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Abstract 

Topology optimisation can facilitate engineers in proposing efficient and novel conceptual design 
schemes, but the traditional FEM based optimization demands significant computing power and makes 
the real time optimization impossible. Based on the convolutional neural network (CNN) method, a 
new deep learning approximate algorithm for real time topology optimisation is proposed. The algo-
rithm learns from the initial stress (LIS), which is defined as the major principal stress matrix obtained 
from finite element analysis in the first iteration of classical topology optimisation. The initial major 
principal stress matrix of the structure is used to replace the load cases and boundary conditions of the 
structure as independent variables, which can produce topological prediction results with high accu-
racy based on a relatively small number of samples. Compared with the traditional topology optimisa-
tion method, the new method can produce a similar result in real time without repeated iterations. A 
classic short cantilever problem was used as an example, and the optimized topology of the cantilever 
structure is predicted successfully by the established approximate algorithm. By comparing the pre-
diction results to the structural optimisation results obtained by the classical topology optimisation 
method, it is discovered that the two results are highly approximate, which verifies the validity of the 
established algorithm. Furthermore, a new algorithm evaluation method is proposed to evaluate the 
effects of using different methods to select samples on the prediction performance of the optimized 
topology, and the results were promising and concluded in the end. 
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1. Introduction 

Structural topology optimisation [1–3] is to 
obtain the optimal distribution of materials under 
given design domain and load and boundary con-
ditions to achieve optimal structural performance. 
Topology optimisation can facilitate engineers in 
proposing efficient and novel conceptual design 
schemes; therefore, it has attracted wide attention 
in engineering and has become the focus in opti-
misation recently. Currently, many topology op-
timisation algorithms have been proposed, such 
as the SIMP (Solid Isotropic Material with Penal-
ization) method [4,5], homogenisation method 
[2], level set method [6,7], evolutionary method 
[8], MMTO (Multi-Material Topology Optimiza-
tion) method [9], MMC (Moving Morphable 
Components) method [10], multi-component 
method [11], multi material method [12,13], and 
robust optimziation method [14,15]. These topol-
ogy optimisation algorithms have been success-
fully applied in many fields, such as hierarchical 
structures (hierarchical structures are optimal 
from a structural point of view) [16], mechanics 
[17], thermotics [18], and acoustics [19]. How-
ever, the calculation involved in the abovemen-
tioned topology optimisation algorithms often 
involves numerous iterative processes. Each iter-
ative process usually requires finite element cal-
culations for an entire structure. For a practical 
engineering structure, a large number of finite el-
ements must be used to describe the material dis-
tribution, which would surely lead to intensive 
computational effort. 

To solve the problem of low computational 
efficiency of large-scale topology optimisation 
problems, scholars have proposed many im-
proved topology optimisation algorithms. Kim et 
al. [20] split high-resolution topology optimisa-
tion into several stages from low to high resolu-

tion and proposed multiscale topology optimisa-
tion. Nguyen et al. [21,22] separated the resolu-
tion of FE analysis and the design variables up-
dating to save the cost of FE analysis. Amir et al. 
[23] exploited specific characteristics of a 
MGCG (Multigrid Preconditioned Conjugate 
Gradients) solver to solve the high computing 
cost in 3D topology optimization. Jang et al. [24] 
proposed optimising a design space and topology 
simultaneously based on a fixed grid. Aage et al. 
[25] proposed a parallel topology optimisation 
method based on the C++ parallel computing li-
brary PETSc and applied it to the topology opti-
misation of super large-scale structures [26]. 

Although extensive studies significantly im-
proved the calculation efficiency and scale of the 
topology optimisation, topology optimisation is 
still often restricted by the iterative calculation 
properties. It is well known that an ultimate 
dream pursued by structural engineers is the 
achievement of real-time topology optimization 
[27]. Recently, machine learning algorithms have 
developed rapidly [28]. Because the machine 
learning algorithm generally requires high calcu-
lation costs in its offline training process and the 
use of trained model requires almost no complex 
calculations, it is often used to achieve the accel-
erated or instant calculation of complex calcula-
tion processes [29–32]. Currently, scholars have 
combined topology optimisation with the ma-
chine learning algorithm to improve the real-time 
computing efficiency of topology optimisation. 
Sosnovik et al. [33] used the convolutional neu-
ral network (CNN) to learn the intermediate iter-
ative results of topology optimisation, which ac-
celerated the entire topology optimisation pro-
cess. Lei et al. [34] used support vector regres-
sion and the K-nearest neighbour algorithm to 
accelerate the topology optimisation method of 
MMC. Yu et al. [35] used the CNN to accelerate 
the SIMP topology optimisation method and a 
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generative adversarial network (GAN) to estab-
lish the mapping relationship between low- and 
high-resolution topology optimisation results. 
However, existing results primarily include the 
following unfavorable characteristics: (1) The 
acceleration is incomplete, and the iterative pro-
cess needs to be performed during online topol-
ogy optimisation [33]; (2) The optimisation re-
sults are not satisfying, and a clear load-trans-
ferred path cannot be obtained [34]; (3) An rela-
tively large training set(always over 10,000 [33], 
sometimes over 100,000 [35]) is usually required 
to train the model to achieve an acceptable ap-
proximate accuracy [35], which results in an ex-
orbitant computing cost for training. 

