

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

MVDLite: a Fast Validation Algorithm for Model View Definition Rules

Liu H.a, Gao G.a,b,*, Zhang H.a,b, Liu Y.a,b, Song Y.c, Gu M.a,b
a Tsinghua University, China. b Beijing National Research Center for Information Science and

Technology (BNRist), China. c Digital Horizon Technology Co., Ltd., China.
gaoge@tsinghua.edu.cn

Abstract. Model View Definition (MVD) is the standard methodology to define the data exchange
requirements and rule constraints for Building Information Models (BIMs). In this paper, the
MVDLite algorithm is proposed for the fast validation of MVD rules. A “rule chain” structure is
introduced to combine the data templates, constraint statements, and logical interconnections in an
input mvdXML ruleset, which leads to fast filtering of data nodes through the rule chain. By
establishing the correspondence of each prefix of the rule chain with a string, the deep-caching
strategy further improves efficiency. The outperforming experimental results show that our
algorithm significantly reduces the running time of MVD validation on large real-world BIMs.

1. Introduction

Model View Definition (MVD) is the standard methodology to define the data exchange
requirements and rule constraints for Building Information Models (BIMs). MVD defines the
subsets of a specific Industry Foundation Classes (IFC) schema, with constraints on entities,
attributes, geometry representations and so on.

The mvdXML is the formal representation format for MVDs recommended by
buildingSMART. The mvdXML rules can be parsed by computers, which can be used for
supporting software implementation in IFC-based data exchange, and for automatically
validating whether IFC models conform to the MVD rules. Compared with the semantic rule-
checking methods for BIMs (Pauwels, et al., 2011;2015; Beach, et al., 2015; Zhang, et al., 2019)
with enriched geometry calculation and semantic inferencing, the MVD checking focuses on
fast validation of data structures and values in the IFC raw data, which is recommended in the
Information Delivery Manual (IDM) standard (buildingSMART, 2010).

The rules in mvdXML are represented in two separated parts: the data structures and the rule
statements. The data structures are defined in the header part as nested XML tags, which
represent the subgraph structures in IFC data, indicating the paths to find related data nodes
starting from a root entity nodeset. The rule statements are written in “mvdXML Rule Grammar”
with value constraints and logical interconnections for checking the subgraphs matched with a
data template.

At present, there have been several implementations of MVD validation algorithms. In
accordance with the separation of templates and rule statements in mvdXML, the current
validation algorithms usually follow the two-step “matching-checking” process: first matching
the template to find the subgraphs, and then checking the rule statements on each found
subgraph. Different caching strategies have been applied by the algorithms, however, the
efficiency of MVD validation of large rulesets on real-world size models is still a challenge.

In this paper, the MVDLite algorithm is proposed for the fast validation of MVD rules. A “rule
chain” structure is introduced to combine and reorganize the data structures, value constraints
and logical interconnections from an input mvdXML rule, which leads to faster searching and
filtering of data nodes through the rule chain.

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

2. Related Work

2.1 The mvdXML Ruleset

MVD is the technical solution of the IDM in the IFC data, which intends to support meaningful
IFC implementations for software developers. IDM defines data delivery process, exchange
requirements and domain concepts for BIM data exchange, then MVD binds the domain
concepts to IFC entities, and represents the constraints about required information for geometry,
attributes and relationships in rule statements.

The mvdXML is based on several early studies about MVD rule representation. The Extended
Process to Product Modeling (xPPM) (Lee, et al., 2013) is about the formal definition of IDM,
and provides a tool for mapping the IDM functional parts to MVD. The Semantic Exchange
Modules framework (SEM) (Venugopal, et al., 2012) is about the object-oriented definition of
domain concepts in ontologies. SEM provides a mapping between the domain entity concepts
and the data structure concepts in specific data forms. The Generalised Model Subset Definition
(GMSD) (Weise, et al., 2003) is about the specification of rules for selecting a subset of entities
from the IFC model.

