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Abstract 

Direct modeling is a very recent CAD paradigm that can provide unprecedented modeling flexibility.  It, however, 
lacks the parametric capability, which is indispensable to modern CAD systems.  For direct modeling to have this 
capability, an additional associativity information layer in the form of geometric constraint systems needs to be 
incorporated into direct modeling.  This is no trivial matter due to the possible inconsistencies between the 
associativity information and geometry information in a model after direct edits.  The major issue of resolving such 
inconsistencies is that there often exist many resolution options.  The challenge lies in avoiding invalid resolution 
options and prioritizing valid ones.  This paper presents an effective method to support the user in making decisions 
among the resolution options.  In particular, the method can provide automatic information inconsistency reasoning, 
avoid invalid resolution options completely, and guide the choice among valid resolution options.  Case studies and 
comparisons have been conducted to demonstrate the effectiveness of the method. 
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1. Introduction 

Computer-aided design (CAD) is a widely used tool in mechanical design practices, including automotive, 
shipbuilding, and aerospace industries.  The most recent CAD paradigm is called direct modeling, whose main feature 
is to allow users to interact directly with the geometry of the model to make edits [1,2].  Typically, to modify a model, 
users just need to grab, push, and pull the geometric entities of interest in the model, see [3] for some examples.  
Despite the excellent modeling flexibility, direct modeling lacks the parametric editing capability as it focuses on pure 
solid models without any built-in associativity information.  The ability to attain model variants via parametric edits 
has been identified by many authors as an essential feature of modern CAD systems [4–7].  New developments are 
thus necessary for direct modeling to have the parametric capability. 

To achieve the goal, associativity information needs to be incorporated into direct modeling.  One may alternatively 
incorporate direct modeling into parametric (feature) modeling to attain both direct and parametric capabilities, as 
done by some CAD vendors [2] and in [8], but this way has inherent limitations such as leading to a restricted direct 
modeling functionality [9,10].  Incorporating associativity information into direct modeling is essentially to wrap a 
geometric constraint system (GCS) around the solid model direct modeling focuses on.  Parametric edits can then be 
made through the associativity (GCS) information layer, and direct edits can be made via the geometry (solid model) 
information layer.  The major issue here is: when an information layer is edited, the changes are not reflected in the 
other automatically.  As a result, the consistency of the two information layers in the pre-edit model is broken, and an 
invalid model is generated. 

There are two types of geometry-associativity inconsistency (GAI).  When parametric edits are made to the model, 
the GCS is changed and becomes inconsistent with the unchanged geometry, which states the first type.  Resolving 
inconsistencies of this kind mainly involves a re-evaluation of the changed GCS.  This can be well-addressed by 
existing work in the area of geometric constraint solving [10].  The second inconsistency type refers to situations 
where the geometry changed by direct edits becomes inconsistent with the unchanged GCS.  Such inconsistencies take 
the form of under-constrained and over-constrained parts in the model, necessitating the maintenance of a well-
constrained model (Section 3 will give detailed descriptions on this).  The major issue of resolving these 
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inconsistencies is that there often exist many resolution options.  Some of them will lead to invalid (non-well-
constrained) models; among the valid models, there will only be one in line with the designer’s intent.  As a result, 
the resolution process is prone to invalid and unintended modeling results, and thus a challenging problem.  In the 
following, GAI refers exclusively to the second type, unless otherwise stated. 

Design intent is generally too complicated to infer satisfactorily by the computer [11,12].  As a result, a completely 
automatic GAI resolution method may not be possible at least at present, and a decision-support scheme may be a 
more practical choice.  A good decision-support scheme should leave the least degrees of intellectual effort to the user.  
GAI resolution consists primarily of two tasks: reasoning inconsistencies and making decisions among resolution 
options.  The former task is to know what inconsistencies a model to be resolved has and to understand how they are 
formed.  The challenge of this task lies in taking out and decoupling the inconsistencies, which can be translated to 
the following problem: decompose the model into minimal over-constrained parts and maximal well-constrained 
parts1.  An automatic inconsistency reasoning method that can effectively address these problems is to be presented 
in this work.  The main benefit of this method is that it allows a complete exclusion of invalid resolution options. 

Then the latter decision-making task becomes much easier as the remaining resolution options are all valid.  In 
other words, the user does not need to worry about generating invalid modeling results.  To further facilitate the choice 
among valid resolution options, this work prioritizes them and then presents the prioritized options incrementally to 
the user for acceptance or rejection.  This will much reduce the required intellectual effort for GAI resolution.  The 
main feature of the prioritization is that it allows a resolution option leading to a smaller model variation to occur first 
in the final prioritization.  Eventually, a decision-support method can be developed for GAI resolution, with guaranteed 
model validity and minimal model variation (up to the user’s discretion). 
 
2. Related work 

Publications related to this work can be classified into three topics and are primarily from two research areas.  The 
topics are (1) constraint state (under-, well-, or over-constrained) characterization (2) optimal model decomposition 
and (3) constraint prioritization.  The two research areas are geometric constraint solving and CAD model 
beautification. 

For the first topic, many methods have been presented in the last three decades, mainly in the area of geometric 
constraint solving.  A thorough review of them can be found in [10].  Among the many methods, the category of 
interest to this work is called the witness configuration method as it has the following advantages: (1) it is 
mathematically sound [13]; (2) it is general and has no limitation on model representation schemes [9]; and (3) it has 
successful real applications/validations [14,15].  The witness configuration method was first proposed in [16] and later 
detailed in [9,13,17,18].  It is based on the property that models of different constraint states have different behavior 
under infinitesimal perturbations made to the model geometry.  Formalizing the different behavior yields the 
mathematical criteria for constraint states.  In this work, this method is to be used for constraint state characterization. 

For the second topic, most publications are also from the area of geometric constraint solving.  The methods related 
to the witness configuration method include [13–15,17].  Although presented in different forms, these methods share 
the same idea: greedy algorithms have been used to attain the minimal over-constrained parts and maximal well-
constrained parts in a model.  As known, greedy algorithms could, however, fail to generate optimal solutions (and 
therefore undesirable decomposition results).  In fact, such failure cases have been observed, as will be shown in 
Section 5.  It is safe to say that the use of greedy algorithms does not give a formulation of the decomposition problem 
but represents an incomplete technical tool.  This work will present a new, precise formulation of the decomposition 
problem. 

For the third topic, related work comes primarily from both of the two previously mentioned areas.  In the 
geometric constraint solving area, the early attempt may be made by [19–21].  They are graph-based and cannot handle 
models having constraint dependencies (except for the simplest structural dependencies) [16],  making them 
inapplicable to this work.  Due to this limitation, recent studies have shifted to the witness configuration method 
[14,15].  The developed methods are, however, restricted to dealing merely with over-constrained models, which 
makes them inapplicable to the general models — having both under-constrained and over-constrained parts — 
considered in this work. 

The CAD model beautification area collects studies of removing imprecisions (and therefore called beautification) 
in reverse engineered models through the guidance of geometric constraints.  Constraint prioritization is needed 
because we need to decide which constraints to use for the beautification.  There are two classes of methods in this 
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area: qualitative and quantitative.  The qualitative scheme prioritizes constraints based on their types and a set of 
heuristics [22–25].  Such methods cannot handle prioritization among constraints having the same type.  This is where 
the quantitative scheme can help.  Existing quantitative methods [26,27] prioritize constraints according to the 
deviation of the nominal parameter value of a constraint from its corresponding dimension in the reverse engineered 
model.  Apparently, this kind of prioritization only works if there are imprecisions in the model, which is not the case 
for this work.  Nevertheless, the qualitative-then-quantitative strategy has been seen to be useful for constraint 
prioritization and is to be followed by this work, with a new quantitative prioritization scheme. 

The above review suggests that the documented studies on the problem of GAI resolution are insufficient: only 
small part of the problem can be solved using existing work, but the other cannot.  New/improved methods are to be 
presented in this paper to address this insufficiency and to attain effective decision-support for GAI resolution. 

 
3. Issues of geometry-associativity inconsistency resolution 

 This section explains the formation of GAI and the challenge of GAI resolution.  When a direct edit is made to a 
model, the geometry information (i.e., a boundary representation solid model [28]) is to be updated.  The resulting 
solid model, or a portion thereof, will have new boundary faces and dimensions, leading to disagreements with the 
constraints in the pre-edit model GCS, see the second and third columns in Fig. 1 for examples.  Hence, the model 
GCS needs to be updated accordingly: replace the parameter values of the constraints with the dimensions of the new 
solid model, and remove any inapplicable constraints, as exemplified by the fourth column in Fig. 1. 

