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Abstract 45 

 46 

Safety-critical systems like air traffic control (ATC) are usually less automated than might be expected 47 

by the public, so human intelligence will remain at the core in the decision-making (DM) process. 48 

Meanwhile, human factors (HFs) need to be fully considered in the DM process, which can design 49 

the ATC system to be more intelligent and more adaptive to the behaviour of the user. However, the 50 

existing DM research lacks the systematic methods that fully consider human performance in a smart 51 

manner. This study proposed a human-centred adaptive DM methodology that combines subjective 52 

and objective measurements made by functional near-infrared spectroscopy (fNIRS) via intelligent 53 

automation (IA). Moreover, this paper also described a case study of radar display map operation, 54 

including descriptive and optimised maps, to illustrate the proposed approach and verify its feasibility 55 

and effectiveness. The results were determined by jointly considering the user-generated and system-56 

generated data and suggested that the proposed approach could capture subjective and objective data, 57 

take into consideration the HFs information to provide real-time online feedback and adjust the 58 

decision support system to HFs. It is hoped that this study can promote the methodology of human-59 

centred subjective and objective data-driven applications in the future ATC environment adaptive 60 

decision research. 61 

 62 
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 65 



1. Introduction 66 

With the gradual development of technology and artificial intelligence, many robust and adaptive 67 

decision-making (DM) methods are being explored for developing real-life applications of 68 

engineering, such as transport systems, smart city, and inventory management, thereby increasing the 69 

convenience and reducing the risk inherent in engineering applications [1-3]. According to the latest 70 

annual global statistics reported by the International Civil Aviation Organization, the number of 71 

airline passengers is expected to reach 10 billion by 2040 [4]. Air traffic control (ATC) is responsible 72 

for resolving operational conflicts on the approach route and ensure passenger safety, as well as air 73 

traffic management (ATM) in the terminal manoeuvring area [5, 6]. The role of air traffic controllers 74 

(ATCOs) which involves continuous acquisition of the latest flight status and coordinates from several 75 

sources to make ATM decisions is becoming more significant [7, 8]. Normally, the work pressure of 76 

ATCOs increases with the volume of air traffic in the terminal manoeuvring area, leading to potential 77 

dangers. Hence, it is necessary to develop an advanced DM approach that can adapt to the mental 78 

condition of the ATCOs and control ATC system automatic parameters to ensure the efficiency and 79 

safety of air traffic operations [9, 10]. 80 

 81 

Making ATC decisions is deemed as a typical multi-criteria DM problem [5, 6, 11, 12]. Following the 82 

common approach in operations research and optimisation methods, the aircraft conflicts under the 83 

condition of uncertainty can be resolved by adjusting the speed, angle, and accelerations of the aircraft 84 

[13-16]. Yet the ATC operating system should not perform automatic adjustment based only on 85 

numerical data. Feyer et al. [17] showed that 90% of accidents at workplaces are caused principally 86 

by human error. Human factors (HFs) play a crucial role in improving system performance, reducing 87 

operating errors and enhancing occupation safety in the workplace. The greater the cognitive 88 

workload on the operators, the more likely it is that fatigue will occur and increase the possibility of 89 

erroneous work decisions being made. In the ATC field, zero tolerance for errors is mandatory because 90 

ATCOs’ work has a direct implication regarding passenger safety. Therefore, HFs such as ATCOs’ 91 

mental status should be taken into consideration. However, in spite of most DM methods involving 92 

human performance research currently, they only rely on the analysis of accumulated human 93 

experience and behaviour [18-20]. Such methods are likely to be seriously affected by the mentality 94 

of the decision maker and will not perform real-time feedback in response to environmental changes. 95 



Therefore, the present circumstances lead to the unilateral (system-oriented or human-oriented) 96 

design outputs of the ATC operating system, which often result in a disconnection in DM between 97 

humans and the system. To maintain an appropriate operation level for the human-machine system 98 

and avoid placing the working state of ATCOs in underload or overload, HFs must be more considered 99 

in the DM process reasonably by introducing intelligent automation (IA) into the ATC workplace in 100 

the future. 101 

 102 

The recent developments in neuroscience have made it possible to apply neuroimaging technology to 103 

detect the emotional and cognitive states of subjects and merge their data with other decision support 104 

systems. Neurophysiological measures, including Electroencephalography (EEG), functional Near-105 

Infrared Spectroscopy (fNIRS), functional Magnetic Resonance Imaging (fMRI), and other bio-106 

signals, such as Electrocardiography and Galvanic Skin Response (GSR) are used for human 107 

performance assessment [21]. Electrocardiography and GSR activities merely highlight certain 108 

mental states (stress, mental fatigue, drowsiness), while fMRI requires extremely exacting operating 109 

conditions [21]. EEG data are affected by various physiological noise signals. Besides, attachment to 110 

the body requires scalp abrasion and the application of a conductive gel. These necessities place 111 

restrictions on the subjects, which are not conducive to their executing tasks. Therefore, fNIRS, which 112 

does not have these disadvantages, is preferable for assessing human physiological performance in 113 

operational environments.  114 

 115 

Safety-critical systems like ATC are usually less automated than might be expected by the public [22]. 116 

Human intelligence will remain at the core of the DM process. Although the current studies on 117 

advanced DM technologies and DM methods report a great improvement in the ATC field [23], there 118 

are still several challenges in their application and the related human activities: 1) Mainstream DM 119 

methods mainly take an aircraft’s numerical data into consideration. However, the internal state of 120 

ATCOs cannot be detected and HFs do not receive consideration when manipulating and making 121 

decisions on operations, which has led to a failure to realise human-centred automatic regulation of 122 

ATC. 2) Most human performance and HFs assessment and detection methods are not efficient 123 

enough to provide both subjective and objective data in real time to support the DM process and 124 

elements in design, development, and optimisation of ATC system behaviour.  125 



 126 

To address the above challenges, this research proposed an integrated DM method that combines 127 

subjective, behavioural, and neurophysiological measurement into ATC. The results from this study 128 

will contribute to a better understanding of human performance (ATCOs’ workload, interaction, and 129 

mental status) in real time and thereby provide appropriate countermeasures (e.g. external automation 130 

will take over some of ATCOs’ tasks when ATCOs are in a poor state) for the specific user-centred 131 

automatic regulation of ATC. Meanwhile, this process will add significant value in the provision of a 132 

useful approach and framework concerning data acquisition and analysis to assess machine and user 133 

state in real time of the entire ATC system. Moreover, by collecting and processing the subjective and 134 

objective data (e.g. user-created and system-generated data), the effectiveness and application of HFs 135 

can be evaluated based on data being driven to guide the development and optimisation of ATC 136 

system design. Operational insights from the findings would be useful in the development of ATCOs’ 137 

training, cognitive identification, system decision behaviour, and human-machine interaction design. 138 

 139 

The rest of the paper is organised as follows: Section 2 introduces some preliminaries of the proposed 140 

method. Section 3 illustrates the overall framework of DM in the ATC. Section 4 presents a case study 141 

using the radar map display interface to make the proposed decision research framework more 142 

specific and verify the effectiveness of the proposed method. Section 5 discusses and analyses the 143 

research results. Sections 6 sets out the managerial implications of this research. Section 7 states the 144 

contributions to the current literature in this field and the future direction of research that it suggests.  145 