Based on the previous studies about MVD, an integrated IDM-MVD process for IFC data
exchange is proposed and recommended by buildingSMART (See, et al., 2012), which
combines the strengths of the previous studies. The mvdXML format (Chipman, et al., 2016) is
used for this integrated IDM-MVD process, which involves abundant information about
exchange requirements, domain concepts, and rule constraints. An example ruleset in mvdXML
is shown in Figure 1.

Figure 1: An example mvdXML ruleset.

Templates
about
subgraph
structures

Rule
statements

<?xml version="1.0"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
uuid="ca533756-fc05-4f56-b091-04b953e362ed" status="sample" xsi:schemaLocation="http://www.buildingsmart-
tech.org/mvd/XML/1.1 http://www.buildingsmart-tech.org/mvd/XML/1.1/mvdXML_V1.1_add1.xsd"
xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">

<Templates>
<ConceptTemplate uuid="d22c5deb-95d9-4686-800b-a23d292062c9" status="sample" applicableSchema="IFC4"

applicableEntity="IfcWall">
<Rules>

<AttributeRule RuleID="IsTypedBy_0" AttributeName="IsTypedBy">
<EntityRules>

<EntityRule EntityName="IfcRelDefinesByType">
<AttributeRules>

<AttributeRule RuleID="RelatingType_1" AttributeName="RelatingType">
<EntityRules>

<EntityRule EntityName="IfcTypeObject">
<AttributeRules>
<AttributeRule RuleID="HasPropertySets_2" AttributeName="HasPropertySets">

<EntityRules>
<EntityRule EntityName="IfcPropertySet">

<AttributeRules>
<AttributeRule RuleID="Name_3" AttributeName="Name">

<EntityRules>
<EntityRule EntityName="IfcLabel" />

</EntityRules>
</AttributeRule>
<AttributeRule RuleID="HasProperties_4" AttributeName="HasProperties">

<EntityRules>
<EntityRule EntityName="IfcPropertySingleValue">

<AttributeRules>
<AttributeRule RuleID="Name_5" AttributeName="Name">

<EntityRules>
<EntityRule EntityName="IfcIdentifier" />

</EntityRules>
</AttributeRule>
<AttributeRule RuleID="NominalValue_6" AttributeName="NominalValue">

<EntityRules>
<EntityRule EntityName="IfcValue" />

</EntityRules>
......

</Templates>
<Views>

<ModelView uuid="d305b4eb-b668-437a-a9ef-a9ce0d55aa2b" status="sample">
<Roots>

<ConceptRoot uuid="9ebbc41e-b172-474a-a45e-b862ddd423b8" name="IfcWall" status="sample"
applicableRootEntity="IfcWall">

<Concepts>
<Concept uuid="309fe979-2673-414a-a85b-b34b3b22fd03" name="Rule 1" status="draft" override="true">
<Template ref="d22c5deb-95d9-4686-800b-a23d292062c9" />
<TemplateRules operator="and">

<TemplateRule Parameters="Name_3[Value]='Pset_WallCommon' AND Name_5[Value]='IsExternal' AND
NominalValue_6[Type]='IfcBoolean'"/>

</TemplateRules>
......

</Views>
</mvdXML>

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

The mvdXML format involves natural language information for human-read purposes
(including concept definitions and exchange requirements) as well as computer-usable rules for
supporting software implementations. The computer-usable rules are in two separated parts: the
data structure templates in “ConceptTemplate” tags in the header part, and the rule statements
in “TemplateRules” tags in the body part. The “ConceptTemplate” part is about the subgraph
structures in IFC data, indicating the paths to find related attributes and target entities starting
from a certain root entity type, which is represented in nested “AttributeRule” and “EntityRule”
tags. The “TemplateRules” part is about the value constraints in “mvdXML Rule Grammar”
for checking the matched subgraphs, and also the applicability conditions and logical
interconnections. Each attribute defined in “ConceptTemplate” is assigned with a “RuleID”, so
that the attribute can be referred to in the rule statements in “TemplateRules”.

