 292 
number of model instances involved. Typically, predictions of 1,000 model instances are 293 
generated using a FEM model and thus the joint entropy value is bounded between 0 and 10. 294 
A low joint-entropy value means that model instances could not be easily discriminated using 295 
the measurement system and the information gain is poor. Therefore, the joint-entropy metric 296 
must be maximized in order to have an informative measurement system.  297 
3.1.3.2 Costs of monitoring 298 
In this performance criterion, the cost of the monitoring system is assessed. The total cost of 299 
monitoring is composed of all costs related to the bridge load testing such as instruments and 300 
truck rentals. In order to have a cost-effective measurement system, the cost of monitoring 301 
must be minimized. 302 
3.1.3.3 Ability to detect outliers 303 
In order to assess the robustness of a sensor configuration to test hazards, two new metrics are 304 
proposed: the ability to detect the presence of an outlier in measurements and the loss of 305 
information in case of sensor failure (Section 3.1.3.4). A methodology to detect the presence 306 
of outliers in EDMF framework was proposed by [28]. The methodology compares excepted 307 
information gain of measurement systems iteratively including and excluding a particular 308 
sensor in the sensor network with the true difference of candidate models if this particular 309 
sensor is involved or not in the falsification once the bridge is monitored. The aim is to provide 310 
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a reasonable degree of confidence to evaluate a sensor as an outlier when only sparse static 311 
measurements exist. However, as the original methodology requires field measurements, it 312 
must be adapted to be used as a performance criterion for measurement-system design.  313 
For a given set of load tests, the cumulative density functions (CDFs) of expected number of 314 
candidate models are computed and compared for the entire sensor network and for the sensor 315 
network without the particular sensor k (Figure 3a). The difference between CDFs is presented 316 
in Figure 3b. At the measurement-system-design stage, true #CMs are unknown and thus the 317 
true value of D	# is unknown. In the case of a faulty sensor, a small value of D	# means that the 318 
detection of this sensor as an outlier is more likely. Therefore, in order to be conservative, it is 319 
assumed that D	# is equal to the maximum difference in CDFs.  320 
The procedure is then repeated for each sensor in the measurement system. Since the impact 321 
of an undetected faulty sensor on the structural-identification process (Section 2.1) is not 322 
related to the expected performance of this sensor, all sensors present the same risk for wrong 323 
system identification. The average value of D	# for a measurement system is thus taken to be a 324 
metric to measure the average ability of a measurement system to detect an outlier 325 
measurement (Equation (7)). A small value of Λ means that the measurement system is more 326 
likely to detect a presence of an outlier in field measurements. Therefore,	1 − 𝛬 must be 327 
maximized to provide a measurement system which is able to detect the presence of outlier(s) 328 
in measurements once the structure is monitored.  329 

Λ = H
D

∆#D
#GH                                                                   (7) 330 

 331 
Figure 3 Outlier-detection methodology at the measurement-system-design stage. A) 332 
cumulative distribution functions of the number of candidate models using all sensors and the 333 
network without a sensor k. B) difference between cumulative distribution functions (CDFs) 334 
and measure of Dk for sensor k.  335 
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sensor, defined as the first sensor selected by the hierarchical algorithm (Section 2.2), is 339 
assumed and the consequent loss of information is assessed. This approach is similar to the 340 
method proposed by [29] in the field of leak identification in water-pipe networks. First, the 341 
joint-entropy value 𝐻_D of the measurement system and the joint entropy without the best 342 
sensor in the measurement system 𝐻_D`abMc are calculated. The difference of joint-entropy 343 
values between the two measurement systems ∆𝐻 represents the expected absolute loss of 344 
information. Then, ∆𝐻 is normalized with 𝐻_D	to assess the robustness in terms of information 345 
of a measurement system. The metric (Equation (8)) must be minimized in order to provide a 346 
measurement system which is robust in terms of information loss due to the failure of the best 347 
sensor.  348 

Γ = 	∆e
efg

= efg`efghijkl
efg

                                                       (8) 349 

3.1.3.5 Installation constraints 350 
To evaluate the practical-installation characteristic of a measurement system, an installation 351 
constraints metric is added to the MCDA. The metric is case dependent and could for instance 352 
include additional costs for sensor locations, sensor types or installation time. In the present 353 
study, an additional cost is applied to some sensor locations as they require additional 354 
equipment to be reached (Section 4.3). Thus, additional installation costs are defined as an 355 
initial equipment cost plus a cost per sensor in a specific area. The installation cost must be 356 
minimized in order to have a sensor configuration which is practical to install.  357 

3.1.4 Independent option evaluation 358 

Once each performance criterion for sensor placement is defined, the set of options to consider 359 
in the MCDA (Section 3.1.2) can be evaluated for each criterion independently, creating a 360 
performance matrix with the measurement systems and criterion evaluations. This consists of 361 
the last step of the first phase of the framework (Figure 1). The second phase presents the 362 
selection of the adapted MCDA method for measurement-system design according to asset-363 
manager preferences.  364 

3.2 Phase 2: MCDA-method selection 365 

Due to the conflicting nature of measurement-system performance criteria, such as information 366 
gain and cost of monitoring, it is usually not possible to identify the optimal measurement 367 
system by looking at each criterion separately in the performance matrix (Section 3.1.4). 368 
Recommending a measurement system to asset managers implies trade-offs between 369 
conflicting criteria, which is a problem typology particularly suitable for MCDA [33], [46]. In 370 
addition, ranking possible measurement systems by accounting for their overall performance 371 
is relevant to recommend suitable options to the asset manager (decision maker) [25]. 372 
Therefore, the use of an MCDA method is justified for the study of measurement-system 373 
design. The aim of this phase is to select the appropriate MCDA method according to the 374 
possible preference information of asset managers as well as the desired capabilities of the 375 
method (Phase 2, Figure 1). 376 
For any MCDA method, recommendation in terms of measurement system is unsurprisingly 377 
influenced by asset-manager criterion-weighting preferences. Three types of asset-manager 378 
weighing preferences are realistic, namely ordinal rankings of criteria, deterministic weight 379 
bounds and deterministic weight values for each criterion. In addition, several distributions in 380 
terms of weights are possible, such as attributing more weights to information-gain criteria or 381 
a preference for monitoring system with a relatively low cost. A required characteristic of the 382 
selected MCDA method will be the ability to provide measurement-system recommendations 383 
for any asset-manager preference settings.  384 
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A wide variety of settings of asset-manager preferences are modelled to evaluate the influence 385 
on the measurement-system recommendation. Three scenarios of possible orientation in terms 386 
of weighting preferences are defined in Table 2. First, a scenario where the asset-manager 387 
assigns an equal weight to each measurement-system criterion is proposed. Then, scenarios 2 388 
and 3 imply a polarization of the criterion-weighting preference in the direction of the 389 
maximization of the information gain or a low-cost monitoring for scenarios 2 and 3 390 
respectively. 391 