 146 

2. Related studies 147 

Three streams of literature are relevant to this research, namely DM, HFs and cognitive fatigue 148 

measurements in ATC. The related literature is reviewed in this section to find the gaps in the research 149 

and build research strategies specific to the ATC system upon review of the theoretical foundations 150 

of the above aspects. 151 

 152 

2.1. DM studies 153 

The ATC system plays an important role in ensuring the flight efficiency and safety of aircraft by 154 

maintaining a safe longitudinal or vertical distance between aircraft and by changing the speed and 155 



deviating aircraft from hazardous areas to eliminate (or reduce) conflicts between aircraft on flight 156 

routes and other emergencies. The ATCOs need to monitor radar displays at all times to ensure the 157 

safety of various flights and their path movements along paths at different speeds and altitudes. In the 158 

last 20 years, the cause of approximately 70% of aircraft accidents was found to be ATCOs operating 159 

errors [24]. Creating advanced systems to support the DM process in ATC in order to reduce the error 160 

in DM by ATCOs, increasing the convenience of human-machine systems, and ensuring the stability 161 

and safety of ATC have always been important research directions [25].  162 

 163 

The research on DM in the ATC system mainly includes expert systems, dynamic programming, path 164 

planning techniques, resilience engineering and metaheuristics [26, 27]. Cafieri et al. [13] proposed 165 

aircraft mixed-integer nonlinear programming modelling, based on speed regulation by acceleration 166 

or deceleration, to avoid aircraft conflicts while keeping their trajectories unchanged. Evans et al. [14] 167 

systematically collected the opinions of airlines through methods such as averaging, voting, and 168 

ranking, and then applied the game-theoretic approach and Monte Carlo methods to test the potential 169 

of airline strategic behaviour. The meta-heuristic framework based on variable neighbourhood search 170 

was proposed by Alonso-Ayuso et al. [28], which can be used to deal with conflict detection and 171 

resolution of such problems relating to aircraft by adjusting the angle of the aircraft. Moreover, the 172 

application of artificial intelligence to support the DM process in the ATC field has also attracted 173 

researchers’ attention. Multi-agent-based modelling is frequently adopted in collaborative and 174 

complex DM processes by representing the entities of control centres, airports, lanes, etc. Agogino et 175 

al. [29] presented a multi-agent algorithm, where agents use reinforcement learning to reduce 176 

congestion through local actions. Each agent as a waypoint is responsible for three functions, ensuring 177 

separation between aircraft, ordering delays on the ground and changing the routes of aircraft. Lovato 178 

et al. [27] proposed a control strategy based on decisions on the longitudinal speed of flights without 179 

changing the route. Two series of fuzzy models based on Mamdani structure were adopted to quantify 180 

the level of longitudinal conflict between aircraft and to order aircraft to accelerate by a certain extent, 181 

thereby reducing or eliminating the possibility of conflict. However, Parasuraman et al. [22] have 182 

shown that a safety-critical system is usually a human-machine collaborative system. Most of the 183 

safety-related decisions are made by humans, and computer systems are used as auxiliary tools to 184 

assist controllers in their monitoring and communication tasks. Although the above systems make a 185 



certain contribution to the development of DM, these systems do not gather reliable information to 186 

understand the internal state of ATCOs to support IA progress in the ATC field. 187 

 188 

To meet the ATC system’s IA during the DM process, it is necessary to estimate and predict the status 189 

indicators of ATCOs through some scientific methods. Task execution, [18] such as the explicit 190 

measurement of errors committed while executing a task, the number of control actions, the efficiency 191 

of communications and time, decision and action frequency, as well as empirical research, including 192 

instantaneous self-assessment [30], NASA task load index [31], and the subjective workload 193 

assessment techniques [32] can measure the quality of cognitive decisions to some degree. Xiaotian 194 

et al. [33] confirmed the mental landscape of ATCOs through the locus of attention scale, and the 195 

results suggested that subjects with a high overall degree of thinking are more sensitive to potential 196 

conflict events, which provided a reference for ATCOs’ selection and training. Wee et al. [34] 197 

attempted to synchronise the dynamic changes in humans and the system to monitor the operational 198 

behaviour and mental status of the whole system using a real-time eye tracking system. Dumais et al. 199 

[35] used a real-time eye tracking system to identify different user types by capturing information 200 

such as the gaze time of the eyes and the corresponding heat map to better design a search interface 201 

and adjust the system behaviour. Borst et al. [36] studied the control performance and operant 202 

behaviour of ATCOs during a transfer manipulation in different target scenarios through two-day 203 

behaviour analysis and discussed the short-term effects of ecological interface design. 204 

 205 

Although the subjective and behavioural methods contribute to refining the level assessment of the 206 

user's status, the contribution is limited to the user’s awareness, subjective perception, and the length 207 

of interval between the occurrence of an event and its assessment by the subject. With the rapid 208 

development of physiological measurement technology, it has been widely demonstrated that 209 

neurophysiological measurements of discriminating cognitive demand fluctuations transcend both 210 

behavioural and subjective measures [37]. The online neurophysiological measurements are not only 211 

used as support tools in operative activities but also as monitoring techniques [38], enabling the 212 

measurement of any changes in cognitive activity immediately, which can help the system manipulate 213 

the task demands and make adjustments to achieve the optimal level of work. Di Flumeri et al. [4] 214 

presented a vigilance and attention controller, which integrated the EEG and eye-tracking techniques. 215 



The purpose was to evaluate the level of vigilance of ATCOs and to adjust the level of automation of 216 

the interface itself while working with highly automated human-machine interfaces. In the product 217 

scheme evaluation field, Lou et al. [39] utilized cloud models and EEG to form an integrated DM 218 

method, obtain the internal experience of design experts and target users, and provide professional 219 

test data to improve product design and development. The adoption of physiological and neurological 220 

tools to help understand the state of human perception while using engineering systems is more 221 

common in HFs research [40]. To improve upon the maximum efficiency of the existing ATC system, 222 

it is urgent to adopt convenient, scientific and effective methods to provide reliable feedback on the 223 

internal state of ATCOs and to reveal the current adaptive DM and IA level of the human-machine 224 

system. 225 

 226 

2.2. Human factors studies 227 

The purpose of studying HFs is to simultaneously consider human capabilities, defects and needs, so 228 

that products can be adapted to suit human characteristics. That is, HFs play an important role in the 229 

ATC system, which determines whether ATCOs can work comfortably and then adjust the operating 230 

level of the system to ensure ATCOs’ efficiency. HFs have always been a major area of research in 231 

aviation [41]. The United States and Europe are paying more attention to HFs in the ATC system by 232 

gaining a better understanding and integration of HFs performance in the pursuit of superior business 233 

performance and security. 234 

 235 

Human-machine interfaces, radar maps, voice interaction and radio communication help ATCOs to 236 

have a landscape of the latest traffic situation for ATM. Many high-frequency problems encountered 237 

in ATC operation are caused by unreasonable design [42]. Therefore, the research on interface and 238 

system designs of the ATC system has increased gradually. In order to solve the problem of coarse-239 

grained rotation interaction of ATC automation operation, Luciani et al. [43] developed a set of low-240 

fidelity prototypes by using auxiliary sketch models to perform fine-grained interaction on the radar 241 

display human-machine interface and re-designed the display and interaction formats of the interface 242 

elements in the system. Van Paassen et al. [44] presented a shared representation of 4D trajectory 243 

management design based on the cognitive systems engineering framework, and also adopted a 244 

formative approach in the field of analysis of 4D trajectory planning. Ten Brink et al. [45] introduced 245 



a conceptual interface for air traffic flow-based perturbation management in ATC. Their proposed 246 

system can enable ATCOs to manipulate multiple flows of traffic by facilitating interaction with a 247 

path-planning algorithm to change the route of several aircraft along an airway.  248 