Hence, considering the above problems, 
based on the CNN [36], a new approximate algo-
rithm for topology optimisation is proposed by 
learning initial stress (LIS), which is the major 
principal stress matrix obtained from the finite 
element analysis in the first iteration of a classi-
cal topology optimisation. As a parameter to de-
scribe the stress state of structures to be opti-
mized, the initial principal stress is an effective 
index to guide the structural topology optimiza-
tion. By learning the relationship between the 
major principal stress matrix and the final opti-
misation topology, this algorithm can provide ap-
proximate results of topology optimisation with 
a relatively small number of training samples. 
Furthermore, a new algorithm evaluation method 
is proposed herein. Using this evaluation method, 
the effect of using different methods to select 
samples on the prediction performance of the op-
timized topology is studied. 

The remainder of this paper is organized as 
follows. In section 2, the basic theories of the 
CNN and topology optimisation are introduced. 
Section 3 introduces the calculation flow of the 
algorithm established herein, and details the new 
algorithm evaluation method proposed herein. In 

section 4, several examples are provided to ver-
ify the algorithm, and the effect of different pa-
rameters on the optimisation results of the algo-
rithm is demonstrated. 

2. Theoretical basis of the deep learning 
driven real time topology optimisation  

2.1 Convolutional Neural Network (CNN) 

 In recent ten years, deep learning, which re-
fers to the artificial neural network with multiple 
layers, developed rapidly. Due to the complex hi-
erarchical structure and diversified data pro-
cessing methods of deep learning, it has strong 
nonlinear processing ability. The CNN, which 
belongs to deep learning, is a type of feedforward 
neural network including a convolution opera-
tion, and is proved to be one of the most effective 
ways to process images with mass of pixels. The 
CNN can learn features, which allows a convo-
lution structure to classify multidimensional in-
put information in a shift-invariant manner [37]. 
Lecun [36] introduced the random initialisation 
method of weight and random gradient descent 
into the CNN, which were both widely used in 
the training of deep learning models. In addition, 
the concept of “convolution” was proposed for 
the first time in the same paper, by which the 
term CNN originated. 

The most remarkable feature of the CNN is 
that it contains a convolution layer and a pooling 
layer, as shown in Fig. 1. The function of the con-
volution layer is to extract features from samples. 
A convolution layer contains multiple convolu-
tion kernels that function as a perceptron. Unlike 
a perceptron, it will regularly scan the multidi-
mensional data input from the upper layer, mul-
tiply and sum the obtained data, and add the off-
set matrix 𝐛  [38], its operating mechanism is 
shown in Eq. (1):
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 𝐙௟ାଵ(𝑖, 𝑗) = [𝐙௟⨂𝛚௟ାଵ](𝑖, 𝑗) + 𝐛 

= ෍ ෍ ෍ൣ𝐙௞௟ (𝑠଴𝑖 + 𝑥, 𝑠଴𝑗 + 𝑦)𝛚௞௟ାଵ(𝑥, 𝑦)൧ + 𝐛௙
௬ୀଵ

௙
௫ୀଵ

𝐊೗
௞ୀଵ    (𝑖, 𝑗) ∈ {0,1, … , 𝐋௟ାଵ} 

𝐋௟ାଵ = 𝐋௟ + 2𝑝 − 𝑓𝑠଴ + 1 

(1) 

where 𝐙௟ାଵ is the convolution output of the 𝑙 +1 layer; 𝛚௞௟ାଵ is the built-in linear parameter of 
the convolution kernel 𝑘 in the 𝑙 + 1 layer; 𝐊௟ 
is the number of channels in 𝑙 -th layer, which 
describes the size of the output data from the 𝑙 
layer; 𝑓 is the size of the convolution kernel; 𝑠଴ 
is the stride of convolution operation, which de-
termines the interval distance at which the con-
volution kernel is applied once; 𝑝 is the number 
of padding layers, which is used to ensure that 
the size of data does not degrade. Through the 
procedures above, the convolution kernel can ef-
fectively process the incoming multidimensional 

data and extract features. The function of the 
pooling layer is to further extract the features of 
the convolution layer results. Its working mode 
is similar to that of the convolution layer without 
sampling overlap. After the data pass through the 
pooling layer, the details will be blurred. This 
method is conducive to highly macroscopic in-
formation extraction. Furthermore, the pooling 
layer can effectively reduce the number of pa-
rameters in the entire neural network, thereby re-
duce the computational expense and improve the 
calculation efficiency. 
 

 
Fig. 1. Sketch of CNN [39] 

 

Similar to most other machine learning algo-
rithms, the training and evaluation of a CNN 
model are realised by a loss function, which can 
be regarded as a prediction error. However, in 
general, machine learning can be regarded as an 
optimisation problem of minimising the loss 
function. Typical loss functions include mean 
squared error (MSE) and binary cross entropy 
(BCE) [40]. 