Table 2 Possible preference scenarios of an asset manager. 392 

Scenario  Orientation of asset-manager 
weighing preferences  

1 Equal weights 
2 Maximization of information gain 
3 Low-cost monitoring 

 393 
Then, within the preference scenario, asset managers decide the nature of their preferences 394 
between performance criteria. Two types of possibilities have been developed to study the 395 
influence of such preferences on measurement-system evaluations: an ordinal choice with a 396 
ranking of criteria by order of preference, and a cardinal choice with bounds or deterministic 397 
values for criteria weights. According to the scenario of asset-manager preferences, Table 3 398 
presents the order of importance of performance criteria, while Table 4 presents weight bounds 399 
for each performance criterion. Therefore, five settings of asset-manager weighting 400 
preferences, including a preference scenario associated with a preference type are created to 401 
understand the influence on the measurement-system recommendation for structural 402 
identification (Table 5). Settings are ordered according to the preference scenarios.  403 

Table 3 Ordinal importance order for performance criteria. 404 

Scenario 
Importance order of performance criteria 

Information 
gain 

Cost of 
monitoring 

Outlier 
detection 

Loss of 
information 

Sensor 
installation 

Maximization of 
information gain  1 4 3 2 5 

Low-cost 
monitoring 3 1 5 4 2 

  405 



 12 

Table 4 Weight bounds for a cardinal importance order for performance criteria. 406 

Scenario 
Weight bounds or deterministic values of performance criteria 

Information 
gain 

Cost of 
monitoring 

Outlier 
detection 

Loss of 
information 

Sensor 
installation 

Equal weights 0.20 0.20 0.20 0.20 0.20 
Maximization of 
information gain [0.35 - 0.50] [0.10 - 0.15] [0.15 - 0.20] [0.15 - 0.20] [0.10 - 0.15] 

Low-cost 
monitoring [0.10 - 0.20] [0.25 - 0.30] [0.10 - 0.15] [0.10 - 0.15] [0.25 - 0.30] 

 407 

Table 5 Settings of asset-manager preferences. 408 

Setting Preference scenario Preference type 

1 Equal weights  Cardinal 

2 Maximization of information gain Cardinal 
3 Maximization of information gain Ordinal 
4 Low-cost monitoring Cardinal 
5 Low-cost monitoring Ordinal 

 409 
In addition to weighting performance criteria differently, the engineering practice involves 410 
conducting comparisons between options by accounting for thresholds of performance [47]. 411 
When two options have similar metric values they can be considered as equal. When the 412 
difference of performances reaches a certain value (i.e. threshold), then an option is strictly 413 
preferred over the other. In MCDA terms, this situation can be modelled by indifference and 414 
preference thresholds. In the present study, thresholds are set using bounds (Table 6). The 415 
indifference threshold represents the greatest difference between evaluations of two options on 416 
criterion 𝑔< compatible with the indifference between them on this criterion. The preference 417 
threshold represents the lowest difference between evaluations of two options on criterion 𝑔<, 418 
meaning that one is preferred over the other on this criterion [48]. This enables explicit 419 
representation of variations in preferences of asset managers. Criterion-bound values were 420 
chosen based on engineering judgement, discussions with asset managers and heuristics. 421 
Concerning information gain, outlier detection and robustness to sensor failure criteria, lowest 422 
values of preference thresholds were estimated based on the repeatability of Monte-Carlo 423 
simulations of the hierarchical algorithm (Section 2.2) and outlier-detection methodology 424 
(Section 3.1.3.3). 425 

Table 6 Indifference q and preference p threshold bounds for performance criteria. 426 

Indifference and preference thresholds for performance criteria 
Information 

gain 
Cost 

of monitoring 
Outlier 

detection 
Robustness 

to sensor failure 
Sensor 

installation 
q p q p q p q p q p 

[0.05-
0.2] [3-4] [500-

1000] 
[4500-
5500] 

[0.01-
0.03] 

[0.35-
0.40] 

[0.02-
0.05] 

[0.12-
0.15] 

[500-
1000] 

[4500-
5500] 

 427 
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Regarding the desired capability of the MCDA method, the principal requirement is to rank 428 
measurement-system options. Another goal involves limiting the compensation between 429 
performance criteria, meaning that the good performance of a measurement-system on one (or 430 
more) criterion cannot compensate for the poor performance on one (or more) criterion. This 431 
condition is important to avoid high rankings of poorly performing measurement systems.  432 
Furthermore, a single deterministic ranking is not desired, as it does not provide indication of 433 
the stability (hence credibility) of the measurement-system recommendation. An additional 434 
requirement is thus the assessment of the robustness in terms of ranking of measurement-435 
system recommendations. The strategy incorporates the concept of robustness analysis [49], 436 
meaning that multiple versions of the decision-support methodology is intended to derive 437 
probabilistically-characterized results, which in this case are measurement-system rankings. 438 
These requirements were used to screen the relevant literature [49]–[53] to search for the most 439 
appropriate method. Eventually, the SMAA-PROMETHEE method satisfied all requirements 440 
and it was thus chosen for the MCDA to support measurement-system design decision making 441 
for bridge load testing according to asset-manager preference settings. The methodology is 442 
presented in detail below.  443 

3.2.1  SMAA-PROMETHEE methodology 444 

The SMAA-PROMETHEE method is based on two very families of MCDA methods, 445 
PROMETHEE and Stochastic Multi Criteria Acceptability Analysis (SMAA). In this Section, 446 
the SMAA-PROMETHEE methodology is briefly introduced. PROMETHEE, which stands 447 
for Preference Ranking Organization Method for Enrichment Evaluations, was introduced by 448 
[54] and it is an outranking methodology based on pairwise comparisons. It has been 449 
extensively used to solve MCDA problems [55], [56].  450 
A single ranking in PROMETHEE can be obtained following the procedure presented below. 451 
First, preference parameters for the MCDA need to be defined. A weight 𝑤< for each criterion 452 
𝑔< is set such that 𝑤< ≥ 0 for all 𝑗 = 1, . . . , 𝑛, and 𝑤<p

<GH = 1. Each weight, 𝑤<, is 453 
representative of the importance of the criterion 𝑔< inside the whole family of criteria 𝐺 (|𝐺| =454 
𝑛). Then, an indifference 𝑞< threshold and a preference 𝑝< threshold for each criterion 𝑔< are 455 
defined such that 𝑞< < 𝑝<. A partial preference function 𝑃<(𝑎, 𝑏) is defined for each criterion 456 
𝑔<, representing the degree of preference of option 𝑎 over option 𝑏 on criterion 𝑔<. The higher 457 
the preference function 𝑃<(𝑎, 𝑏), the more option 𝑎 is preferred to option 𝑏 on criterion 𝑔<. Six 458 
preference functions have been defined [34]. For instance, in the case of the V-shape function, 459 
the preference function is defined following Equation (9). 460 

 𝑃< 𝑎, 𝑏 =

1 𝑖𝑓 𝑔< 𝑎 − 𝑔< 𝑏 ≥ 𝑝<,
1{ | `1{(a) `}{

~{`}{
𝑖𝑓 𝑞< < 𝑔< 𝑎 − 𝑔< 𝑏 < 𝑝<,

0 𝑖𝑓 𝑔< 𝑎 − 𝑔< 𝑏 ≤ 𝑞<.