 249 

What calls for special attention is that individual factors, including the changes in workload, fatigue, 250 

stress and situational awareness, are important predictors for ATCOs when making decisions. All of 251 

these factors caused by the machine and environmental factors generally affect people's intervention 252 

and understanding of the system. By understanding the impact of these factors on the performance of 253 

ATCOs, specific solutions can be proposed. Trapsilawati et al. [46] measured HFs in conflict 254 

resolution, enduring mental workload, trust, dependence, and situation awareness under four 255 

conditions. Lyu et al. [47] introduced an HFACS-BN model (HFACS: Human factors analysis and 256 

classification system; BN: Bayesian network) to combine the subjective information of experts and 257 

objective data of accident reports, to evaluate training, physical fatigue, and mental state. The top five 258 

most influencing factors of HFs affecting the ATC system can also be obtained with the measurement 259 

proposed by Lyu et al. [47], that is, training, physical fatigue, mental state, ineffective monitoring, 260 

and ATC software/hardware. 261 

 262 

In spite of some progress having been made on HFs research in the ATC field, most are considered 263 

and adjusted unilaterally (by the system or human intervention) or without a reasonable method to 264 

assess the HFs application, especially in effect on individual factors. Progress has not gone far enough 265 

towards realising human-machine fusion, nor have researchers evaluated the verification scheme 266 

further to optimise its design. In the current state, there is a major gap in the system, because it is 267 

unable to obtain physiological unconscious objective data through effective means to support the 268 

adjustment of the system to the user’s state and optimise system behaviour, thereby strengthening the 269 

human-machine connection. 270 

 271 

Effective integration of HFs could cover the design of all the system elements, such as tools, human- 272 

machine interface, procedures, roles and communication flows [48]. The research design of the 273 

system elements extends from detailed basic design elements (lights and ergonomic design and 274 

colours) to high-level aspects that affect the DM process (assessing the cumulative workload or 275 



fatigue induced in the operator by a new sector configuration). Compared to other safety-critical and 276 

high-hazard domains, ATC is characterised by the key role played by HFs. Different HFs incorporated 277 

into the system will affect the cognitive load of ATCOs determining whether the decision is correct. 278 

The results of the evaluation of HFs performance affect the implementation and presentation of the 279 

design of elements ranging from system interface to workflow procedures and may necessitate re-280 

design of the system. Evaluation of HFs’ performance is an effective way to significantly improve 281 

the stability of the system and reduce errors. Furthermore, it is also a common method of decision 282 

processing, and to some extent, it is the basis of realising the maximum potential of an IA system. 283 

 284 

2.3. Cognitive fatigue measurement studies 285 

The safety of the system depends on the attention and cognitive level of the operators in the operating 286 

environment, such as aviation, railway, maritime and road transport. The industries are now seeking 287 

more automated systems and assistive technologies in their daily operation. This should be the long-288 

term focus in traffic monitoring because reliance on human monitoring of the system may lead to 289 

degradation of vigilance and a potential increase in the number of errors, which may lead to failure 290 

of the system [7, 49]. Human error will lead to serious and dramatic consequences [38]. Cognitive 291 

fatigue is closely related to the improvement or deterioration of the users’ performance [50]. The 292 

quality of the HFs assessed by the ATC system will directly determine the level of cognition in the 293 

ATCOs’ operation as affected by boredom, drowsiness or closer vigilance. Therefore, in ergonomics 294 

and HFs research, it is crucial to have a reliable estimation of the actual cognitive workload 295 

experienced by the operators and design a user interface that can preserve a proper level of the user’s 296 

mental workload, avoiding either an under or overloaded state [51]. This is also an important 297 

component of the system's adaptive DM, which lays the foundation for the adjustment and 298 

improvement of human-machine design. 299 

 300 

Cognitive workload refers to the dynamic relationship among the cognitive resources that are needed 301 

to carry out a task [52]. The interactive behaviour of the ATC system based on human cognitive laws 302 

is of great significance, so it is possible to reduce the rate of manual error by adjusting the cognitive 303 

load of ATCOs. Neurophysiological techniques can assess the cognitive status of humans with a high 304 

degree of reliability, even in operational environments [53, 54] and also transcend both behavioural 305 



and subjective measures in discriminating cognitive demand fluctuations [38]. Dehais et al. [55] 306 

developed an fNIRS-EEG-based passive brain-computer interface system to monitor changes in 307 

pilots' cognitive fatigue in flight missions (flight simulation and real flight) and the results showed 308 

that more information was missed in the second phase than in the first phase; meanwhile, it also 309 

demonstrated that fNIRS and EEG-based systems can monitor psychological states in a working 310 

environment and noisy environment. Di Flumeri et al. [56] simulated a real driving experiment, 311 

inferring the driver's psychological and cognitive load based on the driver's brain activity through 312 

EEG. Zhao et al. [57] used EEG to measure the mental load and cognitive fatigue level of drivers in 313 

90 minutes of continuous driving in order to find more reliable physiological measurements for 314 

driving mental fatigue. In order to measure the real state of cognitive change, Dehais et al. [58] under 315 

the condition of a real flight, used a 32-channel dry EEG system to measure the pilot's psychological 316 

fatigue and overload, and the results showed that the occurrence of mental fatigue is associated with 317 

higher theta and alpha band power, which provides the feasibility of evidence for detecting neural 318 

cognitive fatigue and load research. Li et al. [59] used the fNIRS to detect and compare cerebral 319 

cortical activity in two stroke rehabilitation models, in order to reveal the multisensory mechanism. 320 

Bu et al. [60] revealed the physiological mechanism of patients with mild cognitive impairment 321 

through effective connectivity by fNIRS. Liu et al. [61] used the fNIRS system to record the changes 322 

in a driver's actual driving activity and analysed the effective relationship between the brain network 323 

and cognitive load while driving. 324 

 325 

As mentioned in the introduction, fNIRS is more suitable than EEG for this study. It is safe, portable, 326 

user-friendly and relatively inexpensive, with rapid application times and near-zero run-time costs. 327 

So it could be a potential portable system for measuring cognitive workload in realistic settings. 328 

Despite the advances in automation technology, neurophysiological measurement will play a central 329 

role in the study and application of ATCOs’ job knowledge in the work environment [48]. Adaptive 330 

systems driven by ATCOs’ psychological cognition state have become an important research direction 331 

[62]. It is essential to integrate human performance into the ATC system to increase its resilience and 332 

tolerance to errors [48]. Therefore, combining the objective (fNIRS technology) and subjective 333 

(experience and behaviour) measurement would appear more suitable in realistic environments for 334 

recognising the nature of spontaneous brain activity and other inner activity to improve and modulate 335 



the interaction between the operator and the system itself. 336 

 337 

2.4. Research gaps 338 

As introduced in Section 2.1, 2.2, and 2.3, the internal state of ATCOs and the human-machine fusion, 339 

especially subjective and objective research methods that provide reliable feedback, have not been 340 

fully considered in the advanced DM process of the ATC system. This may be due to most operating 341 

processes performing automatic adjustment only using numerical data and ignoring the role of 342 

operators, which might be difficult to evaluate through the existing quantitative methods, resulting in 343 

inaccurate data and failing to realise the human-system connection closely and reasonably. 344 