2.2 Automated MVD Validation

Automated MVD validation is a type of application to check the conformity of an IFC model
with an MVD ruleset. Several studies are about modularized MVD validation (Eastman, et al.,
2009; Zhang, et al., 2014; Solihin, et al., 2015; Lee, et al., 2016; 2018; Simplebim, 2022), which
supports only several commonly-used MVD rule types (such as the value of attributes or the
existence of relationships), and implement different program modules for different MVD
validation tasks. Generalized MVD validation (Weise, et al., 2016; xBimTeam, 2016; Oraskari,
et al., 2021) performs subgraph template matching and rule constraint checking directly based
on the mvdXML rule, and can support arbitrary mvdXML rulesets.

Since the templates and statements are separated in mvdXML, the current MVD validation
algorithms usually follow the two-step “matching-checking” process. First, for each root entity,
find the subgraphs and required attributes which matches a template. Second, the rule
statements (including logical combinations) are checked on each matched subgraph. The
conformance result for each root entity is obtained from the existence of a subgraph that
satisfies the rule statements.

For a single root entity, there are usually multiple subgraphs that can match the same template.
For example, if one root entity has multiple properties and each property is an “IfcProperty”
node, then for this single root entity, there are the same numbers of subgraphs that can match
the template for this rule. Typically, in checking a rule on a root nodeset with n entities, the
total number of matched subgraphs for all the root entities is nm (i.e. each root entity can match
m subgraphs in average), and each subgraph has p attributes, then the algorithm complexity is
O(nmp).

Different caching strategies have been applied by the algorithms, in order that the found
subgraphs can be reused in checking multiple rules. For example, one implementation in xBIM
(xBimTeam, 2016) caches the found subgraphs for each root entity set in a DataTable with size
nm×p, and another implementation in BIMserver (Oraskari, et al., 2021) caches the edges in
found subgraphs for each root entity in a HashMap with size n×m×p.

However, since the IFC model of a real-world project usually exceeds millions of nodes, with
hundreds of megabytes of data, the efficiency of MVD validation of large rulesets on real-world
size models is still a challenge.

3. The MVDLite Algorithm

The motivation of the MVDLite algorithm is based on the following two observations. First,
there are usually common nodes in multiple subgraphs with different root entities. For example,

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

if multiple instances are assigned with the same type node, then this type node (as well as
properties of this type node) would be shared in the subgraphs of all instances. Second, if the
constraints in rule statements are considered in subgraph matching, many false branches can be
pruned at early stages in searching.

In this section, the MVDLite algorithm is proposed for the fast validation of MVD rules. First,
the “rule chain” structure with several types of “rule segments” is introduced. Second, the
algorithm for parsing the mvdXML rule statements and performing fast round-trip search is
introduced. Then, the complexity analysis of the MVDLite algorithm is provided. Finally, the
deep-caching strategy is introduced to further speed up the checking tasks.

3.1 The Rule Chain Structure

A rule segment is the representation of a rule as a mapping from source nodeset to target nodeset.
There are three types of rule segments (attribute segment, metric segment, and compound
segment). A rule chain is a sequence of rule segments starting with a root nodeset, in which the
target nodeset of the former rule segment is the source nodeset of the latter rule segment.

There are three types of rule segments: attribute segment, metric segment and compound
segment.

An attribute segment is a mapping defined by an attribute in the IFC data. Each attribute
segment has an attribute name and a target node type, corresponding to the “AttributeRule” and
“EntityRule” tags in mvdXML. Figure 2(a) shows an example attribute segment.
A metric segment is a mapping from the source nodeset to itself, which works as a filter for the
source nodes. Each metric segment is with a metric ([Type],[Value],[Size],
[Exists],[Unique]), an operator (=, >, <, >=, <=, !=) and a value constraint
(string, boolean, or numeric value), corresponding to the components in the mvdXML Rule
Grammar. Among the metric segments, the [Type]and [Value]metrics are “single metric
segments”, which can be evaluated by every single node in the nodeset, and act as filters for the
nodeset itself. Figure 2(b) shows an example single metric segment. The [Exists], [Size]
and [Unique]are “collection metric segments”, which can only be evaluated by a collection
of nodes, and act as filters for the parent nodeset. Figure 2(c) shows an example collection
metric segment.