    (9) 461 

Then, the comprehensive preference function 𝜋(𝑎, 𝑏) (Equation (10)) for each ordered pair of 462 
options 𝑎, 𝑏 ∈ 	𝐴×𝐴 is calculated. This represents the degree of preference of option 𝑎 over 463 
option 𝑏 taking into account all criteria simultaneously, where 𝐴 denotes the set of options.  464 
    𝜋 𝑎, 𝑏 = 𝑤< ⋅ 𝑃< 𝑎, 𝑏p

<GH .                (10) 465 
Consequently, for each option 𝑎 ∈ 𝐴, the positive ΦI(𝑎), negative Φ`(𝑎) and net Φ(𝑎) flows 466 
can be calculated (Equations (11) to (13)). The positive flow ΦI 𝑎  quantifies how much 467 
option 𝑎 is preferred, on average, to the other options (Equation (11)), while the negative flow 468 
Φ`(𝑎) quantifies how much, on average, other options are preferred to option 𝑎 (Equation 469 
(12)). The net flow Φ 𝑎 	(Equation (13)) is the balance between positive and negative flows. 470 
This expresses the strength of option 𝑎 with respect to the set of options. The application of the 471 
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PROMETHEE method thus allows to rank options to be ranked, according to their value of net 472 
flow Φ(𝑎) from the best to the worst. 473 
    ΦI 𝑎 = H

� `H
𝜋 𝑎, 𝑏 ,a∈�∖{|}                   (11) 474 

     Φ` 𝑎 = H
� `H

𝜋 𝑏, 𝑎 ,a∈�∖{|}               (12) 475 
 Φ 𝑎 = ΦI 𝑎 − Φ`(𝑎)               (13) 476 

Based on calculations of the above flows, several PROMETHEE methods can be defined [34]. 477 
In this study, PROMETHEE II was selected. In this method, given options a and b, a is 478 
preferred to b if and only if Φ 𝑎 > Φ 𝑏 , while, a and b are indifferent iff Φ 𝑎 = Φ 𝑏 . 479 
Therefore, options in the set A can be ordered from the best to the worst on the basis of their 480 
net flows. 481 
The computation of the net flow is based on the definition of weight 𝑤< , indifference threshold 482 
𝑞< and preference threshold 𝑝< for each criterion 𝑔<. The choice of values for MCDA 483 
parameters could be too demanding or too restrictive for the decision maker (DM). Instead of 484 
singular values for each weight, the DM can be more confident in providing preference 485 
information such as a comparison between importance of criteria (criterion 𝑔- is more 486 
important than criterion 𝑔< or criteria 𝑔- and 𝑔< are equally important), rank criteria by order 487 
of importance (𝑔(H) ≻ 𝑔 B ≻ ⋯ ≻ 𝑔(p), where ≻ stands for “is more important than”) or giving 488 
deterministic bounds for weights (𝑤< ∈ 𝑤<`, 𝑤<I , where 𝑤<` and 𝑤<I stand for upper and lower 489 
bounds of the weight attributed to criterion 𝑔<). In a similar way, with respect to the 490 
indifference and preference thresholds, the DM can provide intervals of variation such as 𝑞< ∈491 
𝑞<∗, 𝑞<∗  or 𝑝< ∈ 𝑝<∗, 𝑝<∗ . 492 

The advantage of giving such preference information on MCDA parameters is counterbalanced 493 
from the variety of binary relations that can be obtained. To take into account the variety of 494 
built relations, the SMAA methodology [38] is a relevant approach. SMAA considers the 495 
plurality of MCDA parameters compatible with the DM preference information by giving 496 
recommendations in statistical terms. Introduced in [39], SMAA-PROMETHEE generates 497 
typically 100,000 samples, within a set of MCDA parameters (such as including weights 𝑤<, 498 
indifference 𝑞< and preference 𝑝< thresholds) that are compatible with the preference 499 
information provided by the DM. Then, the PROMETHEE method is applied to build 500 
indifference and preference relations for each of these samples. Options are then ranked 501 
probabilistically. 502 

3.3  Phase 3: Measurement-system recommendation 503 

Once the set of options is evaluated independently for each criterion (Phase 1, Figure 1) and 504 
the MCDA method is selected (Phase 2, Figure 1), SMAA-PROMETHEE is used to provide a 505 
recommendation in terms of measurement system to the asset manager. The selected MCDA 506 
method provides several outputs [55], that have been tailored for this study to provide a 507 
stepwise identification of the measurement system (Phase 3, Figure 1). To offer a rich guidance 508 
to asset managers in terms of recommended measurement systems, four metrics are used: 509 

• Rank acceptability index (RAI) 𝑏�(𝑎): it gives the frequency with which option 𝑎 takes 510 
the 𝑟-th place in the complete ranking. In this study, the focus is on the best first place, 511 
max
|∈�

𝑏H(𝑎), which is the highest frequency of an option being first. 512 
• Central weights vector (CWV) 𝑤7(𝑎): it is the barycenter of the weights giving to 513 

option 𝑎 the first position. It expresses the average preferences making option 𝑎 the 514 
recommended measurement system. 515 
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• Most frequent position (MFPi) 𝑏���-(𝑎): Three most frequent positions of option a are 516 
given with their respective frequency [57], [58]. 517 

• Pairwise winning index (PWI) 𝑃𝑟𝑒𝑓(𝑎, 𝑏): it gives the frequency with which option 𝑎 518 
is preferred to option 𝑏. 519 

The procedure to provide a measurement-system recommendation is built upon four steps. 520 
Asset managers can decide to stop once they are satisfied with the outcome. In the first step, 521 
the procedure starts with looking globally at the RAI and its distributions. 522 
If the option with the highest RAI for the first rank max

|∈�
𝑏H(𝑎) is over a certain threshold (i.e. 523 

70%), SMAA-PROMETHEE gives a clear preference to define this option as the best solution. 524 
This option can therefore be recommended to the asset manager. 525 
When there is no clear preference for an option (i.e. max

|∈�
𝑏H(𝑎) < 70%) or more insights are 526 

required by the asset manager, the second step involves at the central weight vector. With this 527 
metric, each option with a 𝑏H 𝑎 ≥ 10	% is shown and its barycenter of weights is presented, 528 
allowing asset managers to choose measurement system according to their refined criterion-529 
weighting preferences. 530 
If asset managers do not wish to indicate any preferred weighing profile related to any solution, 531 
the recommendation can be derived in step 3 by looking at the three most frequent positions. 532 
If an option has notable higher frequencies for the first positions compared to other options, 533 
this measurement system is statistically defined as a better solution. 534 
If ambiguity between two options (a, b) still occurs, the last step involves evaluation of the 535 
pairwise comparison index, which allows a direct comparison of competing options. This index 536 
indicates the frequency with which option a is preferred over option b. The measurement 537 
system with the largest value will be recommended to the asset manager. 538 