 

Figure 1: Direct edits, GCS updates, and varying constraint state change results (blue faces: push-pulled faces; straight 
arrow: translational push-pull; curved arrow: rotational push-pull). 

 
The GCS update process above is simple in its own right, but it can lead to varying results.  If a valid model (being 

well-constrained) is output as in the top example of Fig. 1, nothing further needs to be done.  If otherwise, there are 
inconsistencies between the geometry information and associativity information in the model, and GAI resolution 
becomes a necessity.  These inconsistencies take the form of under-constraint and over-constraint.  Under-constraint 
means that there are fewer constraints in the model GCS than needed to fully restrict the model geometry, and over-
constraint means that there are more constraints than needed.  The middle example in Fig. 1 shows an under-constraint 

Pre-Edit Model  Updated Model 
Geometry 

Updated Model  
GCS 

Constraint 
State Change Geometry GCS 

 

1. Distance(F1,F3)=1 
2. Distance(F2,F4)=1 
3. Distance(F5,F6)=1 
4. Perpendicular(F1,F5) 
5. Perpendicular(F1,F4) 
6. Perpendicular(F4,F5)  

1. Distance(F1,F3)=1 
2. Distance(F2,F4)=2 
3. Distance(F5,F6)=1 
4. Perpendicular(F1,F5) 
5. Perpendicular(F1,F4) 
6. Perpendicular(F4,F5) 

Well 
To 

Well 

 

1. Distance(F1,F3)=1 
2. Distance(F2,F4)=1 
3. Distance(F5,F6)=1 
4. Perpendicular(F1,F6) 
5. Perpendicular(F1,F4) 
6. Perpendicular(F4,F6)  

1. Distance(F1,F3)=1 
2. (Removed) 
3. (Removed) 
4. Perpendicular(F1,F6) 
5. Perpendicular(F1,F4) 
6. Perpendicular(F4,F6) 

Well 
To 

Under 
 

 

1. Distance(F1,F3)=1 
2. Distance(F5,F6)=1 
3. Perpendicular(F1,F5) 
4. Perpendicular(F1,F4) 
5. Perpendicular(F4,F5) 
6. Angle(F2,F4)=150° 
7. Angle(F2,F5)=60° 
8. Length(E1)=1 

 

1. Distance(F1,F3)=1 
2. Distance(F5,F6)=1 
3. Perpendicular(F1,F5) 
4. Perpendicular(F1,F4) 
5. Perpendicular(F4,F5) 
6. Parallel(F2,F4) 
7. Perpendicular(F2,F5) 
8. Length(E1)=1 

Well 
To 

Over 
 

F4 F3 

F1 
F2 

F5
 

F6 

F4 F3 

F1 
F2 

F5
 

F6 

F4 F3 
F5

 F2 

F6 

F1 
E1
4 
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situation (plane F2 has free motions with respect to other planes).  The bottom example in Fig. 1 shows an over-
constraint situation (constraints 5, 6 and 7 are dependent). 

In GAI resolution, the applied method should always output valid models.  This is, however, not straightforward 
because there exist many resolution options.  Consider the bottom example in Fig. 1.  The over-constraint involves a 
cyclical dependency among constraints 5, 6 and 7.  Removing any constraint not involved in the dependency (i.e., 
constraints 1, 2, 3, 4 or 8) cannot resolve the over-constraint and leads to a failed resolution.  Only removing a 
constraint relevant to the dependency can resolve the over-constraint successfully. 

From the same example, we can also see that the generation of valid modeling results lies in the detection of over-
constrained parts and under-constrained parts.  That is, if the over-constrained part (i.e., constraints 5, 6 and 7) is 
known, invalid resolution options (i.e., constraints 1, 2, 3, 4 or 8) can be excluded, and then chances of generating 
invalid modeling results can be eliminated.  The same applies to under-constraint situations: given degrees of freedom 
(representing under-constraint) of the model, invalid resolution options can be effectively excluded.  Over-constrained 
and under-constrained parts should be attained in a way that a part is irreducible to smaller parts in order to decouple 
the parts and to make reasoning individual inconsistencies easy.  A part being irreducible to smaller parts can be stated 
mathematically as: the part is of minimal size.  For under-constrained parts, minimizing them is equivalent to 
maximizing well-constrained parts, as already noted in footnote #1. 

Even the applied resolution method successfully avoids invalid resolution options, there are often more than one 
valid resolution options.  The options in Table 1 are typical examples of such a situation.  To support the choice among 
valid resolution options, one viable way is to prioritize them and then to recommend them to the user incrementally.  
An effective prioritization scheme should give a good measure of the impact of applying a resolution option — 
removing/adding a constraint from the model GCS — on the model geometry.  This problem is, however, not trivial 
as the qualitative operation of removing/adding constraints has no direct connections to the quantitative notion of 
model geometry. 

In summary, GAI takes the form of over-constrained and under-constrained parts.  The challenge of GAI resolution 
lies in effectiveness towards detecting minimal over-constrained parts and maximal well-constrained parts in the 
model, as well as an effective criterion for prioritizing valid resolution options. 

 
Table 1: Valid resolution options for the bottom example in Fig. 1. 

 
4. Methodology 

4.1. The framework 

The GAI resolution framework used in this work is shown in Fig. 2.  It begins with a well-constrained model and 
a direct edit applied to it, then performs GCS update according to the new model geometry, then sends the updated 
model to an analyzer (the modules in diamond shape) to evaluate its constraint state.  If the model is still well-
constrained, nothing further needs to be done; if not, the analyzer directs the workflow to different inconsistency 
resolution branches.  In both branches, it first takes out information inconsistencies (the two detection modules) and 
then, based on the detection results, generates and prioritizes valid resolution options (the two prioritization modules), 
then presents the prioritized options to the user for decisions.  The model after resolution is sent again to the analyzer 
for making sure that the model has become well-constrained.  This last procedure is necessary because the user can 
do anything beyond what is suggested. 

Essential modules in this framework are the analyzer, detection, and prioritization modules.  Their implementation 
methods are to be presented in the following subsections, respectively.  In particular, the detection and prioritization 
modules address directly the GAI resolution challenge stated in the previous section. 

Updated Model GCS Resolution Option 1 Resolution Option 2 Resolution Option 3 
1. Distance(F1,F3)=1 
2. Distance(F5,F6)=1 
3. Perpendicular(F1,F5) 
4. Perpendicular(F1,F4) 
5. Perpendicular(F4,F5) 
6. Parallel(F2,F4) 
7. Perpendicular(F2,F5) 
8. Length(E1)=1 

1. Distance(F1,F3)=1 
2. Distance(F5,F6)=1 
3. Perpendicular(F1,F5) 
4. Perpendicular(F1,F4) 
5. Perpendicular(F4,F5) 
6. (Removed) 
7. Perpendicular(F2,F5) 
8. Length(E1)=1 

1. Distance(F1,F3)=1 
2. Distance(F5,F6)=1 
3. Perpendicular(F1,F5) 
4. Perpendicular(F1,F4) 
5. (Removed) 
6. Parallel(F2,F4) 
7. Perpendicular(F2,F5) 
8. Length(E1)=1 

1. Distance(F1,F3)=1 
2. Distance(F5,F6)=1 
3. Perpendicular(F1,F5) 
4. Perpendicular(F1,F4) 
5. Perpendicular(F4,F5) 
6. Parallel(F2,F4) 
7. (Removed) 
8. Length(E1)=1 
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4.2. The analyzer module 

The task of this module is to check if there are over-constrained and/or under-constrained parts in the input model.  
The output is just a yes or no; no further information about the parts are needed at this stage.  The authors have 
previously presented a witness configuration method to characterize a model’s constraint state [9].  The method is 
applicable to general models and has a proof of correctness.  It is summarized below. 