MSE = 1𝑆 ෍(𝑦௜ − 𝑦పෝ)ଶௌ
௜ୀଵ  (2) 

BCE = − 1𝑆 ෍[𝑦௜ log(𝑦పෝ)ௌ
௜ୀଵ+ (1 − 𝑦௜) log(1 − 𝑦పෝ)] (3) 

where 𝑆  is the total number of samples, 𝑦௜  is 
the true value, and 𝑦పෝ  is the predicted value. By 
determining the specific mathematical form of 
the loss function, we can determine the sensitiv-
ity of the loss function to each parameter in the 
machine learning model to train (optimise) the 
process. 
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2.2 Basic theory of structural topology optimisa-
tion 

To provide training and test samples for the 
CNN model, based on the SIMP method [4,5,41], 
topology optimisation was performed with the 
minimum structural compliance as the objective 
function in this study. The optimisation formula-
tion is as follows: min:  𝛷(𝛒, 𝐔) = 𝐅(𝛒, 𝐔)୘𝐔 = 𝐔୘𝐊𝐔

=  ෍ 𝐮௘୘𝐤௘𝐮௘ே
௘ୀଵ  

s. t. :  ෍ 𝜌௘𝑣௘ −ே
௘ୀଵ V∗ ≤ 0 

         0 < 𝜌୫୧୬ ≤ 𝜌௘ ≤ 1, 𝑒 = 1, … , 𝑁          𝐊(𝛒)𝐔 = 𝐅 

(4) 

where the subscript e represents the correspond-
ing physical quantity of element e; 𝛒  is the 
structural design variable (density variable) vec-
tor, which represents the relative density of ma-
terial of each element in the structure; 𝐔 is the 

nodal displacement vector; 𝑣𝑒 is the volume of 
element e in the current structure; V∗ is the up-
per limit of the allowable material volume of the 
structure; 𝜌୫୧୬ is the minimum relative density 
of the structure for a single element, generally 
0.01; N is the number of finite elements; 𝐊  is 
the global stiffness matrix; 𝐅 is the load vector; 𝐤𝑒 is the elemental stiffness matrix, which is re-
lated to the elemental density 𝜌𝑒 [4,5]: 𝐤௘(𝜌௘) = (𝜌௘)௣𝐤௘଴ (5) 

where 𝐤௘଴ is the elemental stiffness matrix when 
the density variable of element e is 1; 𝑝 is the 
penalty coefficient, which aims to make the to-
pology optimisation result close to the 0–1 distri-
bution, thereby yielding a clear topology optimi-
sation result. In this study, 𝑝  = 3. The global 
stiffness matrix 𝐊  of the structure can be ob-
tained by assembling the elemental stiffness ma-
trix. 

In this study, the OC criterion method [42] 
was used for optimisation, and its iterative crite-
rion can be expressed as follows: 

𝜌௘௞ାଵ = ⎩⎨
⎧  maxቀ(1 − 𝜍)𝜌௘௞, 𝜌୫୧୬ቁ     𝑖𝑓 𝜌௘௞(𝐵௘௞)ఎ ≤ maxቀ(1 − 𝜍)𝜌௘௞ , 𝜌୫୧୬ቁminቀ(1 + 𝜍)𝜌௘௞, 1ቁ       𝑖𝑓 𝜌௘௞(𝐵௘௞)ఎ ≥ minቀ(1 + 𝜍)𝜌௘௞, 1ቁ 𝜌௘௞(𝐵௘௞)ఎ                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

𝐵௘௞ = − 𝜕𝛷𝜕𝜌௘௞𝜆 𝜕𝑉𝜕𝜌௘௞
 

(6) 

where ς is the upper limit of the moving step, 
which is used to control the optimisation speed; 𝜂 is the modulation parameter, which is used to 
limit the excessive gradient difference; 𝜆 is the 
Lagrangian multiplier, which is used to control 
the structure to satisfy the volume constraint after 
optimisation. According to numerical experience, 

the following were set: ς = 0.2 and 𝜂 = 0.5. 

The filter used in the algorithm was the vol-
ume-preserving Heaviside function filter [43–
45], which can filter the density of the structure 
topology while maintaining the volume fraction 
of the optimized structure. 
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 ෍ 𝜌௘෦𝑣௘ =ே
௘ୀଵ ෍ 𝜌௘തതത𝑣௘ே

௘ୀଵ  

𝜌௘෦ = ⎩⎪⎨
⎪⎧ 𝛩 ൤𝑒ିఉቀଵିఘ೐തതതത௵ ቁ − ൬1 − 𝜌௘തതത𝛩 ൰ 𝑒ିఉ൨(1 − 𝛩) ቈ1 − 𝑒ିఉ(ఘ೐തതതതି௵)ଵି௵ + (𝜌௘തതത − 𝛩)𝑒ିఉ1 − 𝛩 ቉ + 𝛩 

 

 

(7) 

where 𝜌௘തതത is the relative density of element e in 
topology optimisation, and 𝛽 is the penalty co-
efficient. By solving 𝛩  in Eq. (7), the filtered 
material distribution 𝜌௘෦ can be obtained. And as 
the described in references [15,16] about Heavi-
side filter, we increase the penalty coefficient 𝛽 
in the iterative process, which greatly contributes 
to obtain the 0-1 distribution of the optimized 
structure. 