4 Case study 539 

4.1 The Exeter Bascule Bridge 540 

The Exeter Bascule Bridge (UK) is designed to be lifted to allow the transit of boats along a 541 
canal connected to the river Exe. The light-weight deck, consisting of a series of flanked 542 
aluminum omega-shaped profiles, is connected to 18 secondary beams which are bolted to two 543 
longitudinal girders. Built in 1972, the bridge has a single span of 17.3 m and a total width of 544 
about 8.2 m, carrying the traffic and a footway. In the static system, North-bank supports are 545 
hinges, while the South-bank is simply supported. Two hydraulic jacks, activated during lifting 546 
operations, are connected to the two longitudinal girders on the North-bank side. Figure 4 547 
shows the elevation and a photograph of the bridge during a static load test. Until 11 strain 548 
gauges and 1 deflection measurement, using a target on the bridge and a precision camera on 549 
the side of the bridge, are available sensors for monitoring. The recommended measurement 550 
system can therefore include a maximum of 12 sensors. 551 



 16 

 552 

Figure 4 The Exeter Bascule Bridge: A) side elevation; B) photograph of a static load test. 553 

4.2 Model-class selection 554 

Three model parameters, influencing the most the structural behavior, were selected for model 555 
updating: the equivalent Young’s modulus of the aluminum deck (𝜃H), the rotational stiffness 556 
of the North-bank hinges (𝜃B), and the axial stiffness of the hydraulic jacks (𝜃�). Initial ranges 557 
for each parameter are presented in Table 7. The axial stiffness of hydraulic jacks is used to 558 
simulate their contribution as additional load-carrying supports. For the axial stiffness, the 559 
lower bound considers two girders as simply supported at the abutments, while the upper bound 560 
corresponds to the introduction of a semi-rigid support at jack connections. 561 

Table 7 Model-parameter initial ranges for structural identification. 562 

Parameters Initial ranges 
𝜃H—Equivalent Young’s modulus of aluminum deck (GPa) [60; 80] 
𝜃B—Rotational stiffness of bearing devices (log(Nmm/rad)) [8; 12] 

𝜃�—Axial stiffness of hydraulic jacks (log(Nmm)) [3; 5] 
 563 
An initial population of 1000 model instances is generated from the uniform distribution of 564 
each parameter value using Latin hypercube sampling [59]. For each load test, the same 565 
population is used in order to generate predictions at sensor locations. Model uncertainties 566 

North 
bank

South 
bank

A B
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associated with the model class are presented in Table 8, while measurement uncertainties 567 
associated with the sensor types are presented in  568 
Table 9. Uncertainties are estimated using sensor-provider information, engineering judgement 569 
and heuristics. More information of the description of the model class and uncertainty 570 
magnitudes could be found in [28]. 571 

Table 8 Estimations of model-class uncertainties. 572 

Uncertainty source Uncertainty form Uncertainty magnitude 
FE model simplification (%) Uniform −5%; +20% 

Mesh refinement (%) Uniform −1%; +1% 
Additional (%) Uniform −2%; +2% 

 573 

Table 9 Estimations of measurement uncertainties. 574 

Uncertainty source Uncertainty form Uncertainty magnitude 
Sensor accuracy 

Camera (mm) Uniform −0.1; +0.1 
Strain gauges (𝜇𝜀) Uniform −2; +2 

Measurement repeatability 
Camera (%) Gaussian 𝜇 = 0; 𝜎 = 1 

Strain gauges (%) Gaussian 𝜇 = 0; 𝜎 = 1.5 
Sensor installation 

Strain gauges (%) Uniform −2%; +2% 
 575 

 576 
Figure 5 Possible static load tests. 577 

4.3 Monitoring-system characteristics  578 

Characteristics of the monitoring system include monitoring expenses and alternatives of 579 
possible sensor locations. The list of monitoring expenses is presented in Table 10. Load-test 580 
expenses include an initial cost for truck rental with driver and an additional cost per load test. 581 
Sensor costs depend on the sensor types (strain gauge and deflection measurement). In order 582 
to report measurements, a single base station and data-acquisition systems (every 4 sensors) 583 

Load test 1

Load test 4Load test 2

Load test 3 Load test 5

N S
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must be rented. Main girders are directly accessible on both banks of the bridge. However, in 584 
the central area above the river (Figure 4), additional equipment is needed and professionals 585 
must be hired in order to install sensors, generating additional expenses for some sensor 586 
locations. 587 

Table 10. List of monitoring expenses. 588 

Type of expense Expense Cost 

Load test 
Initial cost 300 [GBP] 
Load test 75 [GBP/LT] 

Sensor 
Strain gauge 400 [GBP/unit] 

Deflection measurement 300 [GBP/unit] 

Data-reporting 
system 

Base station 500 [GBP] 
Data-acquisition system 

 (4 sensors) 500 [GBP/unit] 

Sensor installation Additional equipment 500 [GBP] 
over the river Sensor installation 250 [GBP/unit] 

 589 
In order to generate predictions from the bridge finite-element model, possible sensor locations 590 
need to be defined according to the model class and installation constraints. Due to their small 591 
range of predictions, locations on secondary beams were not involved as possible locations. 592 
Two alternatives of possible sensor locations were chosen to consider additional costs of 593 
installation above the river (Figure 6). A discretization of possible sensor locations at every 594 
0.95 meters, corresponding to the distance between secondary beams, was selected. In both 595 
alternatives, possible locations for strain gauges were chosen on top and bottom flanges (circles 596 
and triangles) on both girders. Bottoms of each girder were chosen as possible deflection-target 597 
locations (circles). To avoid local effects, sensor locations were chosen to start at 2 m from the 598 
supports. In the first alternative, possible sensor locations were chosen to be on the entire 599 
girders, creating 64 possible strain locations and 32 possible deflection locations. This 600 
alternative is called “Over the River” (OR) alternative because sensor locations can be selected 601 
over the river generating additional expenses. In the second alternative, no possible sensor 602 
locations were involved above the river (Figure 1), creating 32 possible strain locations and 16 603 
possible deflection locations. This alternative is called “Not Over the River” (NOR) alternative. 604 
The performance comparison between measurement systems from the two alternatives will 605 
show if the information gained by installing sensors above the river is worth additional 606 
expenses. 607 
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 608 
Figure 6. Possible sensor locations for two alternatives: A) Over the river (OR); B) Not over 609 
the river (NOR). 610 

 611 

5 Measurement-system recommendations 612 

In this Section, measurement-system recommendations according to the asset-manager 613 
preference settings are discussed. First, the information gained by possible measurement 614 
systems is assessed to reduce the set of options to consider in the MCDA. Then, options are 615 
evaluated independently for each remaining performance criterion. Eventually, the MCDA is 616 
performed to recommend a measurement system for each asset-manager preference setting. 617 