A compound segment encapsulates one or more rule chains into brackets, and acts as a single
rule segment. There are two different types of compound segments: compound attribute
segment and compound metric segment. A compound attribute segment encapsulates the paths
between the source nodeset and the target nodeset, and acts as a single attribute segment, as

(a) Attribute segment. (b) Single metric segment. (c) Collection metric segment.

Figure 2: Examples of attribute segment and metric segments.

IfcPropertySet IfcProperty

->HasProperties

2

1

2

1

IfcValue IfcValue

[Value]>=0

-1 -1

IfcPropertySet IfcProperty

->HasProperties

IfcPropertySet

[Size]>1

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

(a) Compound attribute segment.

(b) Compound metric segment.

Figure 3: Examples of compound segments.

Figure 4: An example rule chain structure.

shown in Figure 3(a). A compound metric segment encapsulates the filter result of the source
nodeset, and acts as a single metric segment, as shown in Figure 3(b). Each sub-chain in a
compound metric segment must end with a metric segment, and each sub-chain in a compound
attribute segment must end with an attribute segment. A compound segment can also be nested
inside another compound segment and act as a corresponding attribute segment or metric
segment.

Inside a compound segment, several sub-chains can be combined with logical interconnections
(AND, OR, NOT), which corresponds to the intersection, union and complement operations
of the target nodesets. Specifically, since each metric segment can be viewed as a filter of its
source nodeset, the AND operation of metric segments can also be represented as the series
connection of metric segments.

Each rule segment is named with a string, so that each rule chain can be uniquely identified by
linking the strings of all segments. An attribute segment is named with “->” followed by the
attribute name, and the optional entity type rule can be linked afterward with a “:”, such as
“->Name:IfcLabel”. A metric rule is named with the metric name, an operator and a value

IfcObject
IfcRelDefinesByType

IfcTypeObject
IfcPropertySet

->IsTypedBy

(->IsTypedBy->RelatingType->HasPropertySets
OR ->IsDefinedBy->RelatingPropertyDefinition)

IfcRelDefinesByProperties

->IsDefinedBy

->RelatingPropertyDefinition
OR

->HasPropertySets
->RelatingType

IfcPropertySet

IfcObject IfcPropertySet

IfcPropertySet
IfcProperty

IfcValueIfcValue
IfcProperty

IfcPropertySet
IfcPropertySet IfcPropertySet

->HasProperties
->Name

[Value]="FireRating" (->HasProperties->Name[Value]="FireRating")

IfcWall

->IsDefinedBy:IfcRelDefinesByProperties

->RelatingPropertyDefinition:IfcPropertySet ->Name:IfcLabel [Value]='Pset_WallCommon'

->Name:IfcLabel->HasProperties:IfcPropertySingleValue

->NominalValue:IfcValue [Type]='IfcBoolean'

[Value]='IsExternal'

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

Algorithm 1 GeneratingRuleChain Algorithm 2 SearchingOnRuleChain

Input: template T, rule statement R.
1: rule chain c = NULL
2: for (interconnection u, RuleID v,
 value constraint w) in R :
3: c' = GetAttributeSegChain (v, T)
4: c' += GetMetricSeg (w)
5: if c == NULL :
6: c = c'
7: else :
8: x = GetLowestCommonAncestor (c, c')
9: c = MergeRuleChains(c, c', x, u)
Output: c

