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Abstract—In order to support advanced collaborations among smart products, services, users and service 

providers in a smart product and service ecosystem (S-PSS), this paper proposed a service-oriented hybrid 

digital twin (DT) and digital thread platform-based approach with embedded crowd-/service-sourcing 

mechanism for enabling advanced manufacturing services. This approach is well supported by the ecosystem 

interaction intelligence of digitally connected products, services, users, and service providers via Internet of 

Beings (IoB) (Things, Users and Service providers). First, driven by industrial application needs in heating 

industry, a conceptual model of the service-oriented hybrid platform integrated with crowdsourcing 

mechanism is developed, which supports the concepts of product DT, service DT and human user DT. 

Second, the key system realization techniques are developed to integrate service crowdsourcing and service 

recommendation for realizing smart services. Finally, a case study is carried out for evaluating and 

confirming its feasibility.  

 

Keywords— Digital twin, digital thread, Internet of Beings (IoB), service crowdsourcing, smart product-

service ecosystem, system intelligence. 

 

1. Introduction/purpose 

In the era of Industry 4.0, to better respond to market demand and increase business revenues, manufacturers 

are extending beyond their traditional pure product offerings to more flexible and complex bundle of smart 

product-service offerings where service components are integrated with smart product offerings to develop 

performance- or outcome-based advanced services [1]. So far, to implement manufacturing digital 

servitization, many studies have conducted on the servitization process from multiple points of view, such as 

organizational structures and processes [2], and the governance and orchestration of the product-service 

ecosystem [3], etc. Nevertheless, little research has been investigated on how to link the data in the 

servitization process and how to use them for advanced manufacturing service innovation. 

Servitization is essentially a business model, but it is also an advanced product-service-and-user collaboration 

technology that can be used to avoid advance payments and the consumption calculation when a smart 

product is offered in a real ‘pay-per-use’ service mode. However, the fragmented information generated from 

various departmental teams or business partners/collaborators leads to the discontinuity and inconsistency of 

design information throughout the product-service lifecycle, making it hard in decision-making at later design 

phases and product/service improvement in later generations [4]. Therefore, this servitization transformation 

requires manufacturers to collaborate closely with their partners and customers to create and deliver service 

value propositions that better meet customer demands. This will uncover insights not only on the way how a 

product is manufactured, but also on how it is transported, installed, used, repaired, and recycled in real 



 

world. The interaction data between the product and various human users must be collected and analyzed. 

Thus, a service-oriented DT-based system is required to collect a great deal of data from both physical smart 

products and human users during their interactions with products and services.  Human users include human 

workers (such as repairers, installers, retailers, wholesalers, and transporters) and end-users along the product 

lifecycle. The DT-based system needs to holistically support concepts of product DT, service DT and human 

DT. Product DT could be underpinned by IoT and human DT is supported by Internet of Users (IoU) and 

Internet of Service providers (IoS) [5]. In this paper, the sum of IoT, IoU, and IoS is called IoB that connects 

the physical, virtual, and social space in cyber-physical-social systems (CPSS). CPSS is an emerging concept 

developed to understand the bidirectional impact between cyber-physical systems and humans [6,7]. Instead 

of developing a CPSS, this paper focuses on the development of a service-oriented DT system that can be a 

part of a CPSS. In the DT-based system, It is important to make joint availability of data generated by 

machines and by processes involving humans [8]. 

With the increasing variety of digitally enabled services and business models, the ways of delivering services 

to end users in collaboration with various service providers (or crowd workers) will be diversified via various 

service outsourcing or crowdsourcing mechanisms [9]. Based on these business requirements, it is necessary 

to integrate crowdsourcing mechanisms into a service-oriented DT. On the one hand, this integration can 

support new business models based on service outsourcing/crowdsourcing for better product/service quality, 

on the other hand, it can help model human users’ behavior and service experience and relationship from 

service interaction data in DT, in addition to modelling product (machine) behaviors. 

Currently, how to develop a service-oriented DT for digitally supporting advanced services is still at its early 

stage of investigation [10]. Few studies exist on how to design and implement a service-oriented DT platform 

along the product-service lifecycle to support customer-centric service business models with service 

outsourcing/crowdsourcing. 

The central problem of developing such a service-oriented DT is how products, services, networks of 

‘players’ or stakeholders and supporting infrastructures can be holistically modelled, connected, and 

interacted in both the physical space and the mirrored cyber space and how the user-generated and product-

generated data can be collected and utilized for smart product and service innovations along the product-

service lifecycle. This is due to the limitations of existing DT concept that is proposed to support the use of 

virtual models of physical manufacturing assets for typical physical system monitoring, optimization, and 

control usages. It lacks human behavior modelling or human DT capability.  

This research applies advanced service needs in heating industry [11] to explore and demonstrate how to 

design and prototype a hybrid DT and digital thread platform for supporting manufacturing servitization with 

embedded service crowdsourcing and human behavior and service-relationship modelling capabilities. The 



 

main research contributions are as follows.  

(1) A holistic service-oriented DT design supporting the concepts of product DT, service DT and 

human (user) DT. 

(2) Integrating service crowdsourcing and service recommendation for realizing smart manufacturing 

services. 

The paper is structured as follows. Section 2 reviews related work in DTs for manufacturing services, digital 

thread and digital shadow, and crowdsourcing for service innovation, Section 3 presents the industrial 

requirements for a service-oriented platform and the development of the service-oriented hybrid DT and 

digital thread platform in terms of its conceptual model and the overall architecture. Then the implementation 

of service provider coordination mechanism on the hybrid DT and digital thread platform is demonstrated in 

Section 4. Section 5 evaluates the feasibility of coordinating service providers to deliver the requested service 

and the evolutionary updating of DTs around ‘maintenance as a service’ concept. Finally, the paper is 

discussed and concluded in Section 6. 

2. Related Work 

2.1 Digital Twin for manufacturing services 

DT is one of the key building blocks for smart manufacturing [12]. Underpinned by Internet of Things (IoT), 

Big-Data analytics and other Industry 4.0 technologies, DT is potentially applicable for many fields that 

involve the mapping, bidirectional interaction, and co-evolution of physical and virtual spaces. Currently, 

DTs are mainly applied in smart city, construction, aerospace, automobile, and manufacturing, etc. [13,14]. 

For enterprises, DTs can serve as living testbeds for various products and manufacturing process scenarios, 

allowing themselves to learn from continuous real-world data for better evolution. 

From a manufacturing perspective, DTs are defined by ISO/DIS 23247-1 as living digital representations of 

observable manufacturing elements including personnel, equipment, materials, manufacturing processes, 

facilities, environment, products, and supporting documents that updates and changes as the physical 

counterpart changes. They not only consist of design, as-built manufacturing and operational data for their 

physical counterparts in the virtual space, but also include models, simulations and algorithms describing its 

physical counterpart including features and behaviors in the real world. Different from IT-driven innovation 

generated only from data, the DT-enabled service innovation emphasizes more on the cyber-physical 

interactions [15]. So far, as indicated by Lu et al. [16], 85% DT applications are developed for manufacturing 

assets, and 11% are developed for factories.  

In smart manufacturing, due to the capability of grasping the state of manufacturing systems in real-time and 

predicting system failures, DT is regarded as a disruptive concept in implementing smart manufacturing 

systems with better quality, higher productivity, lower cost, and increased flexibility [17]. The existing 



 

research mainly focuses on how to apply DT into manufacturing practice from various perspectives. For 

example, Qi et al. [13] analyzed the enabling technologies and tools for implementing DTs for potential 

applications. Tao et al. [18] proposed a DT-driven product design framework for redesigning or improving 

existing products. The mechanisms for modeling and implementing connections between physical and virtual 

models is studied by Jiang et al. [19].  To improve productivity and efficiency, DTs are also applied into the 

manufacturing process to gain a clearer picture of the real-time performance and operating conditions of 

manufacturing systems, such the production management and control of complex product assembly shop-

floor [20] and the scheduling optimization [21]. 