3. Deep learning driven real time topol-
ogy optimisation approximate algo-
rithm 

3.1 Flow of the deep learning driven topology 
optimisation based on initial stress learning  

 Fig. 2 shows the flow of the proposed algo-
rithm based on initial stress learning, which can 
be divided into three steps: generating dataset, 
CNN model training, and CNN-based prediction. 

 

 

 
Fig. 2. Flow of ISL-based deep learning driven topology optimization approximate algorithm 

In step 1, the algorithm will generate loads 
according to the given boundary conditions 
based on certain rules and load types to perform 
topology optimisation. The specific rules and 
their effects are introduced in section 4. Based on 

the data generated using the SIMP [41] frame-
work with volume-preserving Heaviside filter 
and the optimised topology, the algorithm ob-
tains the major principal stress matrix from the 
finite element analysis in the first iteration of the 
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topology optimisation. Additionally, the final to-
pology optimisation results are required as the la-
bels. These data will be used in step 2 to train the 
CNN model. The extraction method of the initial 
principal stress is as follows: 𝜎୫ୟ୶௘

= ቤ𝜎௫௘ + 𝜎௬௘2 ቤ + ඨቆ𝜎௫௘ − 𝜎௬௘2 ቇଶ + ൫𝜏௫௬௘ ൯ଶ, (8) 

where 𝜎௫௘, 𝜎௬௘, and 𝜏௫௬௘  can be obtained from fi-
nite element analysis in the first iteration of the 
topological optimisation process, and 𝑒  repre-
sent each element of the structure. 

In step 2, the algorithm will train the CNN 
model according to the data obtained in step 1. 
The initial major principal stress matrix serves as 
a variable, and the topology optimisation result 
is the label. To balance the effect of each sample 
on the training results, the initial major principal 
stress matrix must be normalised (the matrix di-
vided by the largest component) before being im-
ported into the CNN model. Because the loss 
function selection of the CNN model affects little 
on the optimized results (See details in Section 
4), the binary cross entropy is temporarily used 
as the loss function of the CNN model. 

In step 3, the algorithm will predict the to-
pology optimisation results under load cases dif-
ferent with that used in Step 1, according to the 
trained CNN model obtained in step 2. The pre-
diction requires a finite element calculation 
based on the topology optimisation problem to be 
predicted, and the extracted major principal 
stress matrix is input into the trained CNN model. 
After obtaining the input, the CNN model can 
output the probability distribution of the final 
predicted results of topology optimisation of the 
structure rapidly and convert the distribution into 
the predicted topology optimisation results. 

Through the proposed method, not only the 
topology optimization problems used to train the 
model, a range of topology optimization prob-
lems can be solved with less computing time 
comparing to classical optimizing process. Also, 
by changing the boundary condition, volume 
fraction, load direction or topology optimization 
method, Step 1 is used to generate the training 

samples, the trained model can predict the opti-
mized topology with different corresponding 
changes.  

3.2 Evaluation of topology optimisation approx-
imate algorithm 

After completing the algorithm construction, 
a set of methods is required to evaluate the qual-
ity of different models. Subsequently, the deep 
learning model or the parameters in the algorithm 
can be adjusted. Generally, the evaluation criteria 
for the algorithm performance tend to use the 
mean value of the optimisation objective func-
tion on the sample set, i.e. the optimisation of the 
algorithm is equivalent to the optimisation of the 
overall mean value of the objective function. For 
the algorithm herein, the evaluation criteria L 
(which is also the loss function value of the 
model) is as follows:  L = ∑ MSD(𝛒௣)ௌ௜ୀଵ 𝑆  

 MSD(𝛒௣) = ඨ∑ ∑ (𝜌௜௝௧ − 𝜌௜௝௣ )ଶ௡௝ୀଵ௠௜ୀଵ 𝑁  
（9） 

where 𝑚 and 𝑛 are the length and width of the 
design domain, respectively; 𝜌௜௝௧  is the compo-
nent of optimised topology matrix obtained by 
SIMP method; 𝛒𝑝 is the predicted topology ma-
trix composed of 𝜌௜௝௣   based on the algorithm 
(LIS); 𝑆  is the total number of samples in the 
training set; MSD (Mean Square Differences) 
[46] is a criteria used in template matching, 
which has been proved highly effective for a sin-
gle matching problem. The smaller the value is, 
the more similar the predicted topology is to the 
results obtained by the standard SIMP topology 
optimisation. 