5.1  Information-gain assessment 618 

To define the set of options used in the MCDA, the information gain of measurement system 619 
is assessed using the hierarchical algorithm (Section 2.2). As mentioned in the case-study 620 
presentation (Section 4), two possible sensor-location sets (over river OR and not over river 621 
NOR) and the possibility to perform 1 to 5 load tests (LT) are taken into account. Therefore, 622 
the hierarchical algorithm for sensor placement must be run 10 times. The joint entropy is 623 
assessed as function of the number of sensors (Figure 7). The joint entropy increases 624 
significantly with number of sensors and number of load tests. For the same number of sensors 625 
and load tests, the difference in terms of joint entropy between the two alternatives of possible 626 
sensor locations (OR and NOR) is small. Measurement systems between 2 and 12 sensors and 627 
1 to 5 load tests are considered in the set of possible options for the MCDA. Therefore, 110 628 
options must be evaluated in the MCDA to find the recommended measurement system 629 
according to asset-manager-preference settings. 630 
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 631 
Figure 7. Information-gain assessment – through calculation of joint-entropy (Section 2.2) – of 632 
measurement systems as function of number of sensors for the two alternatives of possible 633 
sensor locations (OR and NOR) and the number of load tests (1LT to 5LT). 634 

5.2  Option assessment for remaining performance criteria 635 

Each measurement-system option is evaluated for each remaining performance criterion. 636 
Criterion metrics as function of number of sensors are presented in Figure 8. Figure 8A presents 637 
the cost of monitoring as function of number of sensors for 1 and 5 load tests (LT), representing 638 
lower and upper bounds of the cost of monitoring respectively. The cost of monitoring 639 
increases with increasing number of sensors and number of load tests. Figure 8B presents 640 
additional costs due to the installation of sensors above the river for the OR alternative of 641 
possible sensor locations. The cost of installation is nil as long as no sensor is installed above 642 
the river and increases when a new sensor is placed in the particular area. Figure 8C presents 643 
the ability to detect outliers in measurement once the bridge is monitored. The outlier detection 644 
ability increases with increasing number of sensors and is converging to the value of 0.99 for 645 
any number of load tests and alternative of possible sensor locations. Figure 8D presents the 646 
normalized loss of information in case of the failure of the best sensor. The loss of information 647 
decreases with increasing number of sensors and load tests. Except for the sensor-installation 648 
criterion (Figure 8B), criterion evaluations as function of number of sensors and load tests do 649 
not differ significantly between alternatives of possible sensor locations (OR and NOR). 650 
Additionally, it is observed that the cost of monitoring and sensor installation criteria are 651 
conflicting with the information gain (Figure 7), ability to detect outliers and robustness of 652 
information gain to sensor failure. To define quantitatively the optimal measurement system, a 653 
MCDA is thus required and will be presented in the following section. 654 
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 655 
Figure 8. Measurement-system evaluations for each performance criterion as function of 656 
number of sensors. A) Cost of monitoring; B) Sensor installation; C) Ability to detect outlier; 657 
D) Normalized loss of information in case of the best-sensor failure.  658 

 659 

5.3 Measurement-system design according to asset-manager preference 660 
setting 661 

Once the set of options is evaluated for all measurement-system criteria (Section 5.2), the 662 
comparison of measurement-system options is performed using the SMAA-PROMETHEE 663 
(Section 3.2.1). Five settings of asset-manager preferences were presented in Section 3.2 (Table 664 
5). Measurement-system recommendations are developed for each setting in this section. In 665 
order to provide a rich guidance to the asset manager, metrics introduced in Phase 3 (Figure 1) 666 
are used to recommend measurement systems. 667 
For the sake of conciseness, options of measurement system are named as: alternative of sensor 668 
locations – number of load tests – number of sensors. For instance, a measurement system 669 
involving the alternative of possible sensor locations NOR, 5 load tests and 4 sensors is called 670 
NOR-5-4. 671 
The measurement system with the largest 1st-rank acceptability index (max

|∈�
𝑏H(𝑎)), i.e. the 672 

highest frequency of an option being first, is presented for each setting of asset-manager 673 
preference in Table 11 (Step 1, Figure 1). For each asset-manager preference setting, results in 674 
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terms of measurement systems (alternative of possible locations (OR and NOR) Alt, number 675 
of load tests Nloadtest and number of sensors Nsens) with their respective b1(a) are shown. 676 
Although the same alternative of possible locations (i.e. no sensors above the river) and the 677 
same number of load tests (i.e. 5 load tests) are always selected, asset-manager preference 678 
settings influence significantly the number of sensors to install on the bridge from 3 to 12 679 
sensors. This result shows the ability of the framework to differentiate between measurement-680 
system options with conflicting performance criteria. 681 
Comparing the ordinal (Settings 3 and 5) and cardinal (Settings 2 and 4) weighting-preference 682 
types for the same preference scenario, recommended measurement systems are similar since 683 
the difference is one sensor. However, max

|∈�
𝑏H(𝑎)differs significantly. For instance, between 684 

settings 4 and 5,	max
|∈�

𝑏H(𝑎)	equals to 87.9% and 25.1%, respectively. This result shows that 685 
the choice of the weighting-preference type influences the assessment of measurements system 686 
using a MCDA. 687 
Following Phase 3 (Figure 1), the recommended measurement system is clearly defined in case 688 
the max

|∈�
𝑏H(𝑎)	is large (i.e. > 70%). This situation happens only for the setting 4, which has a 689 

max
|∈�

𝑏H 𝑎 = 87.9%. Therefore, for this setting, it is not required to perform further 690 
investigation to define the measurement-system recommendation. However, for other settings, 691 
the maximum max

|∈�
𝑏H(𝑎)	is lower than 70%. Therefore, for these settings, measurement-692 

system recommendations are unclear as other measurement-system options may potentially 693 
present similar max

|∈�
𝑏H(𝑎).	Steps 2 to 4 of Phase 3 (Figure 1) are performed to provide guidance 694 

to the asset manager in terms of measurement-system recommendations. 695 

Table 11 Recommended measurement system – defined using an alternative of possible sensor 696 
location Alt, a number of load tests 𝑁� |¡cbMc and a number of sensors 𝑁MbpM– with maximum 697 
first-rank acceptability index max

|∈�
𝑏H(𝑎) according to the setting of asset-manager preferences 698 

– Step 1, Figure 1. 699 

Setting Preference 
Scenario 

Preference 
type 

Measurement system 𝐦𝐚𝐱
𝒂∈𝑨

𝒃𝟏(𝒂) 
 [%] Alt Nloadtest Nsens 

1 Equal weight Cardinal NOR 5 6 54.8 

2 Maximization of 
information gain Cardinal NOR 5 11 53.1 

3 Maximization of 
information gain Ordinal NOR 5 12 56.5 

4 Low-cost 
monitoring Cardinal NOR 5 4 87.9 

5 Low-cost 
monitoring Ordinal NOR 5 3 25.1 

 700 
In setting 1, the measurement system NOR-5-6 has the maximum first-rank acceptability index 701 
(maxb1(NOR-5-6)), which is equal to 54.8% (Table 11). As this number is below 70% (Step 1, 702 
Figure 1), it is thus necessary to assess if other options are often the best solution in SMAA-703 
PROMETHEE simulations. In a setting with deterministic approach for weight (Table 4), the 704 
central weighing vector for an equal weight scenario remains constant at 0.2. Nevertheless, the 705 
b1(a) of measurement-system options can be computed. Table 12 presents options with b1(a) 706 
equal or larger than 10%. Four options are often ranked as the best solution. In these options, 707 
the alternative of possible sensor locations NOR, and 5 load tests are always observed. 708 