The input model’s GCS can be described mathematically by a system of algebraic equations, denoted by !(#) =
0 where the variable # represents coordinates of geometric entities in the model geometry.  The witness configuration 
method examines how the equations !(#) behave under infinitesimal perturbations made to the variable #.  Let Δ# 
represent a perturbation.  The corresponding change made to the equations is given by: 

∆! = )(#)∆# + +(‖∆#‖
-

-

) (1) 

where )(#) is the Jacobian matrix evaluated at point	#.  Here, the perturbation ∆# is parametric and does not carry 
any geometric meanings explicitly.  This issue can be solved by using a transformation matrix /  to relate the 
parametric perturbation ∆# with its geometric counterpart ∆#′ that expresses perturbations in terms of geometric 
motions (translations and/or rotations) as follows: ∆# = /∆#′.  (The construction of matrix / can be found in Section 
3.2, [9].)  Then the relationship between a geometric perturbation ∆#′ and the equation change ∆! is: 

∆! = )(#)/∆#
1

+ +(‖/ ∙ ∆#
1
‖
-

-

) (2) 

For simplicity, we use a single matrix 3 to represent the product )(#)/ and call it the geometric perturbation matrix. 
Models of different constraint states have different change patterns for ∆!  under same perturbations, which 

ultimately leads to different structures on the geometric perturbation matrix.  To be more specific, a model containing 
over-constrained parts yields a matrix 3 having linearly dependent rows.  A model having under-constrained parts 
gives a matrix 3 whose null space is bigger than the nominal free perturbation space.  The nominal free perturbation 
space consists of perturbations that do not change the model geometry, e.g., rigid-body motions.  Following 
immediately, the geometric perturbation matrix of a well-constrained model has no dependent rows, and its null space 
equals the nominal free perturbation space. 

It should be noted that the statements above are valid only when the geometric perturbation matrix 3 is evaluated 
at a carefully selected point called the witness configuration where certain types of constraints has already been 
satisfied by the geometry undergoing perturbation [13].  This requirement is trivial for this work: due to the prior 
procedure of GCS update, all the constraints in the input model’s GCS agree with the input model’s geometry, and 
this geometry thus serves as a perfect witness configuration. 

Figure 2: GAI resolution framework. 
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The formal checking conditions for different constraint states are as follows.  A model is over-constrained if  

4566789:;(3
<

) ≠ ∅ (3) 

A model is under-constrained if 

4566789:;(3) ⊃ 4 (4) 

where 4 denotes the nominal free perturbation space (see Section 3.3, [9] for its construction).  A model is well-
constrained if 

4566789:;(3
<
) = ∅

4566789:;(3) = 4

 (5) 

4.3. The detection module 

The tasks of this module are to attain minimal over-constrained parts and/or maximal well-constrained parts in the 
input model.  Its outputs are to be used as inputs for generating (valid) resolution options.  Besides, these tasks are the 
building blocks of achieving an automatic inconsistency reasoning method.  Different from the constraint state 
characterization problem in Section 4.2, the detection problem here has not yet been clearly formulated, and there is 
a lack of effective methods.  This issue is to be addressed in this subsection. 
 
4.3.1. Minimal over-constraint detection 

First of all, the term minimal over-constraint should be made formal.  An over-constrained part of the input model 
takes the form of a group of constraints having dependencies.  An over-constrained part is minimal if its size is 
minimized.  Such a part only consists of constraints relevant to the dependency; no irrelevant constraints will be 
included. 

As already noted, constraint dependencies yield linearly dependent rows in the geometric perturbation matrix.  To 
be precise, a vector @ ∈ 4566789:;(3<) represents a dependency group, and the nonzero elements of @ indicate the 
constraints involved in this group.  A dependency group being minimal is thus to say that the vector @ has the minimal 
number of nonzero elements, which can be modeled as: 

BCD

E

‖@‖
F
				G. I.				3

<

@ = 0, @ ≠ 0 (6) 

where ‖∙‖
F

 is the ℓ
F

 norm whose mathematical meaning is to count nonzero elements in a vector.  A minimal 
dependency group should be irreducible to smaller dependency groups, meaning all dependency vectors {@

M
}
MOP

Q  
should be linearly independent.  Suppose we have got the first R	 < 	D dependency vectors {@

M
}
MOP

T .  The requirement 
that the next dependency vector is linearly independent with {@

M
}
MOP

T  can be modeled as: 

BCD

E
UVW

‖@
TXP

‖
F
				G. I.				3

<

@
TXP

= 0, @
TXP

≠ 789D(@
P
⋯@

T
) (7) 

The modeling in (7) suggests that dependency vectors are to be attained sequentially.  Solving the optimization 
problem in (7) is not easy due to its non-convexity.  In the following, this optimization problem will be reformulated 
to a typical sparse recovery (a.k.a. compressive sensing) problem, through a series of mathematical manipulations.  
With the reformulation, the problem will become a tractable optimization problem using existing optimization 
techniques.  The reformulation is only of mathematical interest and does not change the essence of the modeling 
expressed in (7) or provide new insights into the problem. 

Divide the basis of 4566789:;(3<) into two parts: 

4566789:;(3
<

) 	= Z
@
P
. . . @

T
[\]\̂

_

`
1
G	abIℎadaD96	:aB86;B;DI

[\\\\\\\\]\\\\\\\\^

e

f (8) 

Then any vector @ ∈ 4566789:;(3<)	 can be represented as a linear combination of the column vectors of ` and g, 
denoted by `h	 + 	gi where h, i are coefficient vectors.  The constraints of the optimization problem in (7) then takes 
the form of @

TXP
= `h	 + 	gi and i ≠ 0.  The inequality i ≠ 0 can be further translated to a condition on the vector 

@
TXP

, as follows.  The equation @
TXP

= `h	 + 	gi  can be expressed in terms of the solution to the following 
optimization problem: 

BCD

j,k

‖@
TXP

− `h − gi‖
-

- (9) 
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The solution to this optimization problem is (Chapter 4, [29]): 

m

h

i
n = o(` g)

<
(` g)p

qP

(` g)
<

@
TXP

 (10) 

i can then be expressed as: 

i = (0 r) m

h

i

n = (0 r)o(` g)
<
(` g)p

qP

(` g)
<

@
TXP

 (11) 

where r is an identity matrix whose dimension is the same as the size of g’s columns.  Simplify the notations in Eq. 
(11) to i = s@

TXP
, and constrain i to lie on a unit sphere in order to avoid a vanished i.  The optimization problem 

in (7) is then transformed into: 

BCD

E
UVW

‖@
TXP

‖
F
				G. I.				3

<

@
TXP

= 0, ∥ s@
TXP

∥
-

= 1 (12) 

which is a typical sparse recovery problem that can be effectively solved with the relaxation method [30]. 
With the formulation (12) in place, a sequential method of attaining minimal over-constrained parts can be made 

available, which is summarized in Algorithm 1.  The algorithm attains individual parts by first solving the optimization 
problem in (12) then getting nonzero elements in the solved @

M
 and finally mapping these elements to their 

corresponding constraints (Lines 4-6). 
 

Algorithm 1: Minimal Over-Constraint Detection 
Input: 3 − the geometric perturbation matrix 
Output: v − minimal over-constrained parts 
1.  v ← ∅  
2.  4 ← Dimo4566789:;(3

<
)p  

3.  for C ← 1 to 4 do 
4.   @

M
← Solve the optimization problem in (12) 

5.   C{@ ← IndexOfNonZeroElements(@
M
) 

6.   s ← MapToConstriants(C{@) 
7.   v ← v ∪ {s}  
8.  end for 
9.  Return v 

 
4.3.2. Maximal well-constraint detection 

A well-constrained part refers to a subset of the model geometry whose induced subsystem from the model GCS 
is well-constrained.  A part’s induced subsystem is the subset of the constraints in the model GCS that are defined 
within the part.  A well-constrained part v is maximal if there is no another well-constrained part v′ such that v ⊂ v′. 

From the framework presented in Fig. 1, it can be seen that the input model for the maximal well-constrained 
detection module contains no over-constrained parts.  The well-constraint checking conditions in Eq. (5) can thus be 
reduced to only one condition: 4566789:;(3) = 4.  A vector @ ∈ 4566789:;(3) describes a free perturbation that 
does not violate any constraints in the model GCS due to the equality Δ! = 3@ = 0 (see Eq. (2)).  Hence, the condition 
4566789:;(3) = 4  essentially means that a well-constrained model’s free perturbations are all nominal free 
perturbations.  When it comes to a part of the model, the checking condition is approximately the same: any free 
perturbations of the geometric entities involved in the part are nominal free perturbations. 