The performance evaluation method above 
is highly effective for most algorithms. However, 
because the optimisation goal is to minimise the 
overall difference between the optimised and 
predicted results, the predicted results of the deep 
learning model (CNN model) adjusted according 
to the evaluation method described in Eq. (9) 
may exhibit a “local mode collapse” which is 
getting the inspiration of “mode collapse” [47], 
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i.e. the deep learning model stops predicting 
some samples that are difficult to master and only 
provides satisfying or the same predicted results 
for samples that are easy to master. This may re-
sult in algorithm instability and numerical diffi-
culty. In the practical prediction process, this 
type of problem will result in distorted predicted 
results in some load cases.  

The purpose of topology optimisation is to 
obtain an appropriate load-transferred path, ra-
ther than to determine all the details of the opti-
mized structure. When MSD(𝛒௣) is reduced to 
a certain level, the load-transferred path of the 
structure is relatively clear (see details in Section 
4). At this time, the minimisation of MSD(𝛒௣) 
caused by the “local mode collapse” will not fur-
ther improve the prediction quality of load cases 
which have been mastered by CNN model but 
will significantly reduce the prediction quality of 
the “abandoned” ones, which weakens the over-
all prediction performance of the algorithm. 
Hence, a prediction accuracy parameter 𝐷 and 
a new evaluation method is proposed based on 
Eq. (10): 

𝐷(𝛒௣) = ∑ 𝑓௜(𝛒௣)ௌ௜ୀଵ 𝑆  𝑓(𝛒௣) = ቄ0      𝑖𝑓 MSD(𝛒௣) > 𝛼1         otherwise          （10） 

where 𝑓(𝛒௣)  is the similarity discriminant 
function, which is used to judge whether two 
structures are similar; 𝛼  is the critical differ-
ence threshold. If the MSD(𝛒௣) value between 
the optimised and predicted results is greater than 
this threshold, then the predicted result is not 
similar to the optimised result; otherwise, it is 
similar. That is the smaller 𝛼, and the larger 𝐷, 
the better is the prediction performance of the 
trained CNN-based model. By optimizing the 
deep learning model, we are able to decrease the 𝐷(𝛒௣)  of the deep learning model to alleviate 
that phenomenon. 

It is clear that the fundamental idea of the al-
gorithm evaluation method proposed herein is 
that in the entire test set, the predicted results are 
compared with the optimised results, and the per-
centage of predicted results that are judged simi-
lar is regarded as the evaluation criterion. The 

criterion is realised in the form of a step function 
in Eq. (10). By introducing this evaluation crite-
rion, the phenomenon of “local mode collapse” 
can be effectively suppressed, thereby improving 
the stability of the algorithm and the performance 
of optimized topology prediction. 

4. Numerical examples 

A 120 × 40 cantilever beam is used as an ex-
ample to verify the effectiveness of the proposed 
approximate algorithm of topology optimisation 
in this study as shown in Fig. 3. Considering the 
reduction in variable space and the practical load 
case, only the right half of the cantilever beam, 
i.e. the right side of the dotted line in the figure 
is loaded. The load direction and position are 
completely random, and 𝐹 = 1. All the parame-
ters mentioned above are dimensionless. The 
hardware computing environment of numerical 
examples is as follows: 
CPU: Intel Core i5-7500 Dual-core 3.40 GHz 
GPU: NVIDIA Geforce GTX1660 6G 

We use the CPU to generate optimization 
samples, and the GPU to train the deep learning 
model. In order to realize GPU parallelism, we 
build the Cuda and Cudnn environment. The de-
tailed environment is as follows:  
Python 3.5; Cuda 10.0; Cudnn 7.5; Keras 2.2.4; 
Tensorflow-gpu 1.13. 

 
Fig. 3. Cantilever beam example 

 Fig. 4 shows the CNN structure used in this 
study, which is composed of a full connection 
layer and three pairs of convolution and max 
pooling layers. The input of the model is the 120 × 40  major principal stress for each ele-
ment, and output is the 120 × 40 relative den-
sity for each element. The size of convolutional 
kernel varies from 3 × 3  (the first one) to 2 × 2  (other two). And the monitor number of 
each convolution layer varied from 128 to 512. 
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The model contained 23,599,040 parameters. 
Adam optimizer [48] is implemented to train the 

deep learning model.

 
Fig. 4. CNN structure used in the real time topology optimisation based on initial stress learning  

4.1 Model overview 

To study the effect of different training sam-
ple selection methods and different loss func-
tions on the effectiveness of the algorithm, sev-
eral models are designed and trained with only 
1,000 samples in this study. The specific infor-
mation of each model is as follows. 

Model 1: Equidistant sample points are se-
lected. A vertical or horizontal unit force to a sin-
gle sample point is applied, and the loss function 
is binary cross entropy. As the basic model, this 
model is used as the benchmark for the following 
models. 

Model 2: Equidistant sample points are se-
lected. A vertical, horizontal, or 45°-unit force to 
a single sample point is applied, and the loss 
function is binary cross entropy. Based on Model 
1, a 45° load is added to the training set to study 
whether it affected the prediction performance of 
the model. 