 23 

However, measurement systems differ in terms of number of sensors, varying between 4 to 7 709 
sensors. 710 
In the current setting, indifference and preference thresholds are the only MCDA parameters 711 
varying between SMAA-PROMETHEE simulations. It shows that these thresholds influence 712 
significantly the measurement-system rankings. Defining preference and indifference 713 
thresholds using bounds allows a constancy in measurement-system recommendations. 714 
Additionally, it justifies the choice of SMAA-PROMETHEE as the MCDA method. 715 
Although the b1(NOR-5-6) is clearly larger than other options (i.e. 54.8% against 19.7% for 716 
the second-best option (NOR-5-7)), asset managers might be interested in further insights 717 
about the distribution of the option rankings as well as the pairwise performance to gain more 718 
confidence in their decision.  719 
Table 13 presents three most frequent positions (MFPi) and their respective bMFPi(a) for these 720 
four options. NOR-5-6 and NOR-5-7 are the three first positions as most frequent positions, 721 
showing a clear preference of SMAA-PROMETHEE for these two options. A pairwise 722 
comparison shows that NOR-5-6 is preferred to NOR-5-4, NOR-5-5 and NOR-5-7 with a 723 
frequency of 88.9%, 83.6% and 72.5%, respectively (Step 4, Phase 3, Figure 1). Following 724 
Steps 2-3-4 (Figure 1), the measurement system NOR-5-6 is preferred by the MCDA and is 725 
thus recommended for setting 1. 726 

Table 12 Measurement systems with first-rank acceptability indices b1(a) larger than 10% for 727 
setting 1 of asset-manager preferences – Step 2, Figure 1. 728 

Measurement system b1(a) 
 [%] Alt Nloadtest Nsens 

NOR 5 4 10.8 
NOR 5 5 13.7 
NOR 5 6 54.8 
NOR 5 7 19.7 

Other options 1.66 
 729 

Table 13 Three most frequent positions (MFPi) and their rank acceptability indices bMFPi(a) for 730 
best measurement systems of setting 1 of asset-manager preferences – Step 3, Figure 1. 731 

Measurement system 
MFP1 bMPF1(a) MFP2 bMPF2(a) MFP1 bMPF3(a) Alt Nloadtest Nsens 

NOR 5 4 7 12.3 1 10.8 6 10.2 
NOR 5 5 3 19.8 4 13.6 1 13.1 
NOR 5 6 1 54.8 2 26.6 3 12.2 
NOR 5 7 2 47.2 3 21.3 1 19.7 

 732 
Concerning Setting 2, the maximum b1(a) of a measurement system is equal to 53.1 % (Table 733 
11). Therefore, it is necessary to identify situations where other measurement systems perform 734 
frequently as the best solution. Table 14 presents the central weight vectors for each 735 
measurement system with b1(a) = 10% or more. Only two options have a significant b1(a). Both 736 
measurement systems involve five load tests and the alternative of possible sensor locations 737 
NOR. However, they differ in terms of number of sensors between 11 and 12. NOR-5-11 and 738 
NOR-5-12 have similar ranking as b1(NOR-5-11) and b1(NOR-5-12) are equal to 53.1 and 41.9 739 
% respectively. In addition, the central weight vectors are also very similar. This result shows 740 
that both options present similar results and the central weight vector and b1(a) could not help 741 
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to differentiate them. A pairwise comparison and most-frequent-position analysis are thus 742 
needed. Table 15 presents three most frequent positions (MFPi) and their respective bMFPi(a) 743 
for the two options. Both options have the same three most frequent positions. As bMFPi(a) only 744 
slightly differ between the two options, this metric provides only limited support to 745 
differentiate these options in this situation. Eventually, in the pairwise comparison, NOR-5-11 746 
is preferred in 58.1% to NOR-5-12, showing a slight preference of SMAA-PROMETHEE for 747 
this option (Step 4, Figure 1). This example shows that in case of options with similar results, 748 
SMAA-PROMETHEE provides metrics to define the recommended measurement system. In 749 
setting 2, the measurement system NOR-5-11 is thus recommended due to the pairwise 750 
comparison with NOR-5-12 (step 4, Figure 1). 751 

Table 14 Central weight vector for measurement systems with first-rank acceptability index 752 
b1(a) more than 10% for setting 2 of asset-manager preferences – Step 2, Figure 1. 753 

Measurement 
system b1(a) 

 [%] 

Central weight factors of measurement-system criterion 

Alt Nloadtest Nsens 
Info 
gain 

Costs of 
monitoring 

Outlier 
detection 

Loss of 
information 

Sensor 
installation 

NOR 5 11 53.1 0.391 0.133 0.176 0.175 0.125 
NOR 5 12 41.9 0.423 0.110 0.172 0.173 0.122 

Other options 4.98 - - - - - 

Table 15 Three most frequent positions (MFPi) and their rank acceptability indices bMFPi(a) for 754 
best measurement systems of setting 2 of asset-manager preferences – Step 3, Figure 1. 755 

Measurement system MFP1 bMPF1(a) MFP2 bMPF2(a) MFP1 bMPF3(a) Alt Nloadtest Nsens 
NOR 5 11 1 53.1 2 44.8 3 1.02 
NOR 5 12 1 41.9 2 40.1 3 7.60 

 756 
As the highest b1(a) of a measurement system is equal to 56.5% (Table 11), it is necessary to 757 
assess when other measurement systems are frequently the best solution. Table 16 presents the 758 
central weight vector for each option with a b1(a) = 10% or larger. Three options have a 759 
significant b1(a). However, NOR-5-12 has a clear preference of the SMAA-PROMETHEE 760 
analysis due to its larger b1(a) compared with other options (56.5% for NOR-5-12 compared 761 
to 18.5% for OR-5-12). However, as the central weight vector of best measurement systems 762 
differ significantly, this result shows a good example where asset managers may select a 763 
probabilistically-defined suboptimal measurement system in case of a polarization of their 764 
preferences. For instance, if they decide to attribute at least 50% of the criteria weight to the 765 
information-gain criterion, the solution OR-5-12 should be preferred. 766 
Table 17 presents three most frequent positions (MFPi) and their respective bMFPi(a) for the 767 
three options. NOR-5-12 is the only option with its most frequent position at the first three 768 
positions in sequential order. Additionally, in pairwise comparison, NOR-5-12 is preferred to 769 
NOR-5-11 and OR-5-12 with a frequency of 74.9% and 81.0%, respectively. Therefore, 770 
according to Steps 3 to 4, NOR-5-12 is recommended as measurement system for setting 3.  771 
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Table 16 Central weight vector for measurement systems with a first-rank acceptability index 772 
b1(a) more than 10% for setting 3 of asset-manager preferences – Step 2, Figure 1. 773 

Measurement 
system b1(a) 

 [%] 

Central weight factors of measurement-system criterion 

Alt Nloadtest Nsens 
Info 
gain 

Costs of 
monitoring 

Outlier 
detection 

Loss of 
information 

Sensor  
installation 

NOR 5 11 13.7 0.369 0.136 0.183 0.249 0.063 
NOR 5 12 56.5 0.468 0.066 0.146 0.284 0.036 
OR 5 12 18.5 0.652 0.048 0.103 0.188 0.010 

Other options 11.3 - - - - - 

Table 17 Three most frequent positions (MFPi) and their rank acceptability indices bMFPi(a) for 774 
best measurement systems of setting 3 of asset-manager preferences – Step 3, Figure 1. 775 

Measurement system 
MFP1 bMPF1(a) MFP2 bMPF2(a) MFP1 bMPF3(a) 

Alt	 Nloadtest Nsens 
NOR 5 11 3 42.6 2 25.2 1 13.7 
NOR 5 12 1 56.5 2 25.8 3 5.01 
OR 5 12 2 33.8 1 18.5 3 15.1 

 776 
In Setting 4, a clear preference for a specific measurement system is observed as the b1(a) was 777 
equal to 87.9% (Table 11). According to the recommendation of Step 1 (Figure 1), it is not 778 
necessary to perform further investigation. However, for the purpose of an example the analysis 779 
proceeds as described below. Central weight vectors for each option with b1(a) equals to 10% 780 
or larger are presented in Table 18. Although two options present similar central weight 781 
vectors, NOR-5-4 is clearly preferred to NOR-5-3 in terms of first b1(a), as it is equal to 87.9% 782 
and 11.8% for NOR-5-4 and NOR-5-3, respectively. Additionally, Table 19 presents three most 783 
frequent positions (MFPi) and their respective bMFPi(a) for the two options. Only NOR-5-4 has 784 
the first position at the most frequent position, showing a preference for this measurement 785 
system. Eventually the pairwise comparison shows that NOR-5-4 is preferred to NOR-5-3 in 786 
88.1% of SMAA-PROMETHEE simulations (Step 4, Figure 1). Based on Steps 1,3 and 4 787 
(Figure 1), the measurement system NOR-5-4 is thus recommended for setting 4. 788 

Table 18 Central weight vector for measurement systems with a first-rank acceptability index 789 
b1(a) more than 10% for setting 4 of asset-manager preferences – Step 2, Figure 1. 790 

 Measurement 
system b1(a) 

 [%] 

Central weight factors of measurement-system criterion 

Alt Nloadtest Nsens 
Info 
gain 

Costs of 
monitoring 

Outlier 
detection 

Loss of 
information 

Sensor 
installation 

NOR 5 3 11.8 0.151 0.287 0.134 0.142 0.286 
NOR 5 4 87.9 0.180 0.281 0.130 0.130 0.281 

Other options 0.316 - - - - - 
 791 
 792 
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Table 19 Three most frequent positions (MFPi) and their rank acceptability indices bMFPi(a) for 793 
best measurement systems of setting 4 of asset-manager preferences – Step 3, Figure 1. 794 

Measurement system 
MFP1 bMPF1(a) MFP2 bMPF2(a) MFP1 bMPF3(a) Alt Nloadtest Nsens 

NOR 5 3 3 48.7 2 34.7 1 11.8 
NOR 5 4 1 87.9 2 12.0 3 0.11 

 795 
For Setting 5, the measurement system NOR-5-4 has the highest b1(a), which is equal to 24.1% 796 
(Table 11). Therefore, a comparison with other measurement systems that are often ranked as 797 
best solution is needed. Table 20 presents the central weight vectors for each measurement 798 
system with a b1(a) equals to 10% or larger. Three options have a significant b1(a). 799 
Additionally, it is important to mention that many other options have been ranked as the best 800 
solution with low frequencies. This result can be explained by the ordinal choice in terms of 801 
weighting preference giving more freedom in terms of criteria weightings. Two options, NOR-802 
5-3 and NOR-5-4, present very similar b1(a) (equal to 24.1% and 25.1% respectively), while 803 
NOR-4-2 has a lower b1(a) (equal to 12.2%). For both options, central weight vectors differ 804 
significantly, especially in terms of weight for the costs of monitoring. This result shows a 805 
good example of a situation where asset managers may decide which option is the best 806 
measurement system according to their preferences in terms of criteria weight. 807 
Table 21 presents three most frequent positions (MFPi) and their respective bMFPi(a) for the 808 
three options. NOR-5-3 and NOR-5-4 are comparable in terms of MFPi. However, NOR-4-2 809 
has a MFP1 at the 6th rank, showing that this option is the best measurement system in specific 810 
cases and is generally suboptimal compared with NOR-5-3 or NOR-5-4. A pairwise 811 
comparison shows that NOR-5-4 is preferred to NOR-5-3 in 67.5% of the simulations, showing 812 
a preference of SMAA-PROMETHEE for this option. Therefore, based on Steps 3 and 4 813 
(Figure 1), the measurement system NOR-5-3 is thus recommended for setting 5. 814 

Table 20 Central weight vector for measurement systems with a first-rank acceptability index 815 
b1(a) larger than 10% for setting 5 of asset-manager preferences – Step 2, Figure 1. 816 

 Measurement 
system b1(a) 

 [%] 

Central weight factors of measurement-system criterion 

Alt Nloadtest Nsens 
Info 
gain 

Costs of 
monitoring 

Outlier 
detection 

Loss of 
information 

Sensor 
installation 

NOR 4 2 12.2 0.093 0.570 0.035 0.074 0.228 
NOR 5 3 24.1 0.145 0.459 0.043 0.098 0.256 
NOR 5 4 25.1 0.216 0.337 0.056 0.123 0.267 

Other options 36.6 - - - - - 
  817 
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Table 21 Three most frequent positions (MFPi) and their rank acceptability indices bMFPi(a) for 818 
best measurement systems of setting 5 of asset-manager preferences – Step 3, Figure 1. 819 

Measurement system 
MFP1 bMPF1(a) MFP2 bMPF2(a) MFP1 bMPF3(a) Alt Nloadtest Nsens 

NOR 4 2 6 16.5 3 13.7 1 12.2 
NOR 5 3 1 26.1 4 20.3 2 19.8 
NOR 5 4 1 25.1 2 7.83 8 7.57 

 820 

5.4 Comparison of optimal measurement systems 821 

In this section, the recommended measurement systems defined for each setting of asset-822 
manager preferences (Table 11) are compared. Results are summarized in Figure 9, where 823 
measurement-system recommendations are presented. For all weighting scenarios, the 824 
alternative of possible locations NOR is selected, meaning that sensors should not be installed 825 
over the river. Over-the-river sensor locations require additional costs for the installation 826 
(Figure 8B) and generate only slight increases of information gain (Figure 7). Due to the small 827 
influence on the cost of monitoring (Figure 8A) but significant influence on the information 828 
gain (Figure 7), the option to perform five load tests were selected for all weighting preference 829 
settings. However, recommended measurement systems differ significantly in terms of number 830 
of sensors from 3 sensors for the setting 5 (Figure 9E) involving a low-cost monitoring to 12 831 
sensors for the setting 2 (Figure 9B), where an asset manager prefers to maximize the 832 
information gain. Therefore, the choice of number of sensors is drastically influenced by the 833 
asset-manager preference settings. This result shows that the proposed framework for 834 
measurement-system design supports asset managers in terms of optimal measurement-system 835 
recommendation. 836 
Regarding the sensor configuration for each setting of asset-manager preferences, most sensors 837 
are placed between the hydraulic jack and the North-bank bearing devices. As these elements 838 
are the location of the two most important model parameters to identify in the structural 839 
identification (Section 4.2), it shows that optimal sensor locations are strongly influenced by 840 
the model class selection. This highlights the importance of the initial task definition (Section 841 
4.1). Due to the transversally asymmetrical load tests (Figure 5), sensors were placed on the 842 
side where most load tests will be performed as measurements will have a larger signal-to-843 
noise ratio. The deflection target is only placed in settings 2 and 3, involving scenarios of a 844 
maximization of the information gain. As sensor locations are selected sequentially by the 845 
hierarchical algorithm, it shows that this sensor was chosen lately. This sensor is less powerful 846 
than strain gauges due to its relative large measurement uncertainties (Table 8). 847 
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 848 
Figure 9 Recommended measurement systems according to asset-manager preference 849 
scenarios. A) Setting 1; B) Setting 2; C) Setting 3; D) Setting 4; E) Setting 5. 850 
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6 Discussion 851 

In the present study, a MCDA framework is proposed to support asset-manager decision 852 
making in terms of measurement-system design. Once a model-class is selected, an 853 
information-gain assessment using the joint-entropy metric is performed to reduce the set of 854 
possible measurement systems. Then, measurement systems are assessed using five 855 
performance criteria: information gain, costs of monitoring, ability to detect outliers, loss of 856 
information in case of sensor failure, sensor installation. The metrics, probabilistic best 857 
solution, most frequent rank positions and pairwise comparison offer information-rich 858 
guidance to assist asset managers in terms of recommended measurement systems. The 859 
applicability of the framework was demonstrated using a full-scale case study and covering 860 
several scenarios of asset-manager preferences. When preference settings are compared, 861 
recommended measurement-systems differ in terms of number of sensors but lead to similar 862 
conclusions in terms of number of load tests and alternatives of sensor locations. 863 
Traditional approaches used in practical applications of measurement-system design involve 864 
comparison of the information gain with the cost of monitoring in terms of the number of 865 
sensors (Figure 10). As these measurement-system criteria are conflicting, an asset manager 866 
chooses the number of sensors implicitly according to some weighting of preferences. As 867 
shown in Figure 10, the information-gain (joint entropy) function is parabolic with respect to 868 
the number of sensors while the cost function is linear. It is thus an ambiguous task to define 869 
the optimal number of sensors. For instance, for a scenario where the information gain is 870 
preferred to the cost of monitoring, an asset manager may argue that 12 or more sensors are 871 
the best choice while a more cost-conscious manager may prefer 8 sensors. The use of a 872 
quantitative multi-criteria framework for measurement-system design has potential for more 873 
comprehensive decision support. 874 

 875 
Figure 10 Comparison between cost of monitoring and information gain (joint entropy) – 876 
assessed using joint entropy – as function of number of sensors for alternatives of measurement 877 
system considering 5 load tests (5LT) with the “not over the river” alternative (NOR) of 878 
possible sensor locations. 879 

The framework for measurement-system design, proposed in this study, has several advantages 880 
when compared with other MCDA methods used in the structural-identification field [26], [60], 881 
[61] (Table 22). First, the proposed framework is able to accommodate ordinal and cardinal 882 
importance orders of preferences, making the framework flexible for asset managers. Then, in 883 
order to compare possible measurement systems, the framework provides metrics such as 884 
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option ranking and pairwise comparison, thus avoiding that good measurement-system designs 885 
are proposed using a “blackbox”. Additionally, measurement-system recommendations may 886 
be sensitive to MCDA parameters, such as criteria weighting and preference functions. 887 
Appropriate selection is a difficult task for asset managers. The framework proposed in this 888 
paper allows the use of bounds for MCDA-parameter definitions (Table 4, Table 6). This 889 
allows a more engineer-friendly approach for measurement-system design and provides robust 890 
(hence credible) recommendations with respect to MCDA-parameter variations. 891 

Table 22 Comparison of MCDA methods used in structural identification. 892 

MCDA 
method 

Asset-manager 
preferences 

Measurement-system 
comparison 

Ordinal Cardinal Multi-metric 
recommendation 

Robustness to MCDA 
parameter variations  

Traditional 
PROMETHEE [61] 

✓

Traditional 
weighted sum [60] 

✓

RR-Pareto [26] ✓

This paper ✓ ✓ ✓ ✓

893 
The following limitations of the work are recognized. Model-class definitions, including 894 
model-parameter choice and uncertainty estimations, influence evaluations of performance 895 
criteria such as information gain, outlier detection and robustness of information gain to sensor 896 
failure. The greedy-search strategy that is used in the hierarchical algorithm to define possible 897 
options does not necessarily lead to a global optimum of the joint entropy, particularly for small 898 
numbers of sensors. As the solution space is reduced using the information-gain criterion, 899 
measurement systems compared in MCDA may not always lie on the Pareto front of the 900 
solution space. 901 
The success of any measurement-system-design methodology based on a model-based strategy 902 
depends on the quality of the numerical model used to predict structural behavior. A reliable 903 
model is important to obtain a representative range of predictions at possible sensor locations. 904 
Prior to measurement-system design, visual inspection is required to validate model 905 
assumptions. 906 

7 Conclusions 907 

A quantitative strategy for measurement-system design increases the performance of the 908 
structural-identification method by enhancing the discrimination between good and bad model 909 
instances. Following development of the approach on a full-scale test case, specific conclusions 910 
of the study are: 911 

• A multi-criteria approach for measurement system design leads to more informed912 
decision making, especially when performance criteria that are in addition to typical913 
metrics of information gain and cost of monitoring are included914 

• The MCDA methodology supports quantitatively the rational selection of measurement915 
systems even if there is no clear dominance amongst options. Recommendations are916 
supported for multiple sets of constraints on the weighting of preferences and through917 
comparison of measurement systems918 
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• The tiered strategy supports an informed selection of good measurement system designs919 
according to asset-manager preferences by providing a complete set of preferred920 
alternatives, including the best solution defined probabilistically and specific situations921 
when other near-optimal solutions might be preferred922 

Future work will focus on the combination of expected information gained by static and 923 
dynamic tests to support sensor-system design for structural identification. Additionally, a 924 
framework will be developed to evaluate the influence of measurement-system-design 925 
methodologies on asset management that is based on the value of information and reserve-926 
capacity assessment. 927 
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