Meanwhile, there is little information to study a user-centred and data-driven framework for advanced 345 

DM of the ATC system. To address the above issues, the human-centred adaptive DM method that 346 

combines subjective and objective measurements made by fNIRS via intelligent automation is 347 

desirable. 348 

 349 

3. The overall framework of data-driven DM on ATC 350 

ATCOs should be at the centre of the entire process of IA and adaptive DM process in the ATC system. 351 

The proposed method considers the application and impact of HFs on the system and the subjective 352 

behaviour and neurophysiological changes that the ATCOs show. Figure 1 illustrates the overall 353 

framework of the research method, which is divided into three parts: platform layer, data layer and 354 

application layer. The platform layer is in charge of providing research materials and elements (e.g. 355 

user and machine) to meet the conditions of data input. The data layer, based on subjective and 356 

objective data (e.g. brain science data) [63], mainly processes data acquisition, storage, analysis, and 357 

transmission. The application layer can provide the guidance for system adjustment and design 358 

elements (e.g. automatic level or performance design) in light of the above data results representing 359 

both physical and psychological implication and signal, and then serve to system parameters. 360 



 361 

Figure 1. Overall framework of the data-driven DM process 362 

3.1. Platform layer of the framework 363 

The platform layer mainly includes the existing ATC system elements (i.e. hardware and software, as 364 

well as human and machine), such as human-machine interface, voice interaction, radar map, radio 365 

communication and so on, which provides the experimental conditions and materials for the data-366 

driven research. Meanwhile, this layer also involves design and optimisation progress based on 367 

reliable data and parameters to prompt the ATC system to become smarter and friendlier for ATCOs, 368 

guaranteeing the high-efficiency operation with advanced DM. For example, Luciani et al. [43] re-369 

designed the display and interaction formats of the interface elements in the system by using auxiliary 370 

sketch models based on users’ preference and experience. 371 

 372 

3.2. Data layer of the framework 373 

 Data input 374 

The data layer includes data input and data analysis. Data input is mainly involved in the data 375 

collection function of the whole DM process. All the decisions that are supported by subjective or 376 

objective data which have certain defects. To ensure the orderly operation of the ATC system, the first 377 



step in its design framework is the collection of subjective, behavioural and physiological data to help 378 

reduce one-sidedness in the process and ensure that the system’s adaptive DM moves in the correct 379 

direction. Both ATCOs and machine are regarded as the research objects. Subjective data in the form 380 

of quantitative and qualitative subjective information was collected from the ATCOs through the use 381 

of questionnaires, interviews and discussions and included visual analogue scoring (VAS), fatigue 382 

severity scale, NASA-Task Load Index questionnaire and a focus group. Physiological data collection 383 

was based on the real-time monitoring of ATCOs’ neuronal activity in the fNIRS system during 384 

operational interaction and real-time recording of the user's unconscious feedback data, such as 385 

oxygenated haemoglobin concentration, cerebral cortex activation level and functional connectivity 386 

between brain regions, etc., to collect the objective information of ATCOs in the current state. The 387 

acquired behavioural data, such as operation reaction time, correct rate, situational awareness, and 388 

user operation flow through computer, sensor, mouse, and keyboard input, shows the behavioural 389 

status in the course of performing tasks, and is non-participatory observation. The specific 390 

implementation methods that the ATCOs use to increase the efficiency of their performance for doing 391 

specific experimental tasks may be noted for inclusion in the operating procedures. 392 

 Data analysis 393 

The main work of the data analysis included data storage and transformation, data processing and 394 

data analysis and transmission. Firstly, subjective and objective data, such as changes in oxygenated 395 

haemoglobin concentration, rating scales, accuracy, and reaction time were recorded and stored in an 396 

unstructured fashion and subsequently arranged in an appropriately structured relational database 397 

system [64]. Not only structured query language was used to manage unstructured data that may 398 

appear in this article (mainly subjective and behavioural). Before storing semi-structured data, a 399 

simple conversion step was required to facilitate subsequent analysis. For example, the qualitative 400 

information or semantic words on the subjective scale and behaviour data were converted into a score 401 

scale through a Likert scale or the attention point scale. After data storage and transformation, data 402 

cropping, data denoising, data filtering and data conversion were required to improve the data’s 403 

quality by noise filtering to ensure the effectiveness and reliability of data analysis. Next, the 404 

processed data were analysed to show the implied information with simple and clear results to clarify 405 

the relationship between the data results and the system application. For example, a generalised linear 406 



model was used to analyse the time series data of neuroimaging fMRI and fNIRS technology to obtain 407 

the degree of influence of the corresponding stimulation on the activation of the cerebral cortex [59]. 408 

The results of subjective, behavioural and physiological data were then normalised.  409 

 410 

3.3. Application layer of the framework 411 

The analysed data could then be used in the implementation of some data-driven application services 412 

based on results signals via data characteristics recognition, such as the adjustment of human-machine 413 

interface, the optimisation of radar maps, and the fine-tuning of voice-interactive and system 414 

automation level changes to meet the needs in its current state. Meanwhile, understanding the role of 415 

the HFs in the ATC system is necessary for achieving the ideal state of human-machine integration 416 

and decision processing in the ATC system. The evaluation system based on the subjective and 417 

objective score of the system design scheme can be used to further support and improve the ATC 418 

system design, as shown in Figure 2. 419 

 420 

Figure 2. Data-driven system application services 421 

 422 

4. Case description 423 

4.1. Platform development 424 

This section provides an illustrative example of a radar display map in the ATC system’s task 425 



execution. A radar map is an event in the ATC system and has long-term high-frequency contact with 426 

ACTOs, and is directly related to the intrinsic state of ATCOs, and a reasonable HFs test is a 427 

prerequisite for radar map optimisation. Therefore, the above DM framework was applied to the radar 428 

display interface as an example to study. Figure 3 presents a prototype hardware and software system 429 

and experimental radar materials. The experimental design considers 12 aircraft on the radar map. 430 

One was described as a conflict alert event and displayed flight tag information, which included flight 431 

number, speed, and altitude. Attempts were made to optimise the radar display map by using an 432 

explorative design study and assisted sketching with the following design setting: 433 

▪ The radar map from Los Angeles (LAX) International Airport. Sector 38. 434 

▪ Dotted lines are sector boundaries. 435 

▪ Solid lines are airways. 436 

▪ Circles depict airports and navigational radio beacons. 437 

▪ X's show intersections along the airways. 438 

 439 

Figure 3.Prototype of the hardware and software system 440 

4.2. Data collection and processing 441 

 Data input and collection 442 

 Subjects 443 

A total of 18 healthy subjects (14males and 4 females, 23-29 years old) with no history of neurological, 444 



physical, or psychiatric illness and a certain level of experience of aviation were recruited for this 445 

study. The research was conducted at the Industrial Design Research Laboratory of the School of 446 

Mechanical Engineering, Shandong University (SDU). All subjects agreed to participate and signed 447 

informed consent forms. The experimental methods were approved by the SDU Human Ethics 448 

Committee and implemented according to the ethical standards of the 1975 Helsinki Declaration. 449 