 Input: root nodeset 𝐧ଵ, rule chain c, data graph G
1 : for segment 𝐬௜ in c :
2 : if 𝐬௜ is attribute segment :
3 : 𝐧௜ାଵ = FindSucceedingNodes(𝐧௜, 𝐬௜)
4 : else if 𝐬௜ is metric segment :
5 : 𝐧௜ାଵ = FilterNodes(𝐧௜, 𝐬௜)
6 : else if 𝐬௜ is compound segment :
7 : 𝐧௜ାଵ = EmptyNodeset()
8 : for (interconnection u, branch 𝐜̂) in 𝐬௜ :
9 : 𝐧ෝ = SearchingOnRuleChain(𝐧௜, 𝐜̂, G)
10: 𝐧௜ାଵ = CombineNodeset(𝐧௜ାଵ, 𝐧ෝ, u)
11: 𝐧୭୳୲ = Backtrack(𝐧୪ୟୱ୲, 𝐧ଵ)
Output: 𝐧୭୳୲

constraint in order, such as “[Value]=TRUE”. A compound segment is named with exterior
brackets, inside which are the strings of the interior rule chains and logical interconnections.

Figure 4 shows a rule chain structure generated from an mvdXML rule statement. The meaning
of this rule is that if a property “IsExternal” in property set “Pset_WallCommon” is assigned to
an “IfcWall” instance, then the value type should be “IfcBoolean”.

3.2 Performing Validation on the Rule Chain

The MVDLite algorithm uses mvdXML as input ruleset. The pseudo-code of the MVDLite
algorithm is provided.

First, in Algorithm 1, each rule statement in an mvdXML ruleset is parsed into a rule chain
structure. An mvdXML rule statement is composed of multiple sub-clauses, each with a logical
interconnection, a RuleID, and a value constraint. The RuleID indicates a path from the root
entity nodeset to a target nodeset, which can be parsed into a branch of the rule chain with
multiple attribute segments. The value constraint can be parsed into a metric segment appended
to the branch. Several branches are merged into one chain at the lowest-common-ancestor
attribute. The merged chain has a shared prefix, and the suffix branches with interconnections
are wrapped into compound segments.

Then, in Algorithm 2, a round-trip search is performed based on the rule chain to get the
validation results. A rule chain is a series of instructions in finding and filtering the nodes.
Starting from the root entity set, a round-trip search is performed: first go forward through the
chain to find the existence of the paths which can pass all the rule segments, and then trace back
to find the root entity nodeset where these paths started. For compound segments, each inner
branch is a sub-chain starting from the current nodeset, so Algorithm 2 is performed for each
branch, and the combined result acts as a single segment in the host chain.

Figure 5 compares the round-trip search algorithm on the rule chain with the “matching-
checking” process in mvdXML rule validation. Rather than traversal subgraph-by-subgraph
according to the template matching result, the MVDLite algorithm is able to find the results of
all subgraphs through one single turn of round-trip search starting from the root nodeset.

3.3 The Complexity of MVDLite Algorithm

The complexity of MVD validation is mainly due to the node searching process. The
complexity of the MVDLite algorithm is O(e), in which e is the number of visited edges in the

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

(a) The “matching-checking” process.

(b) The round-trip search on the rule chain in the MVDLite algorithm.

Figure 5: The comparison of two types of MVD rule validation algorithms.

searching, and each edge is visited at least once and at most twice (forward and backward in a
round-trip). In comparison, the complexity of “matching-checking” method is O(nmp).

Before comparing the complexity of the two algorithms, the formal representation of subgraph
matching process in the “matching-checking” method is shown as follows.

Since the template is a directed acyclic graph, the attributes can be sorted with topological
sorting, so that all prefixes of any attribute are ranked before itself. For a template with p
attributes (regarding the root entity set as the first attribute), let f(𝑖) be the index of the direct
prefix of the i-th attribute, 1 ≤ f(𝑖) < 𝑖 ≤ 𝑝. The subgraph matching process searches the nodes
by each attribute, and records all matched (including partial-matched) subgraphs.