In addition, DT can also be combined with other technologies, such as Artificial Intelligence and Big-Data 

analytics to form new models of DT-based services including product fault diagnosis, predictive 

maintenance, performance analysis, training, and lifetime forecasting in the product lifecycle [13,18,22]. By 

gathering the real-time parameters of sensors and control systems, and the real-time user inputs, the digital 

model is built to analyze the state of smart products with Artificial Intelligence to discovering potential 

mistakes and warnings. 

Benefited from the increasing connectivity and amount of usable data, DTs are shifting the businesses from 

analyzing the past to predicting the future, achieving data-driven development of innovative product and 

services [18] and diversifying value creation and business models in an iterative manner [15]. With the 

product-service integration in all aspects of modern society, the importance of service is recognized by more 

and more enterprises under the paradigm of Everything-as-a-service (XaaS). To meet the increasing service 

demands from different application fields, different levels of users, and different businesses, a product-

service system consisting of various DTs of products, services, customers, and stakeholders on the supply 

chain shows great potential for supporting and speeding up this servitization process [5,10], appliable from 

smart product (appliance) to smart factory [8]. So far, DTs are mainly used to ensure well-defined services, 

such as real-time asset monitoring, asset failure analysis and prediction, intelligent optimization and update, 

user behaviour analysis, and asset maintenance [4]. For example, in asset maintenance, the maintenance 

strategy can be classified into proactive maintenance (including preventive, condition-based, predictive, and 

prescriptive maintenance) and reactive maintenance [22], but DTs are mainly used in the proactive 

maintenance strategy for calculating the remaining useful life of the asset and reducing the cost of asset 

management [23]. In asset failure analysis, Xu et al. [24] proposed a two-phase DT-assisted fault diagnosis 

method using deep transfer learning to realize fault diagnosis both in the development and maintenance 

phases. 

The system of DTs established along the product-service lifecycle can promote the integration of product and 

service design processes, manufacturing processes, and general collaborative service business processes 



 

[10,25], providing potential ways for value creation by a platform-based approach. However, there is 

relatively less DT research on involving human in the DT environment and establishing production network 

DTs that focus on communication/interactions between DTs [16].  

2.2 Digital thread and Digital shadow 

Digital thread and digital shadow are two common concepts related to DT. They can be treated as key 

enablers for DT [26,27]. The relationship of DT, digital thread, and digital shadow is shown in Fig. 1.  

Digital thread can create access channels to diverse but interrelated data sets so that the upstream and 

downstream is consistent and available to all users involved in a product lifecycle [27]. It can maintain data 

associativity and traceability in a smart manufacturing process. Digital thread is a pre-requisite to true DTs 

as it enables the evolution of DTs by enabling bidirectional communication between DTs. Currently, the 

research on digital thread mainly focuses on linking different lifecycle data in a digital thread to support 

lifecycle decision-making. For example, Kwon et al. [28] proposed an approach to fuse as-designed data 

represented in STEP (STandard for Exchange of Product model data) and as-inspected data represented in 

QIF (Quality Information Framework) in a standards-based digital thread based on ontology with knowledge 

graphs. Implementing digital thread in manufacturing systems plays a significant role in enhancing cross-

functional collaboration, enabling efficient change management in manufacturing and service processes, 

eliminating rework, and reducing lead times [27]. Digital thread makes it possible to deliver the right 

information to the right place at the right time [28].  

 

Fig. 1 The relationship of DT, digital thread, and digital shadow. 

Digital shadow can be described as ‘an always up-to-date information system, which integrates data from all 

available sensors and IT systems into one virtual representation including seamless interfaces and 

visualization for all connected services’ [26]. It only supports one-way real-time data communication from 



 

physical to digital space, reflecting changes in physical objects in corresponding digital models. In practice, 

digital shadow is mainly implemented at product operation stage to collect product working data [29]. As a 

core component of DTs, digital shadow enables the management and analysis of real-time data coming from 

the physical space [30]. In the manufacturing context, the data profiles of any product or component including 

operation, condition, and process data can be depicted as digital shadows. Digital shadow can achieve a 

comprehensive structuring of heterogeneous kinds of data available and connect them to their respective 

semantics and context for later retrieval and interpretation. Digital shadow can be subsets of data from 

production process according to the specified purpose [31]. 

In service-oriented digital manufacturing systems, there already exist studies to develop digital shadow for 

data management and analytics, laying foundation for the development of DT in the future [29]. And digital 

thread has been adopted to enable connectivity throughout the system’s lifecycle and to collect data from the 

physical twin for updating the corresponding digital representation in the virtual space [32]. However, little 

existing research has been focused on the communications/interactions between DTs in service process [16]. 

Implementing service DTs enabled by digital thread and digital shadow can help enterprises deliver 

experiences and outcomes to customers prescriptively rather than reactively [27].  

2.3 Crowdsourcing for service innovation 

Crowdsourcing [33] is an innovative business practice of obtaining needed services, ideas, or content or even 

funds by soliciting contributions from a large group of external people (the ‘crowds’) or general service 

providers. It not only actively involves a diverse crowd of users but also involves the management of them 

via web-based collaborative technologies to elicit their knowledge and skill sets and thus fulfil the pre-

identified business goal [34]. In manufacturing industry, crowdsourcing plays an important role in product 

development, provision of data and information for manufacturing, innovation, crowdsensing, and problem 

solving [35]. Crowdsourcing has been demonstrated to be beneficial to organizational performance, helping 

organizations survive and thrive in the ever-changing environment by creating a competitive advantage 

through constant innovation [36]. 

To adapt to the prevailing tendency of manufacturing value proposition towards a service-oriented manner, 

third-party/intermediary digital platforms with co-creation capabilities for crowdsourcing serve as the 

foundation for delivering XaaS [37]. Previous studies have indicated that adopting a platform approach with 

modular architecture is very effective in enriching advanced product-service offerings while maintaining cost 

levels because it allows organizations to achieve flexibility through modularity and allocated responsibility 

[38]. In the platforms, crowdsourcing is mainly responsible for coordinating service providers to implement 

the requested service with necessary service resources and crowdsensing user comments/ideas on existing 

products/services for improvement. The value of generated information in the crowdsourcing process is a 



 

key driver of service innovation. For example, typical crowdsourcing platforms such as MyStarbucksIdea 

and Dell IdeaStorm can preliminarily assess existing ideas by allowing customers and stakeholders to 

comment on them, so as to acquire a great number of innovative and beneficial ideas or uncover drawbacks 

of existing products and services [39,40]. 

However, to the best of our knowledge, there is no report on its integration with a DT platform. Therefore, it 

is significant to apply crowd-/service-sourcing into coordinating stakeholders and crowd/service providers 

to work towards an optimal product-service ecosystem along the product lifecycle. When it is integrated with 

DT in a product-service ecosystem, it will not only enable the manufacturer to have flexible coordination of 

service providers and manufacturing resources, but also provide an effective way for the manufacturer to 

engage all stakeholders crossing the product lifecycle and gain feedback information on the product and 

service system from all of them. The integration of crowdsourcing and DT will maximize the utilization of 

assets and bring business values to the manufacturer by delivering advanced XaaS provisions such as 

equipment as a service, product as a service, etc. 

3. Service-oriented platform development supported by DT and digital thread  

3.1 Industrial background and requirements 

Our industrial research partner is a residential/domestic boiler manufacturer. Currently, a domestic boiler, 

typically a gas boiler, is used widely in huge number of homes for heating purpose. For example, in the UK 

domestic sector, around 85% percent of energy is used for heating purpose. Typically, a boiler as a product 

can be owned by a householder or a landlord based on the product-centered business model. Regardless of 

what the product ownerships are, a boiler itself needs a regular annual maintenance service for reasons 

including safety check, identifying potential faults, and efficiency. For example, landlords in the UK who 

rent out their property are legally required to have their gas appliances and flues serviced on an annual basis 

by a certified Gas Safe heating engineer with a visual inspection and prescribed tests.  