 450 

 Experiment procedure 451 

The experiment was divided into three stages: Rest, Task1 (descriptive map), and Task2 (optimised 452 

map). Each stage lasted 10 min, with 10 min intervals between stages to ensure the accuracy of the 453 

measurement data shown in Figure 4(A). Subjects were required to sit in front of a radar map monitor 454 

and be at rest and keep their body as still as possible for 10 min, and the task1-stage and task2-stage 455 

were based on the 𝑛-back task with 𝑛 is 2. In the first stimulation, conflict warning aircraft appeared 456 

at any position among the 12 aircraft, flying at any altitude. In the subsequent stimulation, conflict 457 

warning events occurred at random positions and at random altitudes. Adjusting the flight altitude is 458 

the most common way for ATCOs to resolve conflicts and was, therefore, used as a determining factor. 459 

The subjects completed cognitive thinking activities by judging whether the 𝑛 + 2 stimulation and 460 

the 𝑛 stimulation conflict warning events were the same in terms of position and flying altitude. The 461 

instruction was that if they were all the same, press the “SPACE” key, and if they are different, do 462 

nothing. The task1-stage and task2-stage were implemented in E-prime 2.0 psychology software. 463 

 464 

 Physiological data acquisition 465 

The prefrontal cortex of the brain performs advanced neural information processing functions, 466 

including memory, judgment, analysis, thinking, and manipulation, and plays a key role in cognitive 467 

control [60]. The sensorimotor cortex in the parietal lobe region plays an important role in 468 

somatosensory perception, visual body spatial information integration and movement. The occipital 469 

lobe is mainly responsible for visual processing. In order to place the probe correctly, spatial 470 

positioning information was obtained by using a 3D magnetic locator and spatial positioning 471 

acquisition software. The distance between each light source and the detector was 30 mm, which 472 

allows optical waves to reach the cortex and keep the signal quality stable and intense. This fNIRS 473 

equipment uses a multi-channel commercial near-infrared system (Nirsmart, Danyang Huichuang 474 



Medical Equipment Co. Ltd, China) with a sampling frequency of 10 Hz and set wavelengths of 760 475 

and 850 nm. Based on the international 10/20 system, 22 SD probes were placed on the right 476 

prefrontal cortex (RPFC), the left prefrontal cortex (LRFC), the right motor cortex (RMC), the left 477 

motor cortex (LMC), the right occipital lobe (ROL) and the left occipital lobe (LOL) to constitute a 478 

22-channel fNIRS system as shown in Figure 4(B). 479 

 480 

Figure 4. Experiment procedure and the 22-channel fNIRS system  481 

 Subjective and behaviour record 482 

Subjects were asked to complete a VAS at the end of each stage to discover their subjective 483 

psychological feelings. According to the experimental settings, fatigue, comfort, attention, positivity, 484 

and stress were selected as the five key indicators. Furthermore, the psychology E-Prime2.0 software 485 

was used to record the subjects' behavioural data during operation, including accuracy rate and single 486 

reaction time information. 487 

 488 



 Data analysis and processing 489 

 Objective data processing 490 

The deletion of irrelevant time intervals in the original data was performed firs; thereafter the data 491 

was automatically spliced into a complete continuous time series. After this exclusion process, a series 492 

of processing steps was carried out, as shown in Figure 5. 493 

 494 

Figure 5. fNIRS data processing analysis flow 495 

First of all, the raw data were converted into optical density. The raw data were light intensity received 496 

by the detector (avalanche diode), and changes in light intensity were measured by electrical signals 497 

created by emitted light signals [65]. This stage mainly included identifying and removing the 498 

artefacts, and finally converting the data the optical density data. Firstly, the sliding average method 499 

in Eq. (1) calculates the abnormal signals, such as a noise, caused by the light leakage on the data-500 

time series to improve the SNR. The average value of 2𝑁 + 1 points is used to replace the abnormal 501 

points in the original signal. Then, 𝑦(𝑛) is the time series after the sliding average, 𝑥(𝑛) is the 502 

original time series, and the value of 𝑁 is 2. 503 

y(n) =
1

2𝑁 + 1
∑ 𝑥(𝑛 − 𝑖)

2𝑁+1

𝑖=1

 (1) 

 504 

Next, the mobile standard deviation was calculated to automatically retrieve the interval of artefacts 505 



that may be found in the data. In our experiment, a 0.5-s sliding time window was used to check all 506 

the time periods. The detected artefacts made by the movement were modified by spline interpolation 507 

and then the processed time series was converted into optical density data, expressed as Eq. (2), where 508 

𝐼1
′  is the incident light intensity and 𝐼1 represents the emitted light intensity. 509 

∆Odd = log 𝐼1
′ /𝐼0 − log 𝐼1 /𝐼0 = log 𝐼1

′ /𝐼1 (2) 

 510 

Secondly, denoising and filtering were necessary for data correction. All heartbeat and Mayer waves 511 

can be reflected in oxy and deoxy data, but these signals cannot be measured directly because this 512 

character and noise are actually detected by optical means, where the direct feedback is the change 513 

of Odd data. Hence, filtering Odd data can achieve the same effect and remove the noise caused by 514 

physiological signals such as heartbeat [66]. In order to retain the original amplitude of the original 515 

signal in the passband to the greatest possible extent, a Butterworth filter was used for processing the 516 

optical density data to improve the data quality and ensure the validity and reliability of the data 517 

analysis because the interference of high frequency noise and low frequency fluctuation signals were 518 

reduced to improve correction and SNR. Further, a 0.01 Hz-0.2 Hz band-pass filter was set to remove 519 

low baseline drift and physiological noise due to heartbeats, breathing, cardiac frequencies, and 520 

Mayer waves [65]. The expression of the n-order Butterworth filter is as shown in Eq. (3), where 𝑓𝑐 521 

is the cutoff frequency, 𝑓𝑝 represents the passband edge frequency, and the value of 𝑛 is 6:  522 

|𝐻(𝑓)|2 =
1

1 + (
𝑓

𝑓𝑐
)

2𝑛 =
1

1 + 𝜖2 (
𝑓

𝑓𝑝
)

2𝑛 
(3) 

 523 

Thirdly, optical density was converted to haemoglobin concentration data by using the modified Beer-524 

Lambert law. Haemoglobin concentration data directly reflect changes in the brain nerves during 525 

activity. The relative concentrations of oxygenated haemoglobin (HbO2) and reduced haemoglobin 526 

(HbR) detected in the brain tissues were calculated through the modified Beer-Lambert law to obtain 527 

the time-series of haemoglobin concentration data. As Eq. (4) shows, 𝐷𝑃𝐹  is called differential 528 

pathlength factors [67] with the value of 6, which accounts for the effective length between source 529 

and detector. The value of 𝑟 is the linear distance between paired probes on the scalp. The delta 530 

optical density, ∆Odd𝜆𝑖, refers to the change in light absorption. 𝜀𝐻𝐵𝑂
𝜆𝑖 , under near-infrared light of 531 



wavelength 𝑖, is the absorption coefficient of HBO substance, 𝜆 represents wave length (1=760 mm, 532 

absorption coefficient is 1486.5865 (
𝑐𝑚−1

𝑚𝑜𝑙∗𝐿−1) ; 2=850 mm, and the absorption coefficient is 533 

2526.391 (
𝑐𝑚−1

𝑚𝑜𝑙∗𝐿−1
)). Moreover, 𝜀𝐻𝐵

𝜆𝑖 , under near-infrared light of wavelength 𝑖, is the absorption 534 

coefficient of HB substance, 𝜆  is wave length (1=760mm, absorption coefficient is 535 