Next, we derive the mathematical condition for a part to be deemed a well-constrained part.  Let r denote the index 
set of the geometric entities in a part of interest, ~ ∈ 4566789:;(3) a free perturbation, and �

M
(~) a function getting 

the component in ~ that corresponds to the C-th geometric entity.  The part represented by r is well-constrained if the 
perturbations Ä�

ÅW

(~)⋯�
ÅÇ
(~)É, ∀~ ∈ 4566789:;(3) are all nominal free perturbations.  Whether a perturbation is a 

nominal free perturbation or not can be examined by seeing if it can be expressed as a linear combination of the basis 
vectors of the space 4.  Let g represent a matrix whose columns are these basis vectors.  The part is well-constrained 
if the following equations are solvable for any ~ ∈ 4566789:;(3): 

�
M
(g@) − �

M
(~) = 0,				C ∈ r (13) 

where @ is the variable and represents the linear combination coefficients. 
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If the part is maximal, any geometric entity R ∉ r  should have the following property: there exists a free 
perturbation ~ ∈ 4566789:;(3)  such that the perturbations Ä�

Å
W

(~)⋯�
Å
Ç

(~), �
T
(~)É  are not nominal free 

perturbations.  To state mathematically, the following equations should have no solution for a certain ~ ∈
4566789:;(3): 

�
M
(g@) − �

M
(~) = 0, C ∈ r

�
T
(g@) − �

T
(~) = 0

	 (14) 

Or equivalently, any solution to the part �
M
(g@) − �

M
(~) = 0, C ∈ r leads to the inequality �

T
(g@) − �

T
(~) ≠ 0.  This 

property is the key to attaining maximal well-constrained parts. 
Suppose we want to find the largest well-constrained part in the input model.  This part having the maximal size 

means that, in the following linear system, the number of equations that can be satisfied is maximal: 

g@ − ~ = 0,				∀~ ∈ 4566789:;(3) (15) 

Eq. (15) can be rewritten in the following matrix form: 

g# − ! = 0 (16) 

where ! is a matrix whose columns are the basis vectors of 4566789:;(3).  Maximizing the number of satisfied 
equations in (16) is equivalent to minimizing the number of unsatisfied equations, that is: 

BCD

Ü

		D5Bá;b	a~	DaDi;ba	baàG	a~	g# − ! (17) 

Let b
M
 be the C-th row of g# − !.  b

M
 is a nonzero row iff ‖b

M
‖
-
= âb

M
∙ b
M

<

≠ 0 where ‖∙‖
-
 denotes a vector’s ℓ

-
 norm.  

If we collect all the rows’ ℓ
-
 norms into a vector, denoted by b, then the number of nonzero rows of g# − ! is the 

ℓ
F
	norm of b .  This sequential application of two norms is often called the mixed ℓ

F
/ℓ

-
 norm, denoted by 

‖g# − !‖
-,F

.  The problem in (17) can then be modeled as: 

BCD

Ü

	‖g# − !‖
-,F

 (18) 

The essential part of this optimization problem is the ℓ
F
	norm.  Then (18) is, again, a sparse recovery problem.  Let 

X
∗ be the minimizer of this optimization problem; the zero rows of the matrix g#∗ − ! correspond to the largest well-

constrained part in the model. 
The second largest well-constrained part (and so forth) can be attained similarly.  After the largest well-constrained 

part is attained, we can focus on the remaining geometric entities in the model, then update the matrices g and ! 
accordingly, and finally solve the optimization problem in (18) again.  The update of g and ! can be done by removing 
the rows that correspond to the geometric entities in the known largest well-constrained part.  Apparently, by repeating 
the above updating and solving procedures, all the maximal well-constrained parts can be attained sequentially, from 
the largest to the smallest.  Algorithm 2 shows the procedures of doing so.  In particular, Lines 7 and 8 exclude the 
detected well-constrained part from the model and store it as a new maximal well-constrained part. 

 
Algorithm 2: Maximal Well-Constraint Detection 
Input: g, ! − the nominal free perturbation basis and free perturbation basis 
Output: v − maximal well-constrained parts 
1.  v ← ∅  
2.  ç ← GetAllGeometricEntities()  
3.  while |ç| ≠ 0 do 
4.   Update g and ! 
5.   #

∗

← Solve the optimization problem (18) 
6.   r ← IndexOfZeroRows(g#∗ − !) 
7.   ç

1

← {ç(C)|		C ∈ r} , ç ← ç−ç
1  

8.   v ← v ∪ {ç
1

}  
9.  end while 
10.  Return v 
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4.4. The prioritization module 

The tasks of this module are to generate valid resolution options and prioritize these options in order to present 
them to the user incrementally.  Similar to the situation for the detection module, there is a lack of effective methods 
for the generation and prioritization tasks here.  This subsection serves to address this issue. 
 
4.4.1. Resolution Option Generation 

The previous detection module has prepared the input model’s over-constraint information in the form of groups 
of minimal dependent constraints.  As the groups are minimized and cannot be decomposed into smaller subgroups, 
there is only one cyclical constraint dependency in each group.  As a result, the removal of any constraint in a group 
can break the cyclical dependency in this group and resolve the associated over-constraint.  In other words, the valid 
resolution options for resolving the over-constraint in a group are the group’s constraints themselves. 

When considering all the minimal over-constrained parts in the input model, resolution option generation should 
be done dynamically for them.  One can imagine a situation in which two minimal over-constrained parts have a 
common constraint; if this constraint is chosen for resolving one part, the over-constraint in the other part is resolved 
automatically.  Therefore, resolution option generation for all the parts should not be done parallelly.  Instead, the 
generation-then-resolution process should be done one part by one part. 

The given under-constraint information of the input model takes the form of maximal well-constrained parts.  The 
degrees of freedom (DOFs) between these parts describe the model’s under-constraint.  As the parts are maximal, 
viable constraints to eliminate the DOFs are those bridging any two of the parts while not adding new over-constraint 
to the model.  Any constraints that are defined within individual parts are invalid resolution options. 

To attain valid resolution options, this work employs a two-step generation scheme.  The first step is to generate a 
naïve constraint set consisting of all possible bridging constraints between two maximal well-constrained parts of 
interest.  This is to be done by looking up a constraint table using the geometric entity pair from respective parts as 
the key.  Any constraints that can be expressed by the constraint types in Table 2 will be generated and stored in the 
naïve constraint set.  The second step is to remove constraints in the naïve constraint set that will cause over-constraint 
with existing constraints.  The removal process is trivial due to the over-constraint checking condition made available 
in Section 4.2.  We just need to use this condition to check every generated constraint. 

The resolution options given by the two-step generation scheme above need to be updated dynamically.  When 
one of the generated resolution options is chosen by the user and added to the model, some of the previously valid 
resolution options could become invalid due to the newly added constraint.  To remove such resolution options, we 
just need to perform the second step described above again. 

From the descriptions above, the generation of valid resolution options may seem easy.  This is because the 
generation process is under a very advantageous situation where all information inconsistencies in the input model 
have been clearly isolated and decoupled.  With this advantage, it becomes trivial to reason the formation of individual 
information inconsistencies.  For example, every constraint in a minimal over-constrained part contributes to the 
associated constraint dependency; thereby, the formation of the information inconsistency is obvious.  In this regard, 
the detection methods presented previously gives an automatic inconsistency reasoning method, which in turn allows 
an easy generation of valid resolution options. 

 
Table 2: Geometric constraint look-up table. 

Geometric Constraint Equation Representation 
Angle ö between directions {

P
, {

-
 {

P

<

{
-
= :aG	(ö) 

Parallel directions {
P
, {

-
 {

P
× {

-
= 0 

Distance 6 between two positions 8
P
, 8
-
 ‖8

P
− 8

-
‖
-
= 6 

Equal position 8
P
, 8
-
 8

P
= 	8

-
 

Equal angle parameters ö
P
, ö

-
 ö

P
= ö

-
 

Equal length parameters 6
P
, 6
-
 6

P
= 6

-
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4.4.2. Resolution Option Prioritization 

Resolution options take the form of geometric constraints that are to be added to or removed from the input model.  
Prioritizing them is to attain a permutation of them for putting them in a certain order.  The final permutation is 
determined by a binary comparison operation that accepts two constraints as arguments and determines which of them 
should occur first in the final permutation.  In this work, a two-level comparison scheme is employed, a hybrid of the 
existing work and a new method. 