To facilitate the servitization, our research partner has made the boiler product smart with embedded SIM 

(Subscriber Identity Module) card so that it can transmit real-time product status data back. However, there 

is still a long way to implement manufacturing digital servitization. On this digital transformation journey, 

the core is an approach centered on the DT that is used for collecting data from product design, 

manufacturing, operations, maintenance, operating environments, and user experience and utilize these data 

to create a corresponding model of each specific asset. 

From two workshops, it is found that there are two key challenges our research partner faces in digital 

servitization. The first challenge is the lack of product operation data (including product performance, 

maintenance, user interaction and experience information, etc.) for advanced service innovation. Our research 

partner hopes to have a big picture of its product usage throughout the lifecycle and based on that to offer 



 

advanced service provisions to increase revenues while enhance user experience. In this process, in addition 

to product design and as-built manufacturing data that have been owned by the business, product operation 

data play an important role in uncovering insights on advanced manufacturing services innovation as well. 

Nevertheless, our partner usually adopts fixed contracts with its business partners for product installation and 

maintenance in the traditional product-centric business model, leading to the fragmented product operation 

data belonging to its business partners. In the current scenario, it is important to collect product operation 

data and this should be the starting point of advanced service innovation. The second challenge is the low 

efficiency in delivering services. The traditional service delivery ensured by fixed contracts is costly and 

inflexible. After customers request a service, they usually need to wait for a certain time period before getting 

serviced, greatly reducing the user experience. Our research partner hopes to find a new way to dynamically 

coordinate service providers such as installers and maintenance engineers to serve customers in a flexible 

and timely way. In the servitization process, the ownership of product could change to a product provider 

such as a manufacturer or jointly with householders or landlords, while the heating services including basic, 

intermediate, and advanced services [11] need to be provided to the end users such as home residents or 

tenants by various service providers. The better connectivity is also required at the service level to connect 

the smart product to its owners such as landlords, end users (residents or tenants) and service providers. 

Overall, the servitization goal of our research partner is to develop outcome- and performance-based 

advanced services such as ‘heat as a service’ and coordinate service providers to deliver them to customers 

based on product operation data in product use and maintenance stages by integrating crowdsourcing into 

DTs. Therefore, we design and prototype the DT platform based on the hybrid DT and digital thread 

conceptual model for evaluating the feasibility of using a smart product and service DTs to support this 

business concept.  

3.2 The service-oriented hybrid DT and digital thread conceptual model  

Based on our industrial application context, we design the service-oriented hybrid DT and digital thread 

conceptual model (see Fig. 2) for innovating advanced manufacturing services, underpinned by new business 

models, service-/crowd-sourcing, product, service and user DTs supported by IoT, IoU, and IoS. It not only 

integrates existing smart products with smart services, but also engages all stakeholders such as customers 

and service providers along the whole product and service lifecycle. 



 

 

Fig. 2 The service-oriented hybrid DT and digital thread conceptual model. 

In Fig. 2, in the physical world side, real world products, services and human participants have their 

corresponding DTs in the virtual world. A service process could start from either the smart product generated 

data such as an annual service notice to landlords or householders or customer-generated data such as a 

repairing or training service request in the physical world. Once these data generated from either physical 

sensors or human participants (or human sensors) are communicated to its digital counterparts via digital 

threads, they will be analyzed by the platform for generating proper new service requests (or offers) and 

creating the corresponding service DTs. For each service under request, crowdsourcing-based service 

sourcing is adopted to dynamically coordinate service providers to deliver the requested service. It is 

performed in the virtual space based on the profile of the product, the service requested, and service providers 

DTs, and as a result, a certain number of competent service providers in the physical world will be invited to 

act on the crowdsourcing and compete for the service job.  As a result of the crowdsourcing, the best suitable 

ones will be shortlisted for landlords or householders to choose from. Once they select a service provider, a 

contract containing requester (landlords or householders) address, service date and time, requested service 

type, selected service provider, etc. will be formed. Finally, the selected service provider will be actuated to 

deliver the service in the physical space according to the contract, resulting in the physical product status 

changes as virtual-to-physical twining. In this loop, all data associated with the service and generated by both 

the boiler and the human users will be recorded and the associated databases will be updated. Thus, when a 

service is delivered physically, the changes in user-generated data are combined with the product generated 

data via IoT, IoU and IoS to trigger a physical-to-virtual twinning that updates their corresponding DTs of 

the product, service, and users. These updated DTs will feed forward to the next round service sourcing and 

service recommendation for delivering next round services. 

To describe a service process at product in use and maintenance stage under the conceptual model (see Fig. 



 

2), key assets in the process such as products, services, human actors (including customers, service providers 

and other stakeholders on the supply chain) have their corresponding DTs (digital representations) in the 

virtual space. Each of them is identified (or identifiable) by unique identifier and refers to the digital 

representation/model of a particular asset. A basic DT unit (see Fig. 3) in this paper consists of the physical 

asset and its digital counterpart. In the DT unit, there are four types of communications: physical-to-physical, 

physical-to-virtual, virtual-to-physical, and virtual-to-virtual. All these communications are enabled by 

digital threads represented by arrow lines (the arrow direction indicates data communication direction) with 

different colors in Fig. 3. The internal communications within the DT unit including physical-to-virtual and 

virtual-to-physical ones represented by black arrow lines are supported by IoT infrastructures such as sensors 

and smart devices. The physical asset in a DT unit can only communicate with its digital representation via 

black arrow line channels and with other physical assets that are connected to it via yellow arrow line 

channels. Similarly, the digital representation in a DT unit can only communicate with its physical asset and 

other digital representations connected to it via green arrow line channels. There must exist at least two DTs 

that are channeled together by digital threads in order to communicate with each other for servicing. As 

illustrated in Fig. 3(a), a simplest service on the product can be performed automatically by the product itself 

such as self-diagnostics. The digital threads among physical assets are represented by yellow arrow lines 

while those among digital representations are green. If we take the communication between the physical asset 

and its digital twin as default, the simplified representation of a basic DT unit is shown in Fig. 3(b).  

 

Fig. 3 The basic DT unit. 

Around a specific physical product in a DT unit, there are many different services such as product installation, 

annual safety check, operation training, and other maintenance services that are bounded to the physical 

product (one-to-many relationship). These services have their unique codes/identifiers. The combination of 

a product identifier and a service code could form an integrated service identifier to indicate the product and 

the service that are connected. For a product DT, its simplest digital representation could be just an ID 



 

(Identity) for service-oriented applications. Of course, the digital representation can be further improved with 

2D (two-dimensional) and 3D (three-dimensional) simulation models when needed.       

In the virtual space, DTs are developed in an incremental way in terms of representation detail and interaction 

complexity. A DT could be just a predefined object with a unique identifier at the very beginning. Then with 

the collection of more product operation data, the DT can be continuously improved with higher fidelity and 

ultimately to be a perfect copy/DT to the physical asset. In interaction complexity, DTs including product 

DT, customer DT, and service provider DTs are independent at the starting point. Then with interactions 

between the product and customer or service providers happening, service DTs and digital threads are 

developed incrementally. Service DTs are secondary and associated with initially independent product, 

customer, and service provider DTs.  

Taking a boiler repair service as an example to demonstrate the incremental development process of DTs.  

(1) When a physical boiler runs normally at a home, the home user (consumer) can interact with it 

normally and receive right feedback from the boiler digital representation. The routine interaction 

process between the boiler and the consumer is shown in Fig. 4 with black, yellow, and green arrow 

lines representing interactions within the DT unit, between physical assets, and between digital 

representations, respectively. The closed-loop digital thread in the routine interaction process is 

marked by red arrow lines connecting the yellow, green and some black arrows lines. For example, 

the boiler can send its sensor data to its digital representation, and according to the incoming data 

analysis, the boiler’s DT can send a ‘healthy’ boiler information to the consumer DT. Upon receiving 

this information, the consumer can continue to use the boiler normally.   

 

Fig. 4 The routine interaction process between a boiler product and the consumer. 

(2) When the physical boiler breaks down, the boiler will send the break-down information to the 

consumer through its DT and the consumer DT, the home consumer then will request a repair service 

along the following key process. The key interactions between DT units and the incremental 



 

development of the service DT and digital threads in the process are represented in Fig. 5.  