3843.707 (
𝑐𝑚−1

𝑚𝑜𝑙∗𝐿−1
); 2=850mm, absorption coefficient is 1798.643 (

𝑐𝑚−1

𝑚𝑜𝑙∗𝐿−1
)). 536 

∆Odd𝜆𝑖 = (𝜀𝐻𝐵𝑂
𝜆𝑖 ∆𝐶𝐻𝐵𝑂 + 𝜀𝐻𝐵

𝜆𝑖 ∆𝐶𝐻𝑏) ∙ 𝑟 ∙ 𝐷𝑃𝐹 (4) 

 537 

Fourth, time-frequency waveform analysis was performed. The data were further analysed (e.g., 538 

cortical activation, brain functional connectivity) to visualise the implications of the results. The 539 

transformation from the original optical data to the blood oxygen concentration was completed by 540 

applying the above algorithm, and the time series of each channel was obtained, representing the 541 

functional activity attributes and cooperation level of corresponding brain regions. The connectivity 542 

attributes between cortical regions were measured by the correlation between the time series data. 543 

The Pearson correlation analysis method was used to calculate the correlation by substituting the 544 

relevant values in Eq. (5), where 𝑥𝑖(𝑘)  and 𝑥𝑗(𝑘)  are the 𝑘 -th data value of the 𝑖 -th and 𝑗 -th 545 

channel time series; 𝐾 is the total number of sequence values; 𝑥𝑖 and 𝑥𝑗 are the average values of 546 

the channel sequence. 547 

𝑟𝑖𝑗 =
∑ [𝑥𝑖(𝑘) − 𝑥𝑖][𝑥𝑗(𝑘) − 𝑥𝑗]𝑘

𝑘=1

√∑ [𝑥𝑖(𝑘) − 𝑥𝑖]2𝑘
𝑘=1 ∑ [𝑥𝑗(𝑘) − 𝑥𝑗]

2𝑘
𝑘=1

 
(5) 

 548 

To judge the difference of cooperation among the three stages (rest, task-1 and task-2 stages) of brain 549 

regions to provide clear guidance for the DM process, the significant differences among three stages 550 

were further analysed. Firstly, the strength of functional connectivity between brain regions in the 551 

three stages was calculated to evaluate whether the data exhibited a normal distribution, without 552 

outliers and spherical assumption. Then the functional connectivity in three stages was analysed by 553 

one-way repeated ANOVA measurement. Three stages were internal variables, and functional 554 

connectivity was the observed influencing factor. Finally, the functional connectivity of each stage 555 

was further compared in pairs. P < 0.05 showed that there was a significant difference in functional 556 



connectivity. 557 

 558 

 Subjective data processing 559 

The subjective and behavioural data were stored and summarised. The Shapiro–Wilk test was used to 560 

test the normal distribution of the data, and the box plot of each group of data was used to determine 561 

the presence of abnormal values. A paired-sample t-test was used for the data that met the normal 562 

distribution and the Wilcoxon signed-rank test was used for non-compliance. The comparison of the 563 

three sets of data needed to simultaneously conform to the normal distribution, without outliers and 564 

spherical assumptions, and then descriptive statistics and mean analysis were conducted. One-way 565 

repeated measurement ANOVA was used to detect significant differences between the subjective 566 

scales in three different stages, so as to further explain the difference between the subjective data in 567 

each two stages. 𝑝 < 0.05 was statistically significant.  568 

4.3. Application and results 569 

 Physiological results 570 

The results are shown in Figure 6. The intensity of the functional connectivity between LPFC and 571 

RPFC regions of the brain in the three stages was observed to be the highest of each stage. Their 572 

correlation coefficients were, in the rest-stage r=0.8222, and in the task 1-stage r=0.7987 and in the 573 

task-2 stage r=0.8688. Further, the correlation between RMC and ROL in the rest-stage was the lowest, 574 

r=0.2017. In the task1-stage, the functional correlation between LOL and ROL was the lowest, 575 

r=0.0915. Similarly, the lowest degree of correlation between LOL and ROL appeared in the task2-576 

stage, r=0.1659. 577 

 578 
Figure 6. The strength of functional connectivity between brain regions in three stages. A. Rest-579 



stage correlation; B. Task1-stage correlation; C. Task2-stage correlation. Significant differences in 580 

functional connectivity after ANOVA are marked with *𝑝 <  0.05 between the task1-stage and 581 

task2-stage, and & 𝑝 <  0.05 between the rest-stage and task-stage. 582 

 583 

The functional connectivity strengths of LPFC and RPFC (𝐹 = 5.152, 𝑝 = 0.011), LPFC and LMC 584 

(𝐹 = 4.307, 𝑝 = 0.022), LPFC and ROL (𝐹 = 5.914, 𝑝 = 0.006), LOL and ROL (𝐹 = 4.396, 𝑝 =585 

0.02) in rest-stage, task1-stage and task2-stage were statistically significant. Compared with task1-586 

stage, the functional connectivity strength of LPFC and LMC in the rest-stage was significantly 587 

improved by 0.096 (𝑝 = 0.023, corrected). Compared with the task1-stage, the connectivity strength 588 

of LOL and ROL in the rest-stage significantly increased by 0.169 (𝑝 = 0.01, corrected). The LPFC 589 

and RPFC functional connectivity in the task2-stage was significantly improved by 0.070 (𝑝 = 0.012 590 

correction). Meanwhile, the functional connectivity between LPFC and ROL in the task2-stage 591 

increased significantly by 0.181 ( 𝑝 = 0.014  corrected). It is worth noting that there was no 592 

significant difference between the rest-stage and task2-stage. The ANOVA analysis of the functional 593 

connectivity of brain regions in the three stages showed that the functional connectivity strengths of 594 

certain brain regions in the task2-stage and rest-stage were improved compared with the task1-stage. 595 

 Subjective results 596 

The results of the subjective VAS scale are shown in Figure 7. The rest-stage, task1-stage, and task2-597 

stage in Fatigue (𝐹 = 28.620, 𝑃 < 0.001 ), Attention (𝐹 = 7.101, 𝑝 = 0.003 ), Training Positive 598 

(𝐹 = 8.269, 𝑃 = 0.001 ), Pressure (𝐹 = 22.481, 𝑝 < 0.001 ) demonstrated statistical significance. 599 

Among these, the fatigue aspect of the rest-stage was significantly reduced by 4.667 (𝑝 < 0.001) as 600 

compared to the task1-stage, and 4.222 (𝑝 < 0.001) was a significant reduction as compared to the 601 

task2-stage. The attention level at the rest-stage was significantly lower than at the task1-stage by 602 

2.611 (𝑝 = 0.042), and was significantly lower than in the task2-stage by 2.722 (𝑝 = 0.021). The 603 

stress perception in the rest-stage was significantly lower than in the task1-stage by 4.611 (𝑝 < 0.001), 604 

which was further significantly lower than the task2-stage by 2.944 (𝑝 < 0.001). However, with the 605 

task training positive, only the task2-stage was significantly improved by 3.167 ( 𝑝 = 0.012 ) 606 

compared to the rest-stage. 607 



 608 

Figure 7. Results of the VAS scale at each stage. Significant differences in subjective score are 609 

marked with *𝑝 <  0.05 or ** 𝑝 <  0.01 between the rest-stage and task1-stage, and & 𝑝 <  0.05 610 

or && 𝑝 <  0.01 between the rest-stage and task2-stage. 611 

 612 

In this research, E-Prime software was used to record the subjects’ level of accuracy and reaction time 613 

during operations as shown in Figure 8. The total number of errors in the task1-stage was 6.8 (3.1 in 614 

the first half and 3.8 in the second half), while the total number of errors in the task2-stage was 5 (2.4 615 

in the first half and 2.5 in the second half). Meanwhile, in the reaction time aspect, the average 616 

reaction time in the task1-stage was 980 ms, 959 ms in the first half, and 1004ms in the second half. 617 

The average response time in the task2-stage was 935 ms, 941 ms for the first half and 929 ms for the 618 

second half. Interestingly, the accuracy rate and response time between the task1-stage and task2-619 

stage were not statistically significant. However, accuracy and response time were both superior in 620 

the task2-stage than in the task1-stage. Especially the response time in the second half of the task2-621 

stage was reduced though the accuracy remained high. 622 



 623 

Figure 8. Analysis of the result of behaviour data in the task1-stage and task2-stage. (A) The number 624 

of errors committed by each subject in the two stages. (B) Average reaction time for each subject in 625 

the two stages. (C) The number of errors in total, first half, and the second half of the task1-stage and 626 

task2-stage. (D) The total reaction time of all the subjects, first half and second half of the task1-stage 627 

and task2-stage. 628 

 629 

 Interpretation of the results 630 

 Physiological meaning  631 

The brain signals detected by fNIRS mainly stem from the changes in brain neural activity while 632 

performing the task. Based on neurovascular coupling theory, functional connectivity is a significant 633 

indicator of brain activity, which can directly analyse the cooperative level in the brain’s complex 634 

area. The stronger the functional connectivity between brain regions, the stronger the cooperation 635 

between brain regions, which helps subjects reach higher performance levels and maintain higher 636 

attention levels. Therefore, the functional connectivity strength is an intuitive expression of the degree 637 



of a user’s cognitive state which might lead to the occurrence of human error. 638 

 639 

 Relationship between results and application 640 

Normalised results of subjective, behavioural and physiological data are considered in the 641 

interpretation of the experiment. The execution of cognitive control is mainly carried out in the 642 

prefrontal lobes. LPFC and RPFC functional connectivity strength in the task2-stage was the highest, 643 

even higher than in the rest-stage, and it is significantly lower in the task1-stage than in the task2-644 

stage, indicating that an optimised radar map with HFs is better than a descriptive radar map and more 645 

suitable for users' cognitive mental fatigue state. Although there was no significant difference in the 646 

behavioural data, it can be judged intuitively that the task2-stage is better than the task1-stage in 647 

regard to time and accuracy. Meanwhile, regarding the subjective aspect, it also emphasises again 648 

that the task2-stage's training positivity is superior to the other two stages. In this connection, 649 

synchronisation has occurred between subjective and objective data.  650 

 651 

These results can be applied together to generate service options, such as cognitive fatigue threshold, 652 

comfort prediction, and internal state monitoring. The ATCOs’ cognitive state was evaluated to 653 

determine whether the intervention behaviour of the system was turned on or not, and the operational 654 

behaviour beneficial to the ATCOs’ current state was formed. In this case study, for the adaptive DM 655 

process, the functional connectivity level for both the task1-stage and task2-stage was not 656 

significantly lower than that of the rest-stage, which means that ATCOs’ cognition and ability enable 657 

them to deal with the potential conflictions by adjusting an aircraft’s angle, altitude, or other elements. 658 

If the functional connectivity strength in an event is significantly lower than that of the rest-stage, 659 

which indicates that the event has caused ATCOs fatigue, which will probably lead to operation errors, 660 

the system should change automatic level to take over ATCOs’ behaviour based on the signals 661 

received in real time, for instance, strengthening the automatic control level, creating stimulating 662 

signals to assist users, or providing the alternative solutions for ATCOs, or even taking over the 663 

operation, and so on until the user’s cognition recovers. In addition, for human-machine fusion, based 664 

on the subjective and objective data, it also suggested that this type of visual aid that the optimised 665 

radar map provides a design reference, which can effectively avoid human error and provide a 666 

direction for future design and development of ATC system elements. 667 



 668 

5. Discussion 669 

Detecting cognitive fatigue is a key problem in developing adaptive systems and has been proven to 670 

improve human-computer interaction [68]. The research conducted by Lyu et al. [47] focuses on the 671 

previous experience and determined the common human factor influence ranking through the 672 

HFACS-BN model, so as to guide the optimisation of the system. By contrast, this research can 673 

effectively monitor the user and system behaviour data in real time through the proposed data-driven 674 

framework. Then the data are processed by the framework data analysis section (characteristics 675 

process). And finally, according to the characteristics (range and threshold, extreme value, and 676 

significance compared to the resting state) of the data, the adaptive adjusting behaviour (the degree 677 

of automation, the replacement of two-dimensional or three-dimensional design presentation 678 

elements) of the system or keeping the original state is decided in a multi-dimensional way. This step 679 

is similar to a mock recogniser (characteristics recognition) that determines the user's level of 680 

cognitive status and then provides a basis for the system to be adaptive. 681 

 682 

The complex cognitive information required by the human-machine interaction interface may come 683 

from two sources, namely the required operations and the information prompts. Both sources depend 684 

on how the user interacts with the target task under the information support structure (such as visual 685 

assistance, interactive media). Therefore, the design of the radar map considers the similarities 686 

between the elements and the observed transformation operations of the elements. The fNIRS 687 

considers the brain regions, namely prefrontal lobe, parietal lobe, and occipital lobe through 22 688 

channels. The prefrontal lobe is related to the DM process, working memory and attention. Therefore, 689 

the more complex the cognitive information, the higher the HbO2 in the prefrontal lobe brain region. 690 

In this case, the functional connectivity values of significant interactions were averaged for 15 691 

directed interregional connection types between all possible pairs of 22 channels in each subject, and 692 

thereby, the mutual interactions among the six regions were analysed. 693 

 694 

The prefrontal lobe maintains high connectivity among the three stages, but of the two task stages, 695 

the task1-stage is weakened at the functions’ connection, which reflects the reduced transmission 696 

efficiency of this area. The parietal lobe is related to procedural memory and vision. The longer the 697 



memory consolidation, the stronger the visual stimulation, and the higher the HbO2 level in the 698 

parietal lobe. In the task2-stage, the functional connectivity between the left and right parietal regions 699 

and LPFC and RPFC were higher than for the task1-stage, indicating that appropriate visual auxiliary 700 

elements, such as object and important data indicator enhancement prompts and object visualisation, 701 

are conducive to the positive linkage effect of vision, memory and cognitive DM. Design elements 702 

research studied by Luciani et al. [43] and Van Paassen et al. [44] demonstrate that the visualisation 703 

auxiliary can help ATCOs operate the ATC system better, which is similar to our research. The rest-704 

stage has a positive significant difference compared to the task1-stage, the task2-stage has a positive 705 

significant difference compared to the task1-stage, and there was no significant difference between 706 

the rest-stage and task2-stage, which may indicate that the optimised map task is closer to the resting 707 

state, and a descriptive map makes subjects fatigued. Meanwhile, according to the subjective results, 708 

it was found that the task2-stage's training positivity is significantly higher than for the rest-stage, 709 

while the results of the task1-stage and rest-stage have no significant difference. From the behaviour 710 

analysis, the average number of errors and the average response time of the task2-stage are lower than 711 

for the task1-stage, indicating that the optimal design of visual AIDS is expected to contribute to 712 