The first level is called the rough comparison and based on constraint types.  Existing studies [22–25] have shown 
that certain types of constraints could carry more engineering knowledge and occur more frequently than others, and 
that a type-based comparison can be effective.  For this reason, the type-based comparison method is also empolyed 
in the present work, and Table 3 shows the type precedence2 used, which is an adaption from [25].  This kind of 
comparison has a limitation that it cannot handle situations where two constraints have the same type/precedence.  
This is the role to be played by the comparison at the second level, referred to as the fine comparison. 

 
Table 3: Rough prioritization based on constraint type. 

Geometric Constraint Precedence  
(1: high, 5: low) Entities Type 

Face Face Parallel/perpendicular directions, 
Distance between positions,  
Equal size parameters 

1 

General angle between directions  2 

Face Edge Parallel/perpendicular directions, 
Distance between positions 

2 

General angle between directions 4 

Face Vertex Distance between positions 5 

Edge Edge Equal angle/length parameters, 
Parallel/perpendicular directions, 
Distance between positions 

3 

General angle between directions 5 

Edge Vertex Distance between positions 5 

Vertex Vertex Distance between positions 5 
 
The proposed fine comparison scheme is based on the following observation: parameter changes made to different 

constraints in a model often yield different degrees of changes made to the model geometry.  This can be understood 
with the help of the following formulation.  Let the model geometry be represented by 3(8

P
⋯8

Q
), where 8

P
⋯8

Q
 are 

constraint parameters; and assume that there is a one-to-one correspondence between parameters and constraints, for 
simplifying the discussion.  Two parameter changes �8

M
 and �8

ú
 will yield two model geometry changes Δ3

M
 and Δ3

ú
, 

where Δ3
M
= 3(8

P
⋯8

M
+ �8

M
⋯8

Q
) − 3(8

P
⋯8

M
⋯8

Q
), and the same for Δ3

ú
.  Δ3

M
/�8

M
 and Δ3

ú
/�8

ú
 are generally 

not equal, and the constraint corresponding to the larger one has more impact on the model geometry than the other.   
For a constraint with a high rate of Δ3

M
/�8

M
, a small parameter change made to it will lead to a large change on 

the model geometry, which may lead to an unpredictable model variation and a large deviation from the likely original 
design intent.  A model under such a situation is said to have a poor constraining scheme [11].  Because of these, the 
rate of model geometry change (to be called change rate when the meaning is clear from context) is chosen to quantify 

                                                
2 This table does not include the precedence for compound constraints.  A compound constraint’s precedence is 
defined as the highest precedence of its constituent constraints.  For example, a tangent constraint between a plan and 
a cylinder has two constituent constraints: perpendicular directions and distance between positions.  Its precedence is 
then the higher one of these two, which in this case are both 1. 
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a constraint’s impact on the model geometry.  With this notion, it is expected that resolution options leading to a model 
with the least change rate will be chosen.  Then the least model variations could be expected for later parametric edits. 

In the discussion above, the model geometry change was loosely denoted by Δ3
M
 without a formal definition.  We 

next give a mathematical modeling of this notion.  It will begin with comparing constraints in a well-constrained 
model and then extend the result to general models involving under-constrained, well-constrained, and over-
constrained parts.  Certainly, there is no need to prioritize constraints in a well-constrained model since no resolution 
is needed for such a model, but starting with it allows an easier presentation of the modeling. 

Recall that a model’s GCS can be represented by a system of algebraic equations.  This time the system is to be 
denoted by !(#, v) = 0, v being constraint parameters.  A nonzero parameter change Δv will lead to a change Δ# 
made to the model geometry, and they are related by ùû

ùÜ

Δ# +

ùû

ùü

Δv = 0 where ùû
ùÜ

 is the Jacobian matrix that was 

denoted by )(#) in Eq. (1).  If we substitute ùû
ùÜ

 with the geometric perturbation matrix 3, the term Δ# will have a clear 
geometric meaning: geometry change expressed in terms of geometric motions.  The relationship between Δv and Δ# 
then takes the following form: 

3†# +

ùû

ùü

†v = 0 ⇔ 3†# = −

ùû

ùü

†v (19) 

Among all geometry changes, we are interested in the one corresponding to a parameter change made merely to one 
constraint, say the C-th constraint.  Such a parameter change can be represented by a special Δv: Δv(C) = 1 and 
Δv(¢ ≠ C) = 0.  Solving Eq. (19) with this Δv will give the intended geometry change.  Also, as Δv(C) has the unit 
magnitude, the solved Δ# gives directly the change rate for the C-th constraint. 

It seems that the term Δ# is a good candidate to define Δ3
M
.  However, Δ# is not invariant under rigid-body 

motions.  For this reason, we slightly modify this term, introducing the notion of relative geometry change.  Δ# 
represents the absolute change made to the model geometry, and its C-th component Δ#(C) describes the absolute 
change made to the C-th geometric entity.  We define the relative change Δ#′(C) for the C-th geometric entity as 
follows: 

†#
1
(C) =

P

∑ §
•¶¶

∑ à
Mú
o†#(C) − †#(¢)p

ú
 (20) 

where the weighted sum is taken over all the neighboring geometric entities ¢.  If rewritten in a matrix form, Eq. (20) 
becomes Δ#1 = ßΔ# with the transformation matrix ß being: 

ß
Mú
= ®

1																		¢ = C

−

§
•¶

∑ §
•¶¶

						¢ ≠ C	9D{	¢	CG	D;CdℎáabCDd	Ia	C

0																	aIℎ;bàCG;

 (21) 

With the notion of relative geometry change in place, Δ3
M
 is to be defined as the following quantity: 

‖†#
1
‖
-
= ‖ß†#‖

-
= ©ß3

qP
ùû

ùü

†v
M
©

-

 (22) 

The second equality is due to Eq. (19).  In the equation, Δv
M
 denotes the vector: Δv(C) = 1 and Δv(¢ ≠ C) = 0.  One 

can easily verify that this quantity is invariant under rigid-body motions.  In addition, the formulation above has an 
interesting geometric meaning.  In differential geometry, the matrix ß is known as the Laplace operator that can be 
used to measure a model’s (discrete) mean curvatures [31,32].  Hence, the quantity in (22) approximately measures 
how the model’s total mean curvature varies with the constraint parameter change.  This may partly explain the 
effectiveness of the proposed constraint prioritization scheme. 

Evaluating the change rate for a constraint in an over-constrained model should be done based on the constraints 
having dependency with it.  This is because we want to know the impact of removing this constraint on the model 
geometry rather than its current impact on the model geometry.  In other words, the constraint in a minimal over-
constrained part that is preferred to being removed should lead to the smallest summed change rate of the other 
constraints in the part.  Let a minimal over-constrained part be represented by d.  The evaluation of the change rate 
for a constraint in d, say :

M
, is to be based on the following quantity: 

∑ ©ß3
qP

ùû

ùü

†v
ú
©

-

™
¶
∈´,ú¨M

 (23) 
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This time, the term 3qP denotes the pseudo inverse of 3, instead of the ordinary inverse [29].  This is because the 
matrix 3 is neither full column rank nor full row rank for general models; the pseudo inverse should be used for such 
matrices. 

For an under-constrained model, the evaluation is performed for constraints to be added to the model rather than 
the constraints already presented in the model.  This is to be done by first virtually adding a resolution option of 
interest to the model, and then evaluating the change rate for this constraint using the “new” model based on a variant 
of the quantity in Eq. (22): 

©ß3
qP

ùû

ùü

†v
QXP

©

-

 (24) 

where the term 3qP is also the pseudo inverse of 3, and D is the number of constraints before the virtual addition. 
Algorithm 3 summarizes the procedures used to compare two resolution options given by the previous resolution 

option generation module.  Lines 3 and 8 perform the rough comparison, and Lines 5 and 6 the fine comparison.  The 
Boolean variable !≠`3 is used to control the different priority assignments for over-constraint resolution options and 
under-constraint resolution options.  For over-constraint resolution options, the algorithm outputs the constraint with 
the lower type precedence or with the same type precedence but a lower summed change rate, while for under-
constraint resolution options, it outputs the constraint with the higher type precedence or with the same precedence 
but a lower change rate. 