Model 3: Sample points are selected ran-
domly. A random unit force to a single sample 
point is applied, and the loss function is binary 
cross entropy. Based on Model 1, the load posi-
tion and direction are selected randomly to study 
the effect of load randomness in the training set 
on the prediction performance of the model. 

Model 4: Equidistant sample points are se-
lected. A vertical or horizontal unit force to a sin-
gle sample point is applied, and the loss function 
is the MSE. Based on Model 1, the loss function 
is replaced by the MSE to study the effect of dif-
ferent loss functions on the prediction perfor-
mance of the model. 

Each model uses the same test set which 
contains 1,000 samples and sample points are 
randomly selected. A random direction unit force 
to a single sample point is applied. The results of 
the established four models after 800 epochs of 
training and 128 batch size are shown in Table 1, 
in which the critical difference threshold is set as 𝛼 = 0.25. 

Table 1. Training results of the established four built models 
 Model 1 Model 2 Model 3 Model 4(MSE) 

Training loss 𝐿௧ 0.053 0.049 0.073 0.016 
Validation loss 𝐿௩ 0.150 0.157 0.174 0.035 

Training accuracy 𝐷௧ 0.996 0.999 0.987 0.996 
Validation accuracy 𝐷௩ 0.885 0.892 0.863 0.878 

In Table 1, the training loss 𝐿௧ and valida-
tion loss 𝐿௩ refer to the mean value of the loss 
function resulted from the trained model on the 
training and validation sets (test set), respectively. 

And the training accuracy 𝐷௧ and validation ac-
curacy 𝐷௩  are the prediction accuracy of the 
trained model on the training and test sets, re-
spectively, according to Eq. (10). As shown from 
the data in Table 1, the training accuracy of each 
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model has reached above 0.987 (Model 3), which 
proves that the neural network structure shown in 
Fig. 4 is sufficiently large to master the infor-
mation from the sample set. The validation accu-
racy of each model is more than 0.85, which 
proves that the model proposed herein can effec-
tively predict most single load cases after only 
1,000 samples of training and provide reasonable 
approximate results of topology optimisation, 
thereby proving the effectiveness of the algo-
rithms and models proposed herein. 

Compared with Model 1, Model 2 has a 
higher training accuracy and validation accuracy; 
therefore, it is meaningful to sacrifice the sample 
point density to add 45°-unit force samples into 
the training set. With the increase in the total 
number of samples, the distance between each 
sample point will be further reduced. As Model 1 
has already been able to provide clear prediction 
configuration for vertical or horizontal loads 
(See details in sections of 4.2 and 4.3); therefore, 
further improving the density of the sample 
points cannot significantly improve the model 
prediction performance of random direction 
loads. However, the prediction performance of 
Model 2 with sparse sample points will be further 
improved owing to its sparsity.  

Both the training and validation accuracy of 
Model 3 are slightly lower than those of Model 
1. Furthermore, the sample size of 1,000 is still 
too small compared with the probability of the 
whole design space; therefore, a sufficiently uni-
form randomness cannot be produced, which 

renders the model unstable and affects the pre-
diction performance of the model. The explana-
tion above can be verified by the specific predic-
tion performance of the Model 3 in sections of 
4.3.  

Both the training and validation accuracy of 
Model 4 are nearly the same as those of Model 1. 
It is proven that the selection of loss function has 
relatively little effect on the model performance 
and therefore can be ignored from the study ob-
ject. 

It is noteworthy that Model 1 yields a lower 
validation loss defined in Eq. (9) but a lower val-
idation accuracy defined in Eq. (10) compared 
with Model 2. This phenomenon proves the dif-
ferences between the two algorithm evaluation 
methods mentioned in section 3.3. To verify the 
practical prediction performance of the algorithm 
and further compare the prediction performance 
of each model, a few specific examples are pro-
vided in the following. As the loads of the fol-
lowing examples are set on the boundary, to fur-
ther highlight the stability of the algorithm, the 
samples on which the load acts at the boundary 
in the training set are removed. That is to avoid 
showing a prediction result that may be con-
tained in the training set. 

4.2 Numerical Example 1 

In numerical example 1, two load cases are 
presented: a vertical load 𝐹ଵ = 1  at the lower 
right corner, and a horizontal load 𝐹ଶ = 1 at the 
same point, as shown in Fig. 5. 

 
(a) Load case 1  

 
(b) Load case 2 

Fig. 5. Two load cases in numerical example 1. 

For example 1, the standard SIMP method is 
used for topology optimisation, and Models 1–4 
trained in section 4.1 are used for optimized to-
pology prediction. The optimisation results 

based on the standard SIMP method and the pre-
dicted topology results based on Model 1–4 are 
shown in Figs. 6 and 7, respectively. The MSD 
values (Eq. 9) of the results obtained by Model 
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1–4 is also shown in the figures. 
 

 
(a) SIMP method 

 
(b) Model 1: MSD(𝝆௣) = 0.177 

 
(c) Model 2: MSD(𝝆௣) = 0.144 

 
(d) Model 3: MSD(𝝆௣) = 0.114 

 
(e) Model 4: MSD(𝝆௣) = 0.169 

Fig. 6. Comparison between topology optimisation and CNN-predicted results of load case 1. (a) SIMP topology 
optimisation result. (b–e) Predicted results obtained by Models 1–4, respectively. 

By comparing the optimized result of the 
SIMP method with the predicted results of Mod-
els 1–4 in Fig. 6, it can be observed that the four 
models can effectively predict the optimized to-
pology, which is relatively close to the SIMP op-
timisation result. Therefore, the prediction effec-
tiveness of the models proposed herein is partly 
validated. After using only 1,000 samples to train 
each model, clear load-transferred paths and rec-
ognisable predicted optimal topologies are given 
for the load case proposed in this example, which 
are highly similar to the SIMP optimisation re-
sults. Based on the computing environment men-
tioned above, the computing time of the SIMP 

method for this problem is 42.496 s, while that of 
Model 1 for the same problem prediction is only 
0.147 s, which improves the real-time computing 
efficiency by 288 times. This efficiency im-
provement is enabled by that the algorithm only 
required the initial structural stress, which can be 
obtained from the first structural finite element 
calculation in the process of topology optimisa-
tion, to predict the optimized topology of the 
structure. In addition, from the MSD values 
shown in Fig. 6, the MSD values of the approxi-
mate topology obtained by Models 1–4 are less 
than 0.2, which is the limit of a high-level of ap-
proximate prediction. 

 
(a) SIMP method 
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(b) Model 1: 𝑀𝑆𝐷(𝝆௣) = 0.104 (c) Model 2: 𝑀𝑆𝐷(𝝆௣) = 0.311 

 
(d) Model 3: 𝑀𝑆𝐷(𝝆௣) = 0.367 

 
(e) Model 4: 𝑀𝑆𝐷(𝝆௣) = 0.110 

Fig. 7. Comparison between topology optimisation and CNN-predicted results of load case 2. (a) SIMP topology 
optimisation result. (b–e) Predicted results obtained by Models 1–4, respectively. 

For the total number of samples used to train 
Model 1-4 is equal, the denser the load direction 
included in the training samples is, the sparser 
the load points are. According to the results of 
Fig. 7, for load case 2, only Model 1 and Model 
4 with relatively dense load points arrangement 
yielded results with relatively high similarity, 
and the corresponding MSD values are 0.104 and 
0.110, respectively. It can be understood that 
samples which are highly similar to load case 2 
existed in the training set of the two models, and 
that the similarity of the samples significantly af-
fected the predicted results of the trained model. 
According to the predicted results of Model 3 in 
load cases 1 and 2, the prediction performance is 
found to be unstable, which is highly related to 
the randomness of its training samples. 

In addition, according to the predicted re-

sults of Examples 1, Models 1 and 4 yielded sim-
ilar predicted results. This further verifies the 
discussion in section 4.1 that the choice of the 
loss function does not significantly affect the pre-
dicted results of the model proposed using this 
algorithm. Moreover, because only vertical and 
horizontal loads exist in Load case 1-2, the pre-
dicted results of Models 1 and 4 are significantly 
better than those of other models, which reflects 
the highly dependence of samples of the neural 
network model. 

4.3 Numerical Example 2 

 Two other load cases are shown in Numeri-
cal Example 2. The loads are applied at an upper 
45° direction at the centre of the right boundary 
and at a lower 45° direction at the lower right 
corner, separately, as shown in Fig. 8. 

 
(a) Load case 3  

 
(b) Load case 4 

Fig. 8. Two load cases in Example 2 

For Example 2, the standard SIMP method is 
used for topology optimisation, and Models 1–4 
trained previously are used for optimized topol-
ogy prediction. The optimisation results based on 

the standard SIMP method and the predicted to-
pology results based on Models 1–4 are shown in 
Figs. 9 and 10, respectively. The MSD values (Eq. 
9) of the results obtained by Models 1–4 is also 
shown in the figures. 
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(a) SIMP method 

 
(b) Model 1: 𝑀𝑆𝐷(𝝆௣) = 0.266 

 
(c) Model 2: 𝑀𝑆𝐷(𝝆௣) = 0.171 

 
(d) Model 3: 𝑀𝑆𝐷(𝝆௣) = 0.235 

 
(e) Model 4: 𝑀𝑆𝐷(𝝆௣) = 0.271 

Fig. 9. Comparison between topology optimisation and CNN-predicted results of load case 3. (a) SIMP topology 
optimisation result. (b–e) Predicted results obtained by Models 1–4, respectively. 

 
 

 
(a) SIMP method 

 
(b) Model 1: 𝑀𝑆𝐷(𝝆௣) = 0.196 

 
(c) Model 2: 𝑀𝑆𝐷(𝝆௣) = 0.114 

 
(d) Model 3: 𝑀𝑆𝐷(𝝆௣) = 0.224 

 
(e) Model 4: 𝑀𝑆𝐷(𝝆௣) = 0.195 

Fig. 10. Comparison between topology optimisation and CNN-predicted results of load case 4. (a) SIMP topology 
optimisation result. (b–e) Predicted results obtained by Models 1–4, respectively. 