ATCOs’ training, which can effectively avoid human error and provide a direction for future design 713 

and development in the ATC field. 714 

 715 

From the aforementioned work on the memory task by ATCOs, one can see that good results have 716 

been achieved in brain functional connectivity and subjective analysis, such as maintaining normal 717 

function connectivity and improved accuracy and reaction time. Dehais et al. [69] also indicated 718 

undesirable neurocognitive states, such as mind wandering, while inattentional phenomena can 719 

negatively affect ATCOs’ operation (increase human error rate and reaction time). Simultaneously, it 720 

also establishes that the DM framework can usefully apply HFs to the ATC system to avoid unilateral 721 

judgment errors, without causing a significant difference in behaviour. This can avoid the wastage of 722 

time and money, and achieve the timely adjustment of the system in response to behavioural changes 723 

and system performance decline. Meanwhile, fNIRS is sensitive to different levels of cognitive 724 

fatigue, which is consistent with the study by Durantin et al. [68]. 725 

 726 

6. Managerial implications 727 



This framework will further aid understanding of the performance of humans and machines for 728 

intelligent adjusting of the system’s DM behaviour in relation to the external and internal working 729 

conditions and the skills, tasks and cognitive abilities of specific personnel, through intuitive data and 730 

good synchronisation. The results can support the combination with ATC system applications. The 731 

system behaviour can be adjusted accordingly via the data-driven approach. The possible applications 732 

mainly include: real-time online feedback that eases the capturing of the state of ATCOs to realise 733 

human-centred system adjustment, safety warning reminders according to the critical point of 734 

information implied by the data and level of automation in the human-machine interface. Also, it 735 

serves as a data-driven model that provides objective data to empirically prove the advantages and 736 

disadvantages of applications of HFs and further supports the subsequent design optimisation. Hence, 737 

these new data results provide insights into ATCOs interactions with the whole system interface and 738 

with a single field of interest and indicates the potentials for IA of ATC. 739 

 740 

Data-driven adaptive DM supports and regulates system parameters, including adaptive automation 741 

level, workload scheduling, ergonomics interface and interaction. According to the ATCOs’ real-time 742 

physiological state – mainly cognitive state – the behaviour of the system is adjusted automatically 743 

to adapt to the ATCOs. When ATCOs change from slight fatigue to high cognitive fatigue, that is, the 744 

brain functional connectivity falls below the normal range, the system will automatically determine 745 

that the ATCOs’ cognitive fatigue is at danger level according to the findings of the cognitive fatigue 746 

simulation recogniser, and then improve the automatic operation level (from low to high) and add 747 

wake-up signals (the preferred warning graphics and tone) (Figure 9). For instance, when there is a 748 

possibility of aircraft conflict, the system will pop up optimal operation – adjust the plane’s altitude 749 

(but not necessarily the most appropriate solution) – for ATCOs’ selection to reduce their mental 750 

pressure. Meanwhile, triggered warning signals based on design elements will appear to awaken 751 

ATCOs’ mind, which relieves ATCOs’ workload, helps to restore cognition and also is able to 752 

guarantee the safety of the aviation system. When the system detects that ATCOs are operating at a 753 

reasonable level, the system’s responsible behaviour will disappear and the ATCOs will manually 754 

adjust the best solution (more factors, such as weather conditions, can be considered 755 

comprehensively). 756 



 757 

Figure 9. Adaptive DM mechanism based on the data-driven framework 758 

 759 

The real-time online feedback system can also be incorporated into ATC operation to distinguish state 760 

changes when ATCOs participate in different human factor tasks to extract and identify new 761 

opportunities for its application in future HFs design applications. By interpreting the resource 762 

allocation between brain regions, such as whether multiple brain regions can be mobilised, or which 763 

brain regions are more effective, we can speculate about the internal effects of different factors on 764 

ATCOs. The above can serve as a basis for adaptive decisions of the system (preferred elements 765 

design, warning signal, and so forth). The priority of the design elements concerning HFs in regard 766 

to system aspects will be formed, which can provide guidance for the future system design and 767 

transformation, as well as being a way to show the two-dimensional and three-dimensional elements. 768 

Then subjective data can be combined to identify different human behaviour factors, patterns, and 769 

plans, and find the optimal design elements which need improvement, to support the design and 770 

development of different modes of human-machine interfaces.  771 

 772 

The proposed method can also be extended to situation awareness. As a method should be provided 773 



to observe the individual factors influencing ATCOs, which is convenient for identifying the critical 774 

points of ATCOs including fatigue, pressure and workload and also to identify the most common 775 

factor relationships that negatively or positively affect ATCOs’ performance, to propose several sets 776 

of core factors, provide hypotheses for further research, and combine with ATCOs’ safety 777 

performance models or training programmes to establish effective human performance management. 778 



7. Conclusion 779 

The field of engineering, especially automation and control engineering, is further exploring adaptive 780 

DM methods to reduce the occurrence of human error and the risk index of engineering. HFs play an 781 

important role in DM, especially in the ATM field where ATCOs are at the centre of DM. At present, 782 

most of the research is limited to the level of automation of operation systems. However, obtaining 783 

feedback on ATCOs’ performance is difficult, which makes it impossible to scientifically monitor 784 

human behaviour in real time. In this context, this paper proposes a subjective and objective data-785 

driven adaptive DM method based on fNIRS, which takes ATCOs’ internal state as the dominant 786 

supporting factor in decision behaviour. The main contributions are summarised as follows: 787 

▪ A novel framework and approach for adaptive DM based on fNIRS from the user’s perspective is 788 

proposed, which captures the internal status and defects in the performance of users to achieve 789 

human-centred automatic adjustment. 790 

▪ A novel data collection and processing method is proposed, which can directly reflect and evaluate 791 

the user and system status. In addition to considering the user experience and machine behaviour 792 

data, the objective physiological data of the user in the operation process is also fully considered. 793 

▪ Data-driven methodology combining subjective and objective data is proposed to detect the 794 

impact of system factors on the user, ensure the accuracy and validity of data, and understand the 795 

best facilitation for maximising human performance in the ATC environment. 796 

▪ The application of HFs in the system was evaluated to support element design optimisation so 797 

that the performance of HFs in design and manufacturing lays the foundation for the realisation 798 

of the IA of the system.  799 

To make the research framework more specific, the feasibility of DM proposed in this paper was 800 

verified through the radar case study, which can play a certain role in promoting the application of 801 

human-centred subjective and objective data-driven applications in the future ATC environment in 802 

adaptive decision research. 803 

 804 

This paper is limited to research of human-machine interfaces. The whole ATC system also has tools, 805 

procedures, roles and communication flows, which have not been covered in this study and need to 806 

be considered in the future. Also, the follow-up study should be more than an hour-long task designed 807 

to mimic the real work situation. Future work should focus on applying the proposed methodology to 808 



multiple complex environments involving more users to explore more data-driven system application 809 

services, so as to promote the development of system IA and DM.  810 
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