So far, all the essential modules in the GAI resolution framework presented in Fig. 2 have been made available.  
Assembling them together as in the framework gives the final overall algorithm of GAI resolution.  As the algorithm 
follows exactly the workflow given in the framework, we do not further present it as an additional algorithm box.  
With the algorithm, what the user needs to do is just to accept or reject the incrementally presented resolution 
suggestions; all the decision-support information will be generated automatically by the computer. 

 
Algorithm 3: Resolution Option Comparison 
Input: :

M
, :
ú
− two given resolution options 

Output: : − the constraint with a higher removal/addition priority 
1.  if :

M
, :
ú
	are over-constraint resolution options then !≠`3 ← /ßÆØ else !≠`3 ← !`≠7Ø 

2.  if :
M
 has a higher type precedence than :

ú
 then // use Table 3 

3.   if !≠`3 then : ← :
ú
 else : ← :

M
 

4.  else if :
M
 has the same type precedence as :

ú
 then 

5.   if !≠`3 then b
P
, b
-
← Evaluate (23) for :

M
, :
ú
 else b

P
, b
-
← Evaluate (24) for :

M
, :
ú
 

6.   if b
P
> b

-
 then : ← :

ú
 else : ← :

M
 

7.  else 
8.   if !≠`3 then : ← :

M
 else : ← :

ú
 

9.  Return : 
 

5. Results 

5.1. Implementation 

The methods presented previously have been implemented using C++ on top of the direct modeling system 
developed in the authors’ previous work [3].  Fig. 3 shows the graphical user interface of the implemented GAI 
resolution prototype, using QT (version 5.7).  All the numeric solving/optimization was carried out using the C++ 
library Eigen (version 3.2.9) and MATLAB (version R2017a).  To start GAI resolution, the user presses the 
Analyze/Resolve button in the inconsistency resolution toolbox (labeled as 3).  The user has the option to let the 
computer take care of all the work (including inconsistency reasoning and decision-making) by checking the two Auto 
options in the toolbox.  After the activation is done, the computer analyzes the constraint state of the model.  If the 
model if well-constrained, a message box pops up to notify the user of this state; otherwise, a panel pops up to show 
the inconsistency detection results (labeled as 4) and the generated resolution suggestions (labeled as 5).  The 
suggestions are numbered according to their priorities.  The user then chooses among these suggestions. 
 
5.2. Case studies and comparisons 

The presented methods have been tested using models from both real and simulated data, and some of the results 
are to be provided.  The effectiveness of the detection module will be shown by comparisons with existing methods.  
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The effectiveness of the prioritization module, in particular the change rate notion, will be demonstrated first through 
two simple examples and then via two comprehensive cases that are based on real-world mechanical parts. 

Fig. 4 shows the under-constrained model3 used to demonstrate comparisons between the proposed method and 
the previous greedy method [17] for maximal well-constraint detection.  The comparison results are depicted in Fig. 
5.  The greedy method did not give the optimal result, while the proposed method was able to.  This confirms our 
previous statement that the greedy method could generate undesirable detection results and only represent an 
incomplete technical tool rather than an appropriate formulation of the detection problem.  A similar situation occurred  
for minimal over-constraint detection (Fig. 6).  The over-constraint is a consequence of the dependency among 
constraints C1, C2, C5 and C7; and constraint C8 is a duplication of constraint C7.  Even for this simple case, the 
greedy method gave wrong detection results (Fig. 6c).  The greedy method uses the following simplified procedures 
to conduct minimal over-constraint detection (Section 3, [17]): (1) begin with a seed constraint, say C1; (2) then iterate 
through all constraints to greedily find a maximal subset of independent constraints, which is {C1-C6} for this case; 
(3) finally check the dependencies of the constraints not presented in the subset with the constraints in the subset, 
resulting in the two over-constrained parts shown in Fig. 6c.  However, the model has an over-constrained part with a 
smaller size as shown by Part II in Fig. 6b.  The reason for the greedy method’s ineffectiveness is that the maximal 
independent subset is not unique, and this non-uniqueness could lead to wrong detection results.  

 In the prioritization module, the core part is the change rate notion.  Figs. 7 and 8 show the application results of 
this notion, with the weights in Eq. 21 being à

Mú
= 1.  According to the results, we prioritized the resolution options, 

and if the two top options are chosen, the two models become well-constraint immediately.  The resulting constraining 
schemes are also those commonly used in practice.  These two examples are fairly simple.  So another two complex 
examples were conducted to further show the effectiveness of this notion, as well as the whole decision-support 
method.  One of them is based on a crank model (Fig. 9a), and the other is based an engine bracket model (Fig. 12a). 

                                                
3 In this model and the later crank model, the plane-cylinder distance constraint refers to the distance from the 
cylinder’s position to the plane. 

1 

Direct Modeling Toolbox 
List of Model Constraints 
Inconsistency Resolution Toolbox 
Information of DOF in the Model 
List of Resolution Suggestions 

2 

4 
3 

5 

Figure 3: Graphical user interface of the GAI resolution prototype. 
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Figure 4: An under-constrained model. 
Top 

F14 F11 

F15 

Side 

F3 F2 

F4 

F5 

F6 

F1 

Front 

F9 

F13 

F12 F10 

F8 

F7 

Distance(F1,F7)=34 
Distance(F4,F7)=40 
CoplanarAxis(F1,F4,F7) 
Coaxial(F1,F8,F9) 
Coaxial(F7,F10) 
Tangent(F4,F2) 
Tangent(F4,F3) 
Tangent(F10,F14) 
Distance(F9,F14)=30 
Tangent(F10,F15) 
Distance(F9,F15)=30 
Perpendicular(F6,F7) 
Distance(F5,F6)=20 
Distance(F6,F11)=15 
Distance(F11,F12)=40 
Distance(F12,F13)=15 

Figure 5: Comparison results of maximal well-constraint detection: (a) the proposed method; and (b) the 
greedy method. 

(b) 

(a) 

Part I:{F3,F4,F5,F6,F11,F12,F13} 
Size: 7  

Part 
II:{F1,F7,F8,F9,F10,F14,F15} 

Part III:{F2} 
Size: 1 

Part I:{F1,F4-F15} 
Size: 13  

Part II:{F3} 
Size: 1 

Part III:{F2} 
Size: 1 
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The direct edit involved in the crank-based case study is depicted in Fig. 9b, which translated the blue faces along 
the directions indicated by the red arrows.  The changes made to the model geometry were the removal of faces F2 
and F3, which in turn led to the removal of constraints C6, C7 and C10-C13 in the model GCS, as shown by the GCS 
update in Fig. 9c.  To simplify the presentation, constraints for the model’s right part (in the dashed rectangle, Fig.9a) 
were omitted, as this part is the same as the left part.  The GCS update resulted in an under-constrained model, a result 
given by the analyzer module in the framework.  The detection module found that there were three maximal well-
constrained parts in the model, which are labeled as Maximal Well-Constrained Parts I, II and III in Fig. 10.  In this 
figure, the resolution options generated by the prioritization module are also shown, in the form of two lists of 
suggestions.  Due to the large number of resolution suggestions produced, we do not present them in detail; only the 
primary suggestions and those to be referenced in later discussions are presented. 

The DOF between part I and part II is a rotation of face F5 about the axis of face F6.  Each of the constraints in 
the left suggestion list can eliminate this DOF, and the user has the discretion to add which of them.  In particular, if 
the user lets the computer take care of everything, the top suggested constraint will be used (in the red rectangle).  
Once a suggested constraint is selected, there is no DOF between part I and part II anymore; then, these two parts will 
be merged to form a new maximal well-constrained part, as shown by the model labeled as Merged Maximal Well-
Constrained Part.  Following the same procedures as just described, the DOFs between this merged part and part III 
can be eliminated, and then a well-constrained crank model is attained. 
 

 

Figure 6: Comparison results of minimal over-constraint detection: (a) an over-constrained model; (b) the proposed 
method; and (c) the greedy method. 