Let 𝐊(௜) be the record DataTable after scanning the i-th attribute, which is a matrix with the size
𝑘௜ × 𝑖 , and 𝑘௜ is the number of matched subgraph prefixes. In particular, 𝐊(௣) is with size

(2) For each root entity, list all
subgraphs according to the template.

T

F

F

…

T

…

…

…

…
…
…

… …

…
…
…

C='xxx' AND E='yyy'
A B D E

C

(1) Get the root entity set. (3) Validate the rule
on each subgraph.

(4) Get the result of
one root entity.

A B C C B D E E

(->C ='yyy'

F

T

T

F

T

(1) Get the root entity set. (2) Filter the nodes through the rule chain. (3) Backtrack to get the results
of all root entities.

->A ->B ='xxx' ->D ->E)

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

𝑛𝑚 × 𝑝, and 𝑘௣ = 𝑛𝑚 is the total number of subgraphs. Let 𝐧(௜) be the non-repeated nodeset
of the i-th attribute. Specifically, the size of the root nodeset |𝐧(ଵ)| = 𝑛. Let 𝐪(௜) be the number
of succeeding edges in scanning the i-th attribute for each node in 𝐧(୤(௜)), with |𝐪(௜)| = |𝐧(୤(௜))|.

Theorem 1. e ≤ nmp .

Proof. In the “matching-checking” method, let 𝐤(௜,௝) be the j-th column of 𝐊(௜), in which each
item is from 𝐧(௝) and may repeat several times. Let 𝐫(௜,௝) be the array of repeating times for the
nodes in 𝐤(௜,௝), and the size |𝐫(௜,௝)| = |𝐧(௝)|. In scanning the i-th attribute, for each node in
𝐤(௜ିଵ,୤(௜)), every succeeding edge corresponds to a new matched subgraph prefix, so

𝑘௜ = 𝐫(௜ିଵ,୤(௜)) ⋅ 𝐪(௜) . (1)

If some subgraph prefixes do not have succeeding edges, they are kept in the DataTable as
partial-matched subgraphs by appending a null node, which keeps 𝑘௜ ≥ 𝑘௜ିଵ .

In the MVDLite algorithm, since the value constraints are evaluated during the searching, some
of the nodes are excluded before scanning the next attribute. Let 𝐡(௜) be a mask array for 𝐧(௜),
in which kept nodes are marked with 1 and excluded nodes are marked with 0. In scanning the
i-th attribute, the number of visited edges 𝑒௜ is

𝑒௜ = 𝐡(୤(௜)) ⋅ 𝐪(௜) . (2)

Specifically, 𝑒ଵ = 𝑘ଵ = 𝑛. Since every item in 𝐫(௜ିଵ,୤(௜)) is not less than 1, and every item in
𝐡(୤(௜)) is not greater than 1, then 𝑒௜ ≤ 𝑘௜. As a result,

𝑒 = ∑ 𝑒௜
௣
௜ୀଵ ≤ ∑ 𝑘௜

௣
௜ୀଵ ≤ ∑ 𝑘௣

௣
௜ୀଵ = 𝑛𝑚𝑝 . (3)

 □

Theorem 1 indicates that the complexity of the MVDLite algorithm is not greater than the
“matching-checking” method. The first “≤” sign gets equal only when every item in 𝐫(௜ିଵ,୤(௜))
and 𝐡(୤(௜)) equals 1, i.e. no repeated nodes in any subgraph prefix, and no excluded nodes by
any value constraint. The second “≤” sign gets equal only when every 𝑘௜ = 𝑘௣ = 𝑛, i.e. each
root entity matches only one subgraph. In real-world MVD validation tasks, the two “≤” signs
usually make significant differences, which remarkably speeds up the calculation.

3.4 The Deep-Caching Strategy

For the checking task on a large ruleset with multiple rules, the efficiency of the MVDLite
algorithm can be further improved by applying the “deep-caching” strategy. Based on the
correspondence between the rule chain structure and a prefix string, the checking results can be
reