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Abstract. Collaborative robots must operate safely and efficiently in ever-
changing unstructured environments, grasping and manipulating many different 
objects. Artificial vision has proved to be collaborative robots’ ideal sensing 
technology and it is widely used for identifying the objects to manipulate and for 
detecting their optimal grasping. One of the main drawbacks of state of the art 
robotic vision systems is the long training needed for teaching the identification 
and optimal grasps of each object, which leads to a strong reduction of the robot 
productivity and overall operating flexibility. To overcome such limit, we propose 
an engineering method, based on deep learning techniques, for the detection of the 
robotic grasps of unknown objects in an unstructured environment, which should 
enable collaborative robots to autonomously generate grasping strategies without 
the need of training and programming. A novel loss function for the training of the 
grasp prediction network has been developed and proved to work well also with 
low resolution 2-D images, then allowing the use of a single, smaller and low cost 
camera, that can be better integrated in robotic end-effectors. Despite the 
availability of less information (resolution and depth) a 75% of accuracy has been 
achieved on the Cornell data set and it is shown that our implementation of the loss 
function does not suffer of the common problems reported in literature. The 
system has been implemented using the ROS framework and tested on a Baxter 
collaborative robot.  

Keywords. collaborative robotics, deep learning, vision-guided robotic grasping, 
engineering methods  

Introduction 

Collaborative robots (“co-bots”) are industrial robots able to safely operate within a 

workspace shared with human operators. Then, co-bots are conceived to aid and 

support human workers in uncertain environments, adapting to ever-changing scenarios, 

but always assuring safety. Co-bots may revolutionise industrial production, enablign 

the symbiotic collaboration of human workers and robots, but still lack of performance 

and their low financial return on investment limits their widespread application; the 

European Research Project Colrobot [1] aims at improving co-bots performance by 

developing a versatile mobile collaborative robotic platform, specifically conceived for 

automotive and aerospace assembly operations. To this purpouse, the ColRobot 

platform specifically addresses vision-guided grasping and dextereous manipulation of 
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many different types of objects in different environments. Artificial vision has proved 

to be collaborative robots’ ideal sensing technology but its time consuming training 

drastically reduces the overall co-bots performance. 

At state of the art, vision-guided grasping applications are based on template 

matching techniques, in which the images taken by vision sensors are processed, 

identifying the object and its grasping features in the scene, according to some reliable 

yet closed procedures such as template Matching (Figure  1). These methods rely on 

human intervention for the classification of every object of interest, and an hand-

crafted definition of the correct grasp on every instance of the object. Moreover, the 

above procedure has to be repeated every time a new object is added, and human 

calibration of the system is needed if a major change in the environment happens. 

Thus, state of the art industrial solutions are unfeasible when a higher degree of 

flexibility is required, as in the case of symbiotic human robot collaboration.  

 

Figure 1. Industrial software example for Template Matching. 

In recent years, Artificial Intelligence (AI) and deep learning (DL) has delivered 

massive improvements also in the field of computer vision [2]–[4], also enabled by the 

constant drops of the hardware costs. Therefore, there is a great opportunity to exploit 

the potential of deep learning techniques for the detection of the robotic grasps of 

unknown objects in an unstructured environment, which should enable collaborative 

robots to autonomously generate grasping strategies without the need of training and 

programming. 

1. Related works 

State of the art industrial robotics vision systems are based on standard computer vision 

techniques, in which the analysis is split into four main steps: pre-processing, feature 

extraction, reasoning/classification, reaction. In particular, the number and the types of 

the adopted features are manually selected for each specific application. For example, 

in Gleason et al. [5], the developed SRI vision module extract "blobs" from binary 
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images through a connected component analysis and then compute various moments on 

the object, in order to determine position, size and orientation. Such simple approach 

has the advantage to be fast and with high accuracy, but fails in case of overlapping 

objects and perform poorly with noisy images. In his patent, Roth [6] proposed a vision 

system that uses boundary features, such as lines, edges and holes, to recognize objects, 

thus overcoming the limits of the blob analysis with overlapping parts and low image 

quality. William [7] used Pattern Matching algorithm to produce a geometric 

description, i.e. real-valued position and orientation, of the detected feature. The 

descriptors were then used for Affine Searching procedure, in which 6 degree-of-

freedom affine transformation on the geometry were applied, in order to detect 

variation in position, orientation, aspect ratio and skewing of the object of interest. 

Sanz et al. [8] implemented a system that uses a first step of global thresholding of the 

image for fast segmentation, then compute the principal moments of the object 

(centroid, orientation and inertia axis) from the boundary points. Finally, candidate 

grasp points are extracted and the most stable is chosen, based on off-line stability 

properties. 

Concerning the Machine Learning approach to the grasping problem, recent works 

have put a lot of effort in dealing with the complexity of such task in a real world, 

unconstrained scenario, and most of them uses Supervised solutions like Deep 

Artificial Neural Networks. 

An Artificial Neural Network (ANN) is a computational structure, made by several 

interconnected layers of single units called Neurons, that has the ability to learn 

different tasks without any previous knowledge or task-specific programming. During 

the learning process, the network is fed with examples that are manually labeled with 

the information that has to be learned, and the weights of the system, are changed in 

each iteration to better approximate the expected output, thus to progressively improve 

the performances on the task. Differently from traditional systems, the feature selection 

is done during the learning stage. The weights are modified to optimize a Loss function, 

that takes into account the prediction error of the network at the end of each iteration 

[9]. If the training set is sufficiently representative, after the training phase the network 

is able to generalize and perform well on the same task with new, unseen data. 

A special architecture of an ANN is the Convolutional Neural Network (CNN), 

that is particularly suited for working on images or video streams as input. In a CNN 

the single unit is a filter, that moves on the image and is able to capture visual feature, 

such as vertical and horizontal lines, color gradients, curves and so on. Stacking such 

structure in layers allows the combination of those filter, and the progressively learning 

of more complex and thus semantically higher features (e.g., eyes, faces, street signs 

and so forth, depending on the task to be learned). 

In order to better mimic the human grasping capabilities and to exploit visual 

sensors features, choosing a CNN architecture for the implementation of the task is 

straightforward. In Mahler et al. [10] a Deep CNN was trained on a synthetic dataset 

made of 6.7 million point clouds on several thousand of 3D models of objects, for the 

prediction of grasp poses, along with a robust analytic grasp metric that measure the 

probability of success of the grasping from the RGB-D images. The main drawback of 

this method is in the use of synthetic data to provide a wide enough set to train a Deep 

CNN. In fact, this choice could potentially lead to a loss of generalization on real-world 

images (i.e., the model may not be able to provide a correct grasp on real scenarios). 

Lenz et al. [11] worked with the Cornell Dataset [12] (see Subect. 2.1), with two 

deep networks to evaluate all the candidate grasps. The first, faster network has fewer 
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features and is able to prune unlikely grasps, whilst the second is bigger and slower, but 

only needs to consider the top predictions of the first network. 

Redmon et al. [13] proposed a Deep CNN architecture, derived from a widely 

adopted model from Krizhevsky et al. [14], named AlexNet, used for object recognition 

task. Their implementation uses pretrained AlexNet weights in order to speed-up the 

learning process, training the network on the above-mentioned Cornell Dataset 

thereafter. Such network was able to predict a subset of valid poses on the object, along 

with a classification of the object, added as a task to force the network to recognize 

similar objects, and thus predict similar grasping poses. Although these methods 

significantly improve the state of the art results on real data, they both lack the ability 

to adapt to unseen situations. In particular, given enough semantic noise in the scene 

(e.g., background light changes or partial objects in the scene), both methods tend to 

diverge from a valid grasp. This is related with the loss function used in both methods 

(i.e. the mean squared of the error between the ground truth and the prediction). For 

two areas of the image with strong gradients, the overall grasping prediction results in 

the average of two valid grasping poses, which is not guaranteed to be valid. 

2. Grasping with Deep Neural Networks 

In the next sessions we present our approach to the grasping problem in more details. 

2.1. Dataset 

The Cornell Dataset [12], used aslo in the two main related works [11], [13], has been 

chosen as score baseline to compare the results of the work. The dataset provides 885 

RGB images of 280 different objects, with several images taken of each object in 

different orientations or poses, along with an associated point cloud. Each image 

contains a single object, and a set of labels is provided, where each label is a rectangle 

depicting either a valid or an invalid grasp position on the object. Examples of the 

images on the dataset is shown in Figure 2. 

 

Figure 2. Cornell Dataset example images. 
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The labeled grasping poses are defined for a two fingers industrial robotic gripper, 

and only a subset of all the viable poses on the object is provided. In the present work, 

we choose not to use the information coming from the point cloud data, as to push the 

development of a low cost solution, the uses only 2D low-resolution camera that can be 

better integrated in robotic end-effectors. To guarantee the robustness of the Deep 

Learning algorithm, as well as to generalize the knowledge built from the examples, 

several steps can be followed to augment the number of images that are fed to the 

network, in particular, starting from the raw dataset, the following modification were 

made to the images: 

• the RGB images have been cropped to a fixed size window, centered around 

the object; the resulted image is a  224 x 224; 

• both the valid and invalid grasping rectangles were translated according to the 

new, cropped window; 

• each cropped image was randomly scaled w.r.t. the original size, choosing a 

scaling factor from a Gaussian Distribution with mean m=1 and variance σ2 = 

0.15; 

• random translation and rotation were applied in a fixed range; 

• changes in lighting using the YCbCr. 

Finally, Gaussian noise was added to the images, to further enhance the robustness 

to sensor noise of the system. In Figure 3 a comparison between the original image and 

a subset of the processed images is shown.  

    

Figure 3. (Left) Image of the original dataset. (Right) Random scaling and translation of the original image. 

Each label in the Cornell Dataset is a four-value tuple, containing the (x,y) value 

for each corner of the grasping rectangle. In order to assure the predicted output to be a 

rectangle, we transformed the coordinates in to a parametric representation, consisting 

of {xc, yc, w, h, α}, where (xc, yc) is the rectangle center coordinates, w, h are width and 

height and α the rotation of the main dimension of the rectangle w.r.t. the horizontal 

direction. Figure 4 better represents this parameters conversion.  

Figure 4. Parameters of a grasping rectangle. 
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3. Deep Neural Network implementation 

3.1. Architecture 

Since the data avaialble were not enough to train a deep neural network in and end-to-

end fashion, a model pre-trained on a different task with a wider dataset has been used. 

As listed on the main page, a subset of objects is common between our domain and the 

images contained in the ImageNet dataset [15], thus allowing us to start from the 

famous VGG-19 [16] architecture pre-trained for the image classification task. As such, 

the first layers have been frozen (i.e. we left their weights unchanged), as to exclude 

them from the training phase, while the last two were fully trained, as they contain 

high-level task-dependent information. Then, the architecture has been split in two 

branches; while the first one predicts the angle of the grasping rectangle, the latter 

predicts the remaining parameters (i.e. width, height and center coordinates). This is 

mainly due to the difference between the angle α and the other parameters, as the first 

ranges in [0°, 90°], while the others can take values up to the dimension of the image. 

The two branches are then joined, and a regression layer computes the grasping box 

corners coordinates from the five predicted parameters. The whole architecture is 

schematically shown in Figure 5. 

 

 

Figure 5. Proposed CNN architecture. 

3.2. Loss function 

The literature presented in Section 1, related to deep neural networks for object 

grasping, shares the use of the MSE loss as main objectives during the training process. 

Such choice may not be ideal due to the following reasons: 

• The learning objective differs from the accuracy score method, which is based 

on the Intersection Over Union metric; 

• the MSE loss suffers from average results (i.e. for two different labels, the 

average of them is considered a good label). This hypothesis does not hold in 

every situation. 

L. Bergamini et al. / Deep Learning-Based Method for Vision-Guided Robotic Grasping286



Thus, a new loss function based on the IoU metric is proposed, which is fully 

differentiable and it is shown to be consistent with the objective task of grasping. As 

shown in Figure 6, the loss is computed between two grasping rectangles, 

parameterized using 2D coordinates of the corners, and has values lying between 1 

(perfect match between the two rectangles) and 0 (fully disjointed rectangles). A 

pseudo-algorithm of the loss computation is shown in Algorithm 1. 

 

Figure 6. Geometric meaning of the IoU Loss function. 

 
 

The implementation deeply relies on the Separate Axis Theorem (SAT), which 

scores the overlapping area of two convex polygons. SAT states that: 
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SAT. If two convex objects are not penetrating, there exists an axis for which the 

projection of the objects will not overlap". 

In addition, SAT can also be used to compute a score of the IoU, accumulating the 

score of the length of the intersection segments along the two projected axis. For each 

training sample, the loss has been back-propagated between the predicted and the best 

overlapped pose. Alternative solution (e.g. to pick a random pose on every iteration) 

were also investigated, but the proposed method proved to deliver the best scoring 

results. 

4. Results 

4.1. Implementation Details 

The proposed implementation has been developed using the Tensorflow Framework 

[17] under Ubuntu Linux 14.04. The weights of the first layers have then been 

initialized from the ones of the VGG-19 network public available with the framework. 

The training batch size has been set to 128, training the network for 250 epochs with 

random data augmentation. From preliminary results, the batch size showed to be 

important for the convergence of the training phase, as it becomes unstable, due to the 

approximation of the current batch for the entire dataset: as it becomes larger, the 

network learns a better generalization. Adam [18] with learning rate starting from 

0.0001 and exponential decay has been selected as optimizer. The network is saved 

every 5 epochs and only if the loss score improves. As for the data, it has not been 

emplyed the split method proposed in [13] that uses five cross validation, preferring to 

simply split the dataset using a 80:20 proportion image wise. 

4.2. Simulation Results 

The accuracy of the method has been tested using the mean IoU directly, in contrast 

with the literature [11], [13]. A proposed grasping pose has been considered valid if the 

IoU with any of the annotated poses for the image scored more than 50%, since this 

method fits better the nature of the proposed loss function. Results are reported in 

Table 1. 

Table 1. Score for IoU and Accuracy measures on both train a test. 

Metric Train (%) Test (%) 

Mean IoU 
Mean Accuracy 

0.775 
0.85 

0.625 
0.734 

4.3. Experimental Results 

In this subsection a possible end-to-end implementation for a collaborative robotic 

grasping is presented.  

In the developed application, the robot is deployed on a shop floor, facing a table 

filled with hand tools and fixtures. No constraints are given on the number of objects 

on the table or on the lighting condition of the environment.  

An operator is performing a task together with the robot. The pipeline of the 

application is the following: 
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1. The operator asks the robot for an hand tool or a part for the task he is 

performing; 

2. the vocal request of the operator is translated into text, by means of a off-the-

shelf Speech Recognition software, such as Google Voice-To-Text Service; 

3. the application launch an Object Recognition and Localization procedure, 

based on state-of-art Deep CNN for localization, such as Y.O.L.O [19]; 

4. the requested item is found among the visible ones in the scene seen by the 

robot, and an image cropped around the localization coordinates of the object 

is sent to our Grasping Network; 

5. the Grasping Network predicts the grasping rectangle coordinates; 

6. the robot moves accordingly to reach and safely grasp the object. 

A video demonstration of the application can be seen at [20]. 

5. Conclusions and future development 

In this work, a Deep Learning approach to the industrial problem of robotic grasping is 

presented. A novel CNN architecture is trained on a small dataset, reaching about 73% 

score using less data than the state-of-art related works, encouraging further research 

and improvement on the system.  

The original contributions of the method are twofold:  

1. a novel definition of a Loss Function, which does not suffer of common 

problems found in related literature; 

2. the algorithm only uses information coming from a low-cost, 2D camera, 

making the integration of the system easier on a industrial environment, 

such as a robotic cell or collaborative platforms.  

Future developments will focus on integrating the object recognition and 

localization pipeline with the grasping prediction in one single architecture, with the 

purpouse to reduce the context switching overhead in the implementation of the end-to-

end application, and the extension of the grasping prediction in cluttered environment. 
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