 

Fig. 5 The interaction process in a typical repair service process. 

Step 1: Start with two DTs as shown in Fig. 4, in Fig. 5, the two DTs namely “The boiler” and “The 

consumer” are represented in their simplified forms. The physical boiler reports the problem to its digital 

representation and then abnormal feedback will be sent to the smart home consumer via digital thread 1 (in 

green).  

Step 2: With the abnormal feedback, the consumer will make a service request for the corresponding service 

from the boiler bounded service list with his/her expected service date and time. This request will create a 

new service DT “The service” connected to the consumer via a new thread 2.  

Step 3: The requested service will be crowdsourced to a group of service providers. A group of new service 

sourcing threads 3 will be created to connect the service in request and the crowd service providers. For each 

service provider, its DT has already been created when they registered on the platform.  

Step 4: At this step, digital threads between digital representation of the service and any service providers 

that can provide the requested service are developed so that they can confirm their availability at the requested 

date and time. They will send their responses back to the Service DT via new threads 4.  

Step 5: After receiving responses among the available service providers, only the most suitable one based 

on low-carbon footprint principle or quality priority principle will be chosen to carry on the service job. Let’s 

assume the first service provider highlighted by a purple circle is selected. The serviceman will provide the 

requested repairing service in physical world via the interaction 5 (in yellow) and then the communication 

between the serviceman DT and the service DT can be through a new thread like 4 to complete the service 

DT with all information involved.  

Step 6: After the selected service provider delivers the requested service in the physical space, the physical 

boiler product will be updated from the repairing service via the interaction 6 (in yellow) and will send real-

time status to its digital representation. In this way, the boiler, the consumer, the service, and the service 



 

provider DTs are connected in a loop.   

Step 7: The service provider is also required to update the formed service in his/her digital representation 

so that the service completion status can be cross validated, enabling a new physical action 7 (in yellow) such 

as a ‘Restart” to resume the boiler use.  

In the service interaction process, the digital thread-based connectivity around the product itself and 

associated human users will enable the collection of operation data at product in use and maintenance stages. 

Once the operation data are sufficiently rich, they will be able to drive both updates of existing 

products/services and development of new products/services from a data-driven product/service design 

perspective. In this way, the accumulation of operation data and DT updates are happening in turn to support 

a gradual and incremental digital twinning process along the product/service lifecycle, making the 

manufacturing system into an ecosystem. 

3.3 The Architecture of The DT Platform Prototype 

Inspired by the DT Reference Architecture Model [41], the service-oriented hybrid DT and digital thread 

conceptual model in Fig. 2 can be realized by its four-layered computational architecture as shown in Fig. 6. 

The four layers are the perception layer, application layer, digital layer, and storage layer.  

 

Fig. 6 The overall architecture of the hybrid DT and digital thread platform. 

Application layer packages capacities and resources as services to serve stakeholders involved in the product-

service ecosystem. Perception layer perceives the real-time status of smart products in physical space enabled 

by IoT infrastructure. These two layers form the network of humans and products, respectively. The digital 

layer is the DT-based crowdsourcing platform that not only implements the DTs (virtual models) of users, 

products, and services but also implements the connections among platform users and between physical 

product and its virtual counterpart enabled by IoT devices. Key role players involved in the product-service 

ecosystem including requesters, crowd workers acting as designers, evaluators, installers, and other 



 

stakeholders interact with the platform through predefined web-based user portal/interface. When requesters 

post tasks through their personal portals, the platform will design the tasks and then the platform 

crowdsources them to crowd workers with expected skills. To improve the capability of data storage in the 

platform, MongoDB (a NoSQL database that stores data in the form of ‘key-value pairs’) is used to store the 

very large amount of raw data with various formats collected from users, products, and services in the storage 

layer.  

In the digital layer, there are mainly three types of DTs, namely user DT, product DT, and service DT. Here 

a ‘user’ is a human role player in a product-service system, thus a user DT is the digital representation of a 

human ‘user’.  At the concept level, a user DT can be treated as part of human DT [42] while the information 

to describe a user DT or a Human DT is dependent on applications because human beings are too complicated 

to be modelled digitally in every aspect at every detail. For example, for smart healthcare application, a 

human DT [42] may need information related to a specific person’s physical and mental development and 

healthcare, but for a product maintenance service application, we may rather need the user’s residential 

address (or product location) depending on the user’s role and the user’s service preference and consuming 

behavior.  So, in our application case, based on a user’s role type, a human user DT can be instantiated as 

service provider DT (such as installer DT, or maintainer DT), requester DT (landlord), and customer/end-

user DT. In general, a human user DT has three types of information either as input or output information 

(See Fig. 3) to describe it: (1) the basic attribute information, (2) the user’s role-related service qualification 

information, and (3) the user’s service usage data for analytically and incrementally building up various 

simulation models in the physical-to-virtual digital twinning process. When a user successfully registers on 

the platform and a user DT can be created simultaneously with some basic attribute information (input): the 

user’s digital ID (the system created), role type, and residential address (for end user and service providers). 

The role-related service qualification information includes some static data and dynamic data. Taking a 

service provider DT as an example, the static service qualification information (input) includes formal 

education qualification, spoken languages for effective communication, professional training qualifications 

and expertise. The dynamic service qualification information (output) include service accept rate, customer 

satisfaction score, and service quality score, etc. This dynamic information will be updated once a new service 

interaction is completed, which are output information based on analytical models. For the user’s service 

usage data, they are rea-time service information (input) required from the human user such as when, where 

and to whom a service has just been provided, what is the next available time, any comments/rankings on the 

performed service related to product design, manufacturing, and other stakeholders, etc. Then with the 

accumulation of data, the service provider DT will be able to build up models (output) by analyzing the 

service history/usage data to dig out his/her service frequency, fine-tuned expertise, dynamic quality profiles, 



 

service preference and service behavior, etc. And then the service provider DT will provide recommendation 

evidence to the platform when a new service request comes. In our system, some information requires the 

user to input and some will be created from the system via information cross-referencing mechanism. The 

others could be output information generated within the DT. 

Similarly, when a product/machine is registered on the platform, a product DT will be created as well with 

three types of information: (1) Basic machine attributes data such as the machine ID, type specification, 

installation address, status, owner, purchase date, installation date, and warranty period, etc. (2) Machine’s 

real-time performance and status information. After the machine is started, this type of information will be 

transferred to the digital space continuously via machine embedded sensors, and the status of the 

corresponding product DT is updated accordingly. (3) Data about services that are provided by service 

providers to the machine, such as what service the machine has received, when the machine receives the 

service, and who provides the service, etc. With the increase of the machine’s performance and status data 

and its being serviced data, the product DT will be able to analyze them to learn actual machine usage 

frequency, the total number of every machine error and its occurrence frequency, the total number of services 

provided by each service provider and their corresponding service quality comments, etc., thus, to provide 

prediction models to its next service requirement and issue warning information as breakdown prevention 

management tool.   

Different from the user and product DTs, a service DT is mainly used to describe the relationship between 

them, consisting of basic attributes data such as the service ID, requested service date and time, service 

creation date, the machine to be serviced, who made the service request, the service provider’s ID and service 

status, etc. When a service is completed by a service provider, the service quality related data can be generated 

by the service provider, the service requester and/or the end user. If the machine is smart, the machine ‘s 

product DT might be able to self-diagnose the service quality. The service quality information is then to be 

linked/reflected in the product DT’s prediction model, the service provider DT’s dynamic service quality 

profile model and the end-user’s service preference and behavior models. 

Limited by the data volume on our platform, the analysis models in the user DT and product DT have not 

been fully implemented because the data analysis accuracy is largely affected by the data volume. But we 

will implement them in the future when there is enough platform data available.  

In the platform, data cross-verification mechanisms are adopted to verify the information sources and 

reliability. The DT-enabled ecosystem dynamically establishes relationships among ecosystem entities 

including machines, machine owners (service requesters), service providers, and end users, etc. So, when a 

machine-based service request comes in, the platform is required to validate the request through two steps. 

First, it retrieves the machine information with the machine ID from database to check if the service is 



 

requested by the right machine owner. Then it retrieves the real-time machine status transmitted by IoT 

devices to check if the machine status matches the problem in service request. After the service request is 

validated, the platform will analyze the machine maintenance history to predict service complexity, required 

qualification skills, estimated service cost, and urgency level for processing the service request. In the 

platform, the qualification of service providers is a key to ensure the service quality. Therefore, in order to 

ensure the reliability of service providers, their performance, i.e., accept rate, customer satisfaction score, 

and service quality score, are only measured by end users that use the machine. Only when the requested 

service is completed, the corresponding end users can receive the link for evaluating the service quality of 

the corresponding service provider. In this way, a feasible service solution is enabled. 

4. Implementation of service provider coordination mechanism on the DT platform 

This section details the coordination of service providers for delivering a requested service. The coordination 

process includes two steps: service-/crowd-sourcing and service provider recommendation. 

4.1 Service-/Crowd-sourcing 

Posting a service request is regarded as a start point of the ecosystem evolution. Crowdsourcing integrating 

with service recommendation is considered as a tool to find the right service providers (crowd workers) with 

best value for the tasks/services required. Therefore, we formulate the service crowdsourcing problem into a 

combinatorial optimization one. The goal is to find a small set of service providers from a big crowd pool 

based on a requested service (task) profile by broadcasting the service request with highest possibility of 

finding at least one qualified service provider and the minimum unnecessary information burden to the rest 

of service providers in the pool.  

Before proceeding further, we start with the following definitions from an overall perspective of the product-

service ecosystem based on ordinary crowdsourcing [43]. 

Definition 1: A product-service ecosystem based on a crowdsourcing platform can be described as a time-

related state system with a 5-tuple (𝑀, 𝑂, 𝑊, 𝐶, 𝑆). 

a) 𝑀 = {𝑚𝑎|𝑎 = 1, 2, … , 𝑀𝑁} is a set of machines on the crowdsourcing platform and 𝑀𝑁 is the total 

number of machines. Assuming that a machine is only used by one end user and owned by an owner at 

time 𝑡, then corresponding end users (such as tenants) set is donated by 𝐶 = {𝑐𝑏|𝑏 = 1, 2, … , 𝑀𝑁} and 

the owners (such as landlords) set by 𝑂 = {𝑜𝑥|𝑥 = 1, 2, … , 𝑂𝑁}, where 𝑂𝑁 ≤ 𝑀𝑁 . A new service 

request could be initiated by a machine 𝑚𝑖′s owner 𝑜𝑥, 𝑥𝜖[1, 𝑂𝑁] after receiving the system remainder 

and problem report from the corresponding end user 𝑐𝑖 . 

b) 𝑊 = {𝑤𝑦|𝑦 = 1, 2, … , 𝑊𝑀} is a set (pool) of service providers who work on service requests on the 

crowdsourcing platform and 𝑊𝑀 is the total number of service providers.  

c) 𝑆 = {𝑠𝑖|𝑖 = 1, 2, … , 𝑆𝑁} is a set of service packages around machines and 𝑆𝑁 is the total number of 



 

service packages.  

In the product-service ecosystem, each key element can be regarded as a live being-B such as a machine, its 

states at time 𝑡 can be described as triple (𝐵𝑡−, 𝐵𝑡, 𝐵𝑡+). 𝐵𝑡− represents its history state, 𝐵𝑡 represents its 

current state and 𝐵𝑡+ represents its future state. Exemplar data to describe each state for each element are 

shown in Table 1. In this ecosystem, 𝐵𝑡− is used for service-/crowd-sourcing, 𝐵𝑡 is used for service provider 

recommendation, and 𝐵𝑡+ is used for representing the updated states of beings after contracts end.  

Table 1 Being state. 

Symbol History state 𝑩𝒕− Current state 𝑩𝒕 Future state 𝑩𝒕+ 

M Design and manufacturing related 

data, service history record data, 

historical performance data, etc. 

Machine’s current performance 

data, warning information or 

codes and/or faculty codes 

transmitted by IoT devices, etc. 

Predictive maintenance or 

scheduled annual 

service/check, etc. 

O Location and contact information, 

the machine ownership history and 

the machine service management 

history, etc.   

A service request, urgency, 

current availability, etc. 

Appointments for scheduled 

machine service and planned 

the ownership change, etc. 

C Location and contact information, 

the machine usership history and 

the machine service management 

history, etc.   

A service request, urgency, 

current availability, etc. 

Appointments for scheduled 

machine service and planned 

the usership change, etc. 

W Location and contact information, 

his/her qualifications, professional 

training and certifications, 

experience, and quality of the 

previous services on M, pricing 

history for the services, etc. 

Current location, availability, 

pricing expectation, etc. 

Appointments for delivering 

services, etc. 

S Service design and associated 

business models, service quality 

and associated user experience, 

service history data, etc. 

Service requests to be processed 

with current resource 

constraints, etc. 

The following up service 

scheduling, etc. 

Definition 2: A service task 𝑇𝑖 related to 𝑀𝑖 and the inputting request 𝑅𝑖 by 𝑂𝑖. With a service analysis tool 

𝑓, 𝑇𝑖 can be defined with five dimensions: complexity (𝑃), required skills (𝐾), estimated service cost (𝑆𝐶), 

urgency level (𝑆𝐿), and detailed service request description ($):  

𝑇𝑖 = 𝑓(𝑀𝑖, 𝑅𝑖, 𝑂𝑖) =  𝑇𝑖 < 𝑃, 𝐾, 𝑆𝐶, 𝑆𝐿, $ >                                              (1) 

Based on the previous definition, given a service task 𝑇𝑖  around machine 𝑀𝑖 , broadcasting 𝑇𝑖  on the 



 

crowdsourcing platform to a sub-set of 𝑊 who are qualified to take the service job. For each candidate 

𝑊𝑗(𝑗 = 1, 2, … , 𝜙), the following constraints must be met. 𝜙 can be a predefined small number such as 10 

for crowdsourcing in order to minimize the unnecessary interruption to most of the members in 𝑊. 

Constraint 1: potential service provider 𝑤𝑗 must have the task requested skills. Denoting the threshold for 

measuring the minimum value between two skills as 𝜀1, then the constraint 1 can be formulated as 

𝑑𝑖𝑠1(𝑤𝑗) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤𝑗(𝐾), 𝑇𝑖(𝐾)) ≥ 𝜀1                                         (2) 

Constraint 2: the estimated service cost is close to the service provider’s historical average price for similar 

services. Denoting the cost threshold as 𝜀2, then constraint 2 can be formulated as 

𝑑𝑖𝑠2(𝑤𝑗) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑤𝑗(𝐶𝑜𝑠𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑇𝑖(𝑆𝐶)) ≤ 𝜀2                                     (3) 

Constraint 3: the potential service providers must be locationally close to machine 𝑀𝑖 to have a shorter 

traveling distance for lower CO2 footprints from the service. Denoting the distance threshold as 𝜀3, then 

constraint 3 can be formulated as  

𝑑𝑖𝑠3(𝑤𝑗) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤𝑗(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛), 𝑀𝑖(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)) ≤ 𝜀3                            (4) 

Constraint 4: the performance of the potential service providers must be accepted by the service requester. 

Assuming that the accepted performance and performance threshold are denoted by 𝜃𝑝  and 𝜀4 , then the 

constraint 4 can be formulated as 

𝑑𝑖𝑠4(𝑤𝑗) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤𝑗(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒), 𝜃𝑝) ≤ 𝜀4                              (5) 

To measure the performance of a service provider 𝑤𝑗 in constraint 4, we quantitively describe it by a 3-tuple 

(𝐴𝑅, 𝐶𝑆, 𝑆𝑄)  where 𝐴𝑅 , 𝐶𝑆 , and 𝑆𝑄  denote acceptance rate, customer satisfaction and service quality, 

respectively. 

a) Acceptance rate 𝐴𝑅(𝑤𝑗) of service provider 𝑤𝑖:  

𝐴𝑅(𝑤𝑗) =
𝑁𝑢𝑚(𝑇𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑤𝑗))

𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑗))
∗ 100%                                            (6) 

where 𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑗)) and 𝑁𝑢𝑚(𝑇𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑤𝑗)) denote the overall and accepted number of service 

tasks taken by 𝑤𝑗. 

b) Customer satisfaction (𝐶𝑆(𝑤𝑗)). Assuming service provider 𝑤𝑗 has taken N service tasks, and the 

customer satisfaction scores marked by end users are denoted by 𝐶𝑆𝑖, 𝑖 ∈ [1, 𝑁], then the average 

customer satisfaction of 𝑤𝑗 is calculated by 

𝐶𝑆(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝐶𝑆𝑖(𝑤𝑗)𝑁

𝑖=1

𝑁
                                                            (7) 

c) Service quality (𝑆𝑄(𝑤𝑗)). Assuming service provider 𝑤𝑗 has taken N service tasks, and the service 

quality scores marked by end users are denoted by 𝑆𝑄𝑖, 𝑖 ∈ [1, 𝑁], then the average service quality of 



 

𝑤𝑗 is calculated by 

𝑆𝑄(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑆𝑄𝑖(𝑤𝑗)𝑁

𝑖=1

𝑁
                                                           (8) 

Then normalize 𝐶𝑆(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑆𝑄(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  through Min-Max Normalization to make them belong to [0, 1], and the 

normalized customer satisfaction and service quality are denoted by 𝐶𝑆(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅∗
 𝑎𝑛𝑑 𝑆𝑄(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗

. If the weightings 

of acceptance rate, customer satisfaction, and service quality are denoted by 𝑞𝐴𝑅, 𝑞𝐶𝑆, and 𝑞𝑆𝑄, respectively, 

then the historical performance of 𝑤𝑗 is formulated as 

𝑊𝑗(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) =  𝐴𝑅(𝑤𝑗) ∗ 𝑞𝐴𝑅 + 𝐶𝑆(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅∗
∗ 𝑞𝐶𝑆 + 𝑆𝑄(𝑤𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗

∗ 𝑞𝑆𝑄                           (9) 

Constraint 5: the selected 𝜙 service providers must have the maximum skills, best performance, and the 

minimum service cost and distance. Assuming the weighting functions for constraint 1, 2, 3, and 4 are donated 

by 𝑓1, 𝑓2, 𝑓3 and 𝑓4, respectively. Then the constraint 5 can be formulated as 

min ∑
𝑑𝑖𝑠2(𝑤𝑗)∗𝑓2+𝑑𝑖𝑠3(𝑤𝑗)∗𝑓3

𝑑𝑖𝑠1(𝑤𝑗)∗𝑓1+𝑑𝑖𝑠4(𝑤𝑗)∗𝑓4

∅
𝑗=1 , ∅ ∈ [1, 𝑊𝑀]                                         (10) 

With (2) to (10), 𝜙 service providers satisfying constraints will be screened out as candidates that will receive 

the broadcasting of the requested service.  

4.2 Service provider recommendation 

Service provider recommendation or personalized task recommendation [43] is an AI agent, one typical 

application scenario of recommendation algorithms which have been one of the research hotspots for many 

years to suggest relevant items to users. On a crowdsourcing platform, recommendation principles such as 

low-footprint, superior quality and whole lifecycle principles are usually adopted [11], and they should be 

balanced during the recommendation process to provide high-quality services around products to 

customers/end users while bring maximum benefits to involved actors. For worker recommendation in 

crowdsourcing context, the jointly considered factors include a worker’s capabilities and his/her external 

assessment of capabilities [43]. Besides these factors, we also consider their availability and location at the 

expected service time, and their real quote for providing the requested service to calculate their 

recommendation priorities denoted by 𝑅𝑎𝑛𝑘. 

When the 𝜙 service providers receive the crowdsourcing call, they are required to confirm their availability 

and provide their quotes for the requested services. Assuming that their availability, locations, and quotes are 

donated by 𝐴, 𝐿, and 𝑄, respectively. If 𝑤𝑗 is not available at the expected service time, then 𝑅𝑎𝑛𝑘(𝑤𝑗) = 0, 

or the rank of 𝑤𝑗 should be re-calculated. 

When 𝑤𝑗 provides his real quote 𝑄(𝑤𝑗) and current location 𝐿(𝑤𝑗), the 𝑑𝑖𝑠2 and 𝑑𝑖𝑠3 will be updated as 

𝑑𝑖𝑠2′(𝑤𝑖) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑄(𝑤𝑗), 𝑇𝑖(𝑆𝐶))                                                 (11) 



 

𝑑𝑖𝑠3′(𝑤𝑖) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿(𝑤𝑗), 𝑀𝑖(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))                                         (12) 

Then based on low-cost recommendation principle, the rank of 𝑤𝑗 is 

𝑅𝑎𝑛𝑘(𝑤𝑗) =
𝑑𝑖𝑠2′(𝑤𝑖)−𝑑𝑖𝑠2𝑚𝑖𝑛

𝑑𝑖𝑠2𝑚𝑎𝑥−𝑑𝑖𝑠2𝑚𝑖𝑛
∗ 100%                                               (13) 

Where 𝑑𝑖𝑠2𝑚𝑎𝑥 and 𝑑𝑖𝑠2𝑚𝑖𝑛 denotes the maximum and minimum distance the quotes to estimated service 

cost, respectively. 

Based on low-carbon footprint recommendation principle, the rank of 𝑤𝑗 is 

𝑅𝑎𝑛𝑘(𝑤𝑖) =
𝑑𝑖𝑠3′(𝑤𝑗)−𝑑𝑖𝑠3𝑚𝑖𝑛

𝑑𝑖𝑠3𝑚𝑎𝑥−𝑑𝑖𝑠3𝑚𝑖𝑛
∗ 100%                                              (14) 

Where 𝑑𝑖𝑠3𝑚𝑎𝑥  and 𝑑𝑖𝑠3𝑚𝑖𝑛  denotes the maximum and minimum distance the locations to machine 

location, respectively. 

Although the rank of the ∅ service providers have calculated, which one will be chosen for performing the 

requested service is determined by the service requester. 

When a requested service 𝑇𝑖 is finished, the product status and the profile of the selected service provider 𝑤𝑖, 

primarily the acceptance rate, customer satisfaction score and service quality score will be updated 

automatically. Denoting the service satisfaction score and service quality score given by the end user as 

𝑆𝑐𝑜𝑟𝑒𝐶𝑆  and 𝑆𝑐𝑜𝑟𝑒𝑆𝑄 , then the updated customer satisfaction 𝐶𝑆(𝑤𝑖)
+  and service quality 𝑆𝑄(𝑤𝑖)

+  are 

calculated by: 

 𝐶𝑆(𝑤𝑖)
+ =

𝐶𝑆(𝑤𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑖))+ 𝑆𝑐𝑜𝑟𝑒𝐶𝑆

𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑖))+1
                                        (15) 

𝑆𝑄(𝑤𝑖)
+ =

𝑆𝑄(𝑤𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑖))+ 𝑆𝑐𝑜𝑟𝑒𝑆𝑄

𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑖))+1
                                       (16) 

The updated acceptance rate 𝐴𝑅(𝑤𝑖)
+ is updated by: 

𝐴𝑅(𝑤𝑖)
+ =  {

𝑁𝑢𝑚(𝑇𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑤𝑖))

𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑖))+1
∗ 100%, 𝑇𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑.

𝑁𝑢𝑚(𝑇𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑤𝑖))+1

𝑁𝑢𝑚(𝑇𝑎𝑙𝑙(𝑤𝑖))+1
∗ 100%, 𝑇𝑖 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑.

                       (17) 

The above constraint variables AR, CS and SQ on service providers are based on their service history data 

and could be regarded as the service provider’s simulated capabilities. The simulation capability for service 

providers is then used in the service provider recommendation and updated afterwards for next round use. 

This demonstrates the physical-to-virtual digital twining process in a human service provider) DT and 

Simulation capabilities for other DTs could be built up in a similar fashion. 

5. Case Study Evaluation 

The primary goal of the DT platform is to build an ecosystem involving not only the network of smart 

products but also the network of users and stakeholders. In the case study, ten service concepts [11] have 



 

been identified after the boilers have been installed and in use. Taking ‘maintenance as a service’ (SC2 

proposed in [11], shown in Table 2) as an example, we implemented a web application prototype in PyCharm 

(a Python Integrated Development Environment) based on Django framework to simulate the service process. 

The client side (user portal) was developed by HTML, Bootstrap, Javascript and JQuery, and the server side 

was developed in Python with a SQLite3 database. Django was picked due to the following reasons: (1) it 

follows the model-template-views architectural pattern, and (2) it is a free, open-source, and full-stack web 

application framework, providing a toolkit of all ready-made components for any web application 

development. For demonstrating the service process, SQLite3 database has been used for data storage, which 

would be insufficient to support the interactions among a large number of platform users. However, this issue 

can be mitigated by switching to more versatile SQL backends with load balancing and segmented databases 

on separate servers [15]. For a specific boiler in SC2, tenant and landlord act as end user and authorizer, 

respectively. Servicemen/engineers act as service providers/crowd workers.  

Table 2 Key features of SC2 and its corresponding advanced services. 

Service concept Key features Advanced services under the concept 

SC2-Managing 

access around 

the annual gas 

safety check 

Opening up communication 

channels with the tenant 

and scheduling inspection 

visits based on engineer 

locations and availability 

(1) Service engineers’ training and certification as a service 

(2) Crowdsourcing or service outsourcing as a service 

(3) Contract enabled ‘warm hours’ as a service 

(4) User Experience as a Service (UXaaS) embedded in the 

smart service recommendation 

Under SC2, annual machine check is one of the typical scenarios formed by these identified advanced 

services in Table 2. Taking annual machine check service in social housing segment as an example, the DT 

unit involved in this service process include boiler, landlord, tenant, service providers offering annual 

machine check service. In order to illustrate the interactions among DTs in the service process, the 

sequential interaction diagram with information flow in the service digital thread is provided in Fig. 7 

where the physical and virtual part in boiler and the selected service provider DT units are separated to 

respectively represent interactions in physical and virtual space with yellow and green line arrows. The 

service digital thread has four steps/sub-services: service appointment, crowdsourcing and service 

recommendation, contract generation, and service evaluation. This service process mainly involves the 

update of boiler DT and the selected service provider DT. Key interface for boiler DT, crowdsourcing 

results, and service evaluation are also provided in Fig. 7.  

(1) Service Appointment 

The annual check date is determined by the installation date of the machine. Before a given period of the 

expected machine check date, such as two weeks, the machine DT automatically reminds the tenant to request 

annual machine check with the landlord. When the machine DT notifies the tenant to check the machine, the 



 

tenant is required to request the service from the landlord. After the landlord authorizes the service request, 

the DT-based crowdsourcing platform requests the historical data from the machine DT to diagnose machine 

problem and calculate the required skills to solve the problem. How to diagnose machine problem and 

calculate the required skills are out of the scope of this paper. The key output from authorized service request 

is the requested service type, i.e., machine annual check. When the DT platform validate the service request 

to be true, a requested service is created which contains the information of the machine that needs service, 

the information about the requested service, the machine end user, the machine owner (landlord), the 

expected service date and time, etc. 

 

Fig. 7 Sequential interaction process with information flow in annual machine service and interface examples. 

(2) Service Crowdsourcing and Recommendation 

To recommend a proper service provider/engineer to the requested service, a two-phase recommendation 

process is adopted: 



 

a. Crowdsourcing and shortlist proper engineer candidates. In the ecosystem, the qualification of an 

engineer is measured by three simulated capability indicators, namely AR, CS, and SQ. They are 

initially set as 0, then with the increase of services performed by a specific engineer, his/her 

performance indicators are calculated by equations (6), (7), and (8), respectively and they will be 

updated automatically according to equations (15), (16) and (17) when a new service is performed by 

the engineer. For simplicity, the weighting parameters to AR, SQ, and CS are set to be 0.5, 0.3, and 

0.2, respectively. Therefore, the recommendation rate of a specific engineer based on his/her 

performance can be calculated with equation (9). The performance-based recommendation rate will 

determine if the engineer can receive the crowdsourcing broadcast or not. Only those with the top 

10% recommendation rate are invited as candidates for the requested service, then they can confirm 

their availability at the requested date and time for the service. And only the top three available 

engineers will be shortlisted for the requested service. In this step, for each shortlisted engineer, the 

distance from his/her residential address to the destination (machine address) and the traveling time 

by car over the distance are also calculated by the platform. 

b. Manual selection of the most proper engineer. In the platform, the low-carbon footprint (shortest 

distance to destination address) principle is adopted to rank shortlisted engineers. Based on that, the 

requester (landlord in SC2) can view the detailed information about the shortlisted candidates and 

make his/her decision to choose the most proper engineer for the requested service.  

In the crowdsourcing and recommendation step, the landlord and service providers mainly interact with the 

platform with pre-defined interfaces. They do not have direct communications until the landlord selected an 

engineer and contracted with him/her. An example of service crowdsourcing and recommendation results is 

shown in the crowdsourcing & recommendation part in Fig. 7. 

(3) Service Contract 

When the landlord selects an engineer for the requested service, the service request will be updated 

automatically, and the platform will notify the tenant, the landlord, and the selected engineer/service provider 

about the service date and time. Then at the expected date, the engineer will perform the service physically 

and then tell the service results to the DT platform. After DT platform verifies the service results by cross-

checking it with the real-time machine data, the platform will ask the machine end user to mark the service 

provided by the selected engineer.  

(4) Service Evaluation 

After the requested service is performed by the engineer, the tenant will be asked to mark or evaluate the 

service experience and quality. The service evaluation results will be written into service request and the 

reputation of the engineer (the selected service provider DT) will be updated accordingly. The service 



 

evaluation interface is shown in service evaluation part in Fig. 7. The service evaluation results will affect 

the qualification of the selected engineer for later service requests on the platform. 

(5) Simulation capability 

Simulation capabilities are essential for DT systems and are useful in product predictive maintenance. They 

can be built up once enough service history data are available. Otherwise, they can be incrementally built up 

and refined through a physical-to-virtual twining process over a period when the product is in use and 

maintenance stage to accumulate service history data. But in this case study, it is hard to fulfil every aspect 

of a digital twin platform such as the machine (boiler) simulation capability at current stage due to the lack 

of service history data. Thus, in this paper, our evaluation is focused on using the simulation capability of 

service providers for coordinating service providers at product in use and maintenance stages. 

6. Discussions and Conclusions 

Due to the limited data on the proposed DT platform, it is hard to give accurate statistics to show service 

efficiency improvement and cost savings. But qualitatively speaking, it does have the potential to effectively 

decrease time cost in coordinating service providers for a specific request by implementing service 

recommendation algorithms based on multiple conditions (such as service experience, quote, distance, and 

service quality, etc.) when there are enough service data on the platform. Furthermore, the proposed DT 

platform has the capability to record the key information in the service process, enabling manufacturers to 

have the lifecycle information of its products for further product upgrading development. 

The system of DTs at product in use and maintenance stages connects manufacturers with their smart 

products, customers, and stakeholders on the supply chain together, making it possible to collect data from 

product operation, product application context, and user feedback. In the current highly competitive society, 

data is the most valuable asset that can uncover many business opportunities. In addition, the collected data 

at product in use and maintenance stages can provide insights on how to improve existing products. If the 

system of DTs is extended to the whole product and service lifecycle, it will help manufacturers build a 

platform-based digital business ecosystem to co-create product-service offerings and values with customers 

and stakeholders. The ecosystem is generally characterized by modular interfaces for the provision of 

products and services by different parties [44]. In the platform-based ecosystem, actors use the tools provided 

by the platform owner (manufacturer) to co-create specialized products or services with/without rewards. 

Customers and end users can consume these services and provide their feedback for service improvement. 

The platform owner and actors on the supply side then can incorporate this feedback to upgrade their existing 

services or develop new services.  

The benefits of building such a product-service ecosystem have well identified. For manufacturers, it enables 

them to co-create product-service offerings and values that better satisfy customers’ needs with customers 



 

and stakeholders. Furthermore, the flexible coordination of service providers registered on the platform and 

the timely processing of service requests can increase the business productivity and efficiency. For service 

providers and other stakeholders on the supply chain, the platform provides them with a new workplace 

where they can respond to service requests in a responsive and flexible way with less pressure on travelling 

for delivering the requested service. For end users, the key benefits brought by the platform are easy-access 

services and timely response from service providers. From this point of view, the platform-based service 

ecosystem is a win-win strategy for companies to offer value to all involved actors [45]. It can enable 

companies to create and capture value from platform-based innovation under dynamic business environment 

[46]. 

Therefore, many companies such as Apple, Google, and Microsoft have built their own service ecosystems 

during the last decades to benefit from value creations from both internal and external innovations [47] and 

they are on their journeys to digital business ecosystems. In addition, many academic researchers are devoted 

in investigating platform-based service ecosystems from different perspectives. From a business point of 

view, Parker et al. [45] analyzed how service platforms help optimize the intellectual property regimes to 

maximize business growth. From the technical perspective, Hein et al. [44] analyzed the existing service 

ecosystems in terms of platform ownership, value-creating mechanisms, and complementor autonomy and 

provided a service ecosystem guideline for companies from four novel avenues, i.e., technical properties and 

value creation, value capture in ecosystems, complementor interaction with the ecosystem, and make-or-join 

decision in ecosystems; how service platforms enable value co-creation in the ecosystem by leveraging 

different boundary resources was also discussed by Hein et al. [47]. The existing research about service 

ecosystems mainly emphasizes on the ecosystem of actors and how to use their connections to create value. 

While industrial ecology digitalization requires to build an ecosystem involving both physical products and 

actors [41].  

In the DT-based ecosystem, the development of such a platform that can meet business needs is a key for 

business success. In this process, the following considerations have to be taken into account: 

The effectiveness of the platform-based solution. In this paper, although an industrial case study-based 

evaluation has been conducted to demonstrate the platform effectiveness in coordinating service providers to 

deliver requested services, further evaluation on the service coordination efficiency, the time and monetary 

cost of the platform-based service, and the achievement of inter-organizational collaboration goals (quick 

connect, quick complexity, and quick disconnect) [48], etc. also need to be progressed. In addition, from the 

perspective of the manufacturer, the relationship between cost and profit of the platform-based solution also 

should be considered. 

The parallel controlling of the service requests. In the design of DT-based smart manufacturing systems, 



 

how to realize the online parallel controlling in the cyber/digital model and feedback the adjustment 

instructions to the physical system is a key enabling technology, which has been well identified [49–51]. 

However, in our research, the DT-based service system is mainly applied in product in use and maintenance 

stages for delivering services to involved users. In this case, we consider that the real-time synchronization 

between digital model and physical system is less important. For some service concepts identified in [11], 

such as machine (boiler) safety check and diagnosis of heating problems, the machine is normally turned off 

(offline service mode) for safety concerns. Then there is no information exchange between the physical 

machine and its digital model until the machine is turned on again. For some cases, even if the machine is 

not turned off (online service mode), it is not necessary to feed every action that is adopted by the service 

provider to the machine back to the corresponding digital model because sensors are not installed in every 

machine part. For other service concepts that are based on machine historical data, like predictive machine 

performance and preventative maintenance, analyses are mainly progressed on digital models thus to have 

an overall understanding of the machine performance and to suggest necessary machine maintenance 

proactively. At current stage, except providing friendly warnings/reminders to the machine users, it is 

unlikely to make the machine take actions automatically to those analytical instructions.   

The system reconfigurability. The ecosystem is featured by modular interfaces for the provision of products 

and services by different parties. In the ecosystem, actors use the tools provided by the platform owner 

(manufacturer) to co-create specialized products or services with/without rewards. Customers and end users 

can consume these services and provide their feedback for service improvement. The platform owner and 

actors on the supply side then can incorporate this feedback to upgrade their existing services or develop new 

services. To satisfy the diverse user service demands, the ecosystem requires not only a flexible system 

architecture but also a systematic reconfiguring method [52]. The reconfiguration methods could be classified 

into knowledge-based reasoning methods and artificial intelligence-based optimization methods. In this 

paper, the knowledge-based method is adopted. In the ecosystem, when a service request is performed 

(leading to establish a service DT), the pool of suitable service providers will be automatically reconfigured 

based on the best match to the required service provider’s profile and then crowdsourced to, the profile of 

the corresponding service provider after delivering a service contract will be updated automatically based on 

the customer’s feedback, and the updated profile will determine if the service provider can be selected for 

next service request.  

The system security. In the DT-based system, due to the complicated physical-to-virtual, physical-to-physical, 

virtual-to-virtual, and virtual-to-physical interactions and enormous product and service data, it is challenging 

to manage them efficiently and securely from the perspective of data storage, data access, data sharing, and 

data authenticity [53]. Nevertheless, the security and credit issues in the system are critical in enabling the 



 

sustainability of businesses. So far, blockchain is believed to be a new generation of secure information 

technology in revolutionizing businesses and industries by enhanced security and sustainability in 

manufacturing systems [54,55]. Leng et al. [56] indicated that blockchain can ensure the system security at 

the process level, the data level, and the infrastructure level. Currently, the information cross-verification 

mechanisms already implemented in the DT-based platform is far more enough to ensure the system security 

and transparency, so we consider integrating the developed system with blockchain to ensure that it cannot 

be tampered with in the near future. 

In conclusion, this paper mainly focuses on involving human users in the DT environment, investigating the 

interactions between DTs, and integrating crowdsourcing into the DT platform to support dynamic service 

deliveries. With industrial case study around ‘maintenance as a service’, we found that the requirement to 

DTs varies from service to service. For example, for the ten service concepts identified in [11], training the 

customer to get the gas and heating up and running and diagnosis of heating problems require the digital 

representation to reflect real-time changes of the physical product when users (tenants and service providers) 

interact with the product, so a product DT with high fidelity is a must for these two service concepts. But for 

other service concepts, such as predictive boiler performance, optimizing the thermal performance of the 

housing stock, provision of ‘warm hours’, and maximizing organizational operational efficiency, digital 

shadow is enough for data analysis and visualization. Whatever DT or digital shadow is selected for a service, 

digital thread must be implemented to enable the communication in the service process. 

We consider that this platform-based business solution has the following potentials: 

(1) Support increasingly demands on customized products/services and manufacturing capabilities to 

rapidly respond to market needs at different market segments, greater integration of in-company 

manufacturing resources/capabilities and outsourced/crowdsourced ones from global and/or local 

regions is enabled by the crowdsourcing-technology embedded in the digital platform for using in the 

development process of products, integration of products and services and service delivery.  

(2) Ensure better customer or third-party engagement in product design, manufacturing and maintenance, 

and advanced services requiring very high levels of interactions between the focal firm, customers 

and suppliers. This is because the digital twin platform can connect not only physical product (device) 

via IoT, but also services via IoS and various human participants via IoU. Their smart interactions 

and connections are enabled by the system intelligence with integral support of service crowdsourcing 

and service recommendation. The service experience also can be captured and feedforward for better 

service design and delivery.  

(3) Support the development of innovative business models around the concept of XaaS such as pay by 

use and pay by performance with enhanced crowdsourcing models. 



 

(4) Support the prevailing business paradigm of open innovation with data support from end users and 

end products/services.  

(5) Support both lifecycle and low-carbon development principles for product and service systems.  

Our future research work will focus on data intelligence and data-driven product/service design and 

innovation methods and techniques in an ecosystem. With the increase of performed services on the platform, 

the data on human, product, and service DTs will be accumulated fast. When the data set is large enough, the 

research investigation will be focused on how to use Big Data Analytics and Artificial Intelligence technology 

to develop simulation capabilities in various DTs and how to use simulation models embedded in DTs to 

drive new products and services design and development with enhanced product performance, system 

productivity, and user experience.  
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