According to Figs. 9 and 10, Model 2 pro-
vides a prediction result mostly similar to that of 
the SIMP method owing to the oblique load in 
load cases 3 and 4. The MSD values of the pre-
dicted results obtained by Model 2 for the two 
conditions are 0.171 and 0.114, respectively, 

which are more than 25% lower than those of 
other models. This phenomenon can be ex-
plained by the correlation between the training 
samples and neural network. It is noteworthy that 
because no 45° load samples existed in the train-
ing set of Model 1 and Model 3–4, these models 
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provided relatively poor predicted results: the 
highest MSD values are 0.271 and 0.224, respec-
tively. However, these relatively poor results are 
still quite similar to the standard solution ob-
tained by the SIMP method. The clear load-trans-
ferred path cannot be obtained only at the posi-
tion close to the load point (This is because the 
CNN model is a neural network based on image 
science, and it is only a mathematical processing 
method for large-scale multidimensional data 
and lacks thinking about mechanical mecha-
nisms.). This verifies that although the process 
from the initial major principal stress matrix to 
the optimised topology involves a stress redistri-
bution, a certain connection exists between them, 
and the CNN can establish this connection to 
provide a relatively clear optimized topology 
with an almost real time performance. 
4.4 Discussions 

From the figures and graphics shown above, 
some discussions can be carried out. 

1. Though only 1,000 samples, which is a 
quite small training data size compared with 
those in references cited herein, are used to train 
the deep learning model, the load-transferred 
path is found to be well predicted, which proves 
the load characterization ability of the initial 
principal stress as the input of the model.  

2. Random sampling, which is usually used 
in the deep learning based topology optimization 
framework so far to generate training data, per-
forms worse than the equidistant sampling, at 
least when the number of training data is rela-
tively small, such as 1,000 in this case. For 1,000 
is quite a small number contrasted with the de-
sign space, the training set does not effectively 
represent the high-dimensional relationship be-
tween input and output due to the randomness in 
sampling. For an optimization result of an engi-
neering structure is generally quite computa-
tional expensive, the discovery of the drawback 
of random training data sampling in small data 
generation is meaningful for the deep learning 
based topology optimization method to be fur-
ther used in the practical engineering. 

3. From the results shown in Section 4.2-4.3, 
the choice of loss function is found to have little 

effect on the prediction results of deep learning 
model. Owing to the 0-1 distribution of the out-
put figure which both MSE and BCE are able to 
handle, the phenomenon is acceptable. 

4. The evaluation criteria we proposed gives 
different evaluation results compared with the 
traditional one. For the two criteria represent the 
generalization prediction ability and the absolute 
prediction ability respectively, the users should 
balance the two sorts of ability cautiously ac-
cording to the practical engineering demand 
when the deep learning model is established and 
trained. 

5. From the results shown in Figs. 9 and 10, 
it can be seen that whether or not the 45° load is 
included in the training sampling set deeply in-
fluences the prediction effect of the correspond-
ing problem. The numeric result shows that the 
completeness of load conditions in training sam-
ples does not raise all kinds of model perfor-
mance by no means due to the lackness of train-
ing data. 

5. Conclusion 

 A new approximate algorithm of topology 
optimisation was proposed herein. Using the 
CNN to learn the initial major principal stress 
matrix obtained from the first finite element cal-
culation of topology optimisation and the corre-
sponding topology optimisation results, an ap-
proximate topology optimisation method with 
high prediction performance and improved real-
time calculation efficiency was proposed. The 
approximate method only required one finite el-
ement analysis of the entire structure to obtain 
the approximate results of topology optimisation 
under the given load and boundary conditions, i.e. 
without multiple iterations, which enabled the al-
gorithm to achieve near real-time topology opti-
misation. Compared with the published approxi-
mate algorithm for machine learning topology 
optimisation, the algorithm proposed herein re-
duced the number of learning samples signifi-
cantly and simultaneously yielded approximate 
results that were highly similar to those of the 
standard topology optimisation algorithm. This 
property effectively reduced the offline compu-
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ting cost of the algorithm. The validity of the al-
gorithm was verified through several examples. 
Based on the new algorithm evaluation method 
proposed herein, the effects of different training 
sample selection methods and loss functions on 
the prediction performance were demonstrated. 
The conclusions drawn from the demonstration 
can be applied to other deep learning-based opti-
mization frameworks to further optimize the pre-
diction performance. 

In this study, only the prediction of a load 
case with a single load by the algorithm was 
completed. If the prediction is further extended 
to cases with multiple loads, the required training 
set would be extremely large owing to the per-
mutation and combination effects caused by dif-
ferent load combinations. It may be necessary to 
introduce other new data processing methods to 
solve this problem effectively. However, the idea 
of principal stress learning in the algorithm pro-
posed herein can be further introduced into the 
approximate methods of elastic–plastic, nonlin-

ear elastic, dynamic topology optimisation, or to-
pology optimization considering nonlinear ef-
fects. 
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