F4 F3 
F5

 
F2 F1 

F6 

Part I:{C1,C2,C5,C7} 
Part II:{C7,C8} 
 

Distance(F1,F3)=1 
Distance(F2,F4)=1 
Distance(F5,F6)=1 
Perpendicular(F1,F5) 
Perpendicular(F1,F4) 
Perpendicular(F4,F5) 
Perpendicular(F2,F3) 
Perpendicular(F2,F3) 

 

(a) (b) 

(c) 
Part I:{C1,C2,C5,C7} 
Part II:{C1,C2,C5,C8} 
 

Figure 7: Application results of the change rate notion to an over-constraint model. 

Distance(F1,F3)=1 
Distance(F5,F6)=1 
Perpendicular(F1,F5)  
Perpendicular(F1,F4)  
Perpendicular(F4,F5)  
Parallel(F2,F4) 
Perpendicular(F2,F5) 
Length(E1)=1 
 

F4 

F5 
F3 

F2 

F6 

F1 
E1 

Resolution 
Option 

Summed 
Rate 

Remove C5 2.2500 
Remove C7 2.2500 
Remove C6 3.1250 

 

Figure 8: Application results of the change rate notion to an under-constraint model. 

Resolution Option Change Rate 
Add Distance(F4,F6) 0.0258 
Add Distance(F2,F6) 0.0258 
Add Perpendicular(F6,F3) 1.0172 
Add Perpendicular(F6,F1) 1.0172 
Add Perpendicular(F6,F5) 1.1806 
Add Perpendicular(F6,F7) 1.1806 
Add Perpendicular(F6,F9) 1.1806 

⋮ ⋮ 
 

F4 

F9 

F1 

F3 
F5 

F2 

F6 
F7 

Distance(F1,F3)=10 
Distance(F2,F4)=15 
Distance(F5,F9)=10 
Perpendicular(F1,F2) 
Perpendicular(F1,F9) 
Perpendicular(F2,F9) 
Distance(F5,F7)=5 
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Figure 9: A crank model: (a) face indexing; (b) a direct edit; and (c) GCS update. 

(a) (b) 

Side Front 

F3 F2 

F4 F5 

F6 

F7 

F8 

F1 

F9 

F11 

F12 

F10 

F13 

F15 

F16 

F14 
F18 F17 

Top 
(c) 

Original Constraints Updated Constraints 
C1. Distance(F1,F9)=55 
C2. Distance(F6,F9)=40 
C3. CoplanarAxis(F1,F6,F9) 
C4. Coaxial(F1,F10,F11) 
C5. Coaxial(F9,F12,F13) 
C6. Tangent(F1,F2) 
C7. Tangent(F1,F3) 
C8. Tangent(F6,F5) 
C9. Tangent(F6,F4) 
C10. Angle(F2,F4)=16.92°  
C11. Angle(F3,F5)=16.92° 

C12. Distance(F2,F9)=30 
C13. Distance(F3,F9)=30 
C14. Tangent(F15,F11) 
C15. Distance(F15,F12)=30 
C16. Tangent(F16,F11) 
C17. Distance(F16,F12)=30 
C18. Perpendicular(F8,F6) 
C19. Distance(F7,F8)=20 
C20. Distance(F8,F14)=15 
C21. Distance(F14,F17)=40 
C22. Distance(F17,F18)=15 

C1. Distance(F1,F9)=34 
C2. Distance(F6,F9)=40 
C3. CoplanarAxis(F1,F6,F9) 
C4. Coaxial(F1,F10,F11) 
C5. Coaxial(F9,F12,F13) 
C6. Removed 
C7. Removed 
C8. Tangent(F6,F5) 
C9. Tangent(F6,F4) 
C10. Removed 
C11. Removed 

C12. Removed 
C13. Removed 
C14. Tangent(F15,F11) 
C15. Distance(F15,F12)=30 
C16. Tangent(F16,F11) 
C17. Distance(F16,F12)=30 
C18. Perpendicular(F8,F6) 
C19. Distance(F7,F8)=20 
C20. Distance(F8,F14)=15 
C21. Distance(F14,F17)=40 
C22. Distance(F17,F18)=15 

 

Figure 10: Resolution flow, maximal well-constrained parts, and resolution options/suggestions for the crank 
model. 

Maximal Well-
Constrained Part I 

Maximal Well-
Constrained Part II 

Prioritized Resolution 
Suggestions 

(To Be Added) 

Distance(F5,F1)=30  

Distance(F5,F10)=30  

Distance(F5,F11)=30  

Distance(F5,F9)=39.89 

Distance(F5,F12)= 39.89 

⋮ 

Angle(F5,F16)=16.92°  

Angle(F5,F15)=163.08°  

⋮ 
 

Merged Maximal 
Well-Constrained Part 

Maximal Well-
Constrained Part III 

Prioritized Resolution 
Suggestions 

(To Be Added) 

Distance(F4,F1)=30   

Distance(F4,F10)=30 

Distance(F5,F11)=30  

Distance(F4,F9)=39.89 

Distance(F4,F12)= 39.89 

⋮ 

Angle(F4,F5)=146.16° 

Angle(F4,F15)= 163.08°  

Angle(F4,F16)= 16.92 °  

⋮ 
 

Final Well-
Constrained Model 
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Figure 11: Increase the dimension leading to varied modeling behavior under different resolution decisions for 
the crank model. 

Model Variation: 185.39 Model Variation: 188 

(a) (b) (c) 
34

 

54
 

54
 

Figure 12: An engine bracket model: (a) face indexing; (b) a direct edit; and (c) GCS update (Dis: Distance, Ang: 
Angle, Per: Perpendicular, Par: Parallel, Tan: Tangent). 
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F4 

F2 

F15 F18 
F17 
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F19 

F20 
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F22 F23 F24 

F25 F26 

F27 
F28 F29 

F30 

Original Constraints Updated Constraints 
C1. Dis(F1,F3)=210 
C2. Dis(F2,F4)=80 
C3. Dis(F5,F6)=10 
C4. Dis(F7,F8)=10 
C5. Dis(F9,F10)=10 
C6. Dis(F11,F12)=10 
C7. Dis(F13,F14)=10 
C8. Per(F1,F2) 
C9. Per(F2,F6) 
C10. Per(F1,F6) 
C11. Per(F2,F8) 
C12. Per(F2,F10) 
C13. Per(F2,F12) 
C14. Coplanar(F6,F14) 
C15. Ang(F1,F7)=30° 
C16. Ang(F3,F11)=30° 
C17. Dis(F1,Edge(F6,F8))=40.77 
C18. Dis(F3,Edge(F12,F14))=40.77 
C19. Dis(F6,F23)=72 
C20. Dis(F2,F23)=40 
C21. Dis(F10,F23)=32 
C22. Dis(F1,F15)=75 
C23. Dis(F3,F18)=75 

C24. Dis(F15,F16)=10 
C25. Dis(F17,F18)=10 
C26. Coaxial(F23,F25) 
C27. Dis(F14,F24)=72 
C28. Dis(F2,F24)=40 
C29. Coaxial(F24,F26) 
C30. Tangent(F23,F19) 
C31. Tangent(F23,F20) 
C32. Tangent(F24,F21) 
C33. Tangent(F24,F22) 
C34. Ang(F19,F4)=20° 
C35. Ang(F20,F2)=20° 
C36. Ang(F21,F4)=20° 
C37. Ang(F22,F2)=20° 
C38. Dis(F27,F1)=10 
C39. Dis(F27,F2)=20 
C40. Dis(F28,F1)=10 
C41. Dis(F28,F4)=20 
C42. Dis(F29,F3)=10 
C43. Dis(F29,F2)=20 
C44. Dis(F30,F3)=10 
C45. Dis(F30,F2)=20 

C1. Dis(F1,F3)=210 
C2. Dis(F2,F4)=80 
C3. Dis(F5,F6)=10 
C4. Dis(F7,F8)=10 
C5. Dis(F9,F10)=10 
C6. Dis(F11,F12)=10 
C7. Dis(F13,F14)=10 
C8. Per(F1,F2) 
C9. Per(F2,F6) 
C10. Per(F1,F6) 
C11. Per(F2,F8) 
C12. Ang(F2,F10)=110° 
C13. Per(F2,F12) 
C14. Coplanar(F6,F14) 
C15. Ang(F1,F7)=30° 
C16. Ang(F3,F11)=30° 
C17. Dis(F1,Edge(F6,F8))=40.77 
C18. Dis(F3,Edge(F12,F14))=40.77 
C19. Dis(F6,F23)= 56.99 
C20. Dis(F2,F23)=45.10 
C21. Dis(F10,F23)=32 
C22. Dis(F1,F15)=75 
C23. Dis(F3,F18)=75 

C24. Dis(F15,F16)=10 
C25. Dis(F17,F18)=10 
C26. Coaxial(F23,F25) 
C27. Dis(F14,F24)=56.99 
C28. Dis(F2,F24)=45.10 
C29. Coaxial(F24,F26) 
C30. Tangent(F23,F19) 
C31. Tangent(F23,F20) 
C32. Tangent(F24,F21) 
C33. Tangent(F24,F22) 
C34. Par(F19,F4) 
C35. Ang(F20,F2)=40° 
C36. Par(F21,F4) 
C37. Ang(F22,F2)=40° 
C38. Dis(F27,F1)=10 
C39. Dis(F27,F2)=20 
C40. Dis(F28,F1)=10 
C41. Dis(F28,F4)=20 
C42. Dis(F29,F3)=10 
C43. Dis(F29,F2)=20 
C44. Dis(F30,F3)=10 
C45. Dis(F30,F2)=20 

 

(a) 

(c) 

(b) 
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Different selections of suggested resolution options will lead to different modeling behavior under parametric edits.  
Fig. 11 shows the varied modeling behavior of the crank model for different resolution decisions.  The tested parameter 
change was made to a key dimension that relates all of the three maximal well-constrained parts.  Fig. 11b shows the 
result of choosing the top suggested constraints; Fig. 11c shows the result of choosing two other suggested constraints: 
`Dd6;(F5, F16) = 16.92° and `Dd6;(F4, F5) = 146.16°.  As expected, the resolution decision whose constraints 
occurred first in the recommendation lists yielded a less model variation value.  From an intuitive point of view, the 
model’s shape in Fig. 11a is preserved better in the model of Fig. 11b than in that of Fig. 11c, which can demonstrate 
the effectiveness of the change rate notion. 

The case study above involves merely under-constraint, and thus it allows us to focus on the validation of modules 
in the under-constraint resolution branch in the framework.  This, on the other hand, implies that modules in the other 
branch were not executed.  For this reason, the bracket-based case study was conducted.  The applied direct edit and 
the associated GCS update for this case study are shown in Fig. 12.  These changes led to two minimal over-constrained 
parts {C2,C20,C30,C34} and {C2,C28,C32,C36}.  Due to the symmetry of the model, these two parts have similar 
configurations.  We thus only need to focus on one of them, and the other can be resolved with the same process.  
Take part I as an example.  The prioritization of its four resolution options is shown in the mid-left rectangle in Fig. 
13.  As in the previous case study, the user has the discretion to remove any of them and, if the user decides not to 
control the resolution, the top suggested constraint will be removed.  Once a suggested constraint is selected and 
removed, the cyclic dependency in the group under resolution is broken, and the associated over-constraint is resolved. 

Fig. 14 shows the modeling behavior of different resolution decisions under a same parametric edit.  Fig. 14b 
shows the result of choosing the top suggested constraints, i.e., removing constraints C34 and C36.  Fig. 14c shows 
the result of choosing two other suggested constraints: removing constraints C30 and C32.  As can be seen from the 
model variation values in Fig. 14b and Fig. 14c, the proposed methods, again, assigned a higher priority to the 
resolution suggestions that can lead to a less model variation and a better resemblance to the original model.  It should 
be noted here that the two decisions behind Fig. 14b and Fig. 14c resulted in under-constraint in the model, which 
were resolved by adding constraints `Dd6;(F19, F9) = 70° , `Dd6;(F21, F9) = 70° , and ∫CGI9D:;(F19, F4) =
18.71, ∫CGI9D:;(F21, F4) = 18.71, respectively. 

 
5.3. Limitations and discussion 

The varied modeling behavior shown in Fig. 11 and Fig. 14 has been presented to three experienced mechanical 
engineers in the university’s machine shop.  They all chose Fig. 11b and Fig. 14b over those depicted in Fig. 11c and 

Figure 13: Minimal over-constrained parts and resolution options/suggestions for the braket model. 

Prioritized Resolution 
Suggestions 

(To Be Removed) 

C34: Parallel(F19,F4) 

C30: Tangent(F23,F19) 

C20: Distance(F2,F23)=45.10 

C2:   Distance(F2,F4)=80 

Minimal Over- 
Constrained Part I 

C2:   Distance(F2,F4)=80 

C20: Distance(F2,F23)=45.10 

C30: Tangent(F23,F19) 

C34: Parallel(F19,F4) 

 

Prioritized Resolution 
Suggestions 

(To Be Removed) 

C36: Parallel(F21,F4) 

C32: Tangent(F24,F21) 

C28: Distance(F2,F24)=45.10 

C2:   Distance(F2,F4)=80 

 

Minimal Over- 
Constrained Part II 

C2:   Distance(F2,F4)=80 

C28: Distance(F2,F24)=45.10 

C32: Tangent(F24,F21) 

C36: Parallel(F21,F4) 

 

Figure 14: Increase the dimension leading to varied modeling behavior under different resolution decisions for 
the bracket model. 

(a) (b) (c) 

45.10 50.10 50.10 

Model Variation: 18 Model Variation: 29.5 
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Fig. 14c, which can partly confirm the effectiveness of the presented decision-support method.  Nevertheless, two of 
them further pointed out that Fig. 11c was seen in practice, although quite uncommon.  This basically implies that it 
may not be possible to have a general prioritization criterion that can always give the most intended resolution option, 
at least for general CAD systems.  Hence, for GAI resolution, the automatic mode should be working as a secondary 
mode, and the decision-support mode should be a primary way of working in practice. 

Although the presented decision-support method is seen to be quite effective in the case studies above, it is expected 
that the ambiguity among resolution options will increase in more complicated cases.  As a result, the prioritization 
results may deviate from the user’s design intent more, and the user may need to go through more resolution 
suggestions before getting the right constraint(s).  There are hints for such a situation in the crank-based case study.  
The first three options in the left suggestion list of Fig. 10 have the same change rate value (= 0.9517), meaning that 
the change rate notion cannot distinguish them.  But they clearly represent different design intents.  This implies that 
the change rate notion is not in line with the design intent perfectly, partly because this notion only characterizes the 
local model variation behavior under parametric edits without considering the global behavior. 

This work’s research so far suggests that the presented decision-support method can be used to generate resolution 
options with guaranteed validity and to guide the user’s choice among these resolution options.  The change rate notion 
is a good quantification of a constraint’s impact on the model geometry, but it does not match the design intent 
perfectly.  This gap may be improved by priorities incorporating both local and global characterizations of model 
variation.  Modeling a model’s global variation behavior is, however, very challenging due to the nonlinearity issues 
involved. 

 
6. Conclusions 

Direct modeling is a very recent CAD paradigm that has been recognized by industry.  It, however, lacks the 
parametric capability.  The major issue to enable this capability has been found to be the possible information 
inconsistencies in a model after direct edits and the many inconsistency resolution options.  The challenge lies in 
effectiveness towards detecting minimal over-constrained parts and maximal well-constrained parts in the model and 
an effective criterion for prioritizing valid resolution options.  New/improved methods have thus been presented in 
this work to solve this challenge.  In particular, a new, precise formulation of the detection problem was proposed; a 
hybrid prioritization criterion combining the existing type-based criterion and a newly proposed change rate based 
criterion was presented.  They together led to an implementation of the decision-support framework outlined in Fig. 
2.  The practical benefits of this framework include an automatic inconsistency reasoning, a complete avoidance of 
invalid resolution options, and a guided exploration of valid resolution options.  The developed methods have been 
validated with a series of case studies and comparisons. 

A couple of limitations need to be noted here.  As the present work only formulated a model’s local variation 
behavior, decision-making that requires additional insights into the model’s global variation behavior may not be 
supported satisfactorily.  A more comprehensive prioritization criterion considering both local and global variation 
behavior could address this issue.  Nevertheless, modeling the global variation behavior introduces the very 
challenging nonlinear issues.  Machine learning algorithms may serve to address the issues because they can treat 
nonlinearity as the black box.  It should also be noted that resolution options are currently presented to the user via 
plain text.  Animations simulating the model variation behavior under different resolution options can be very 
practically beneficial, and are among the CAD research studies to be carried out in our research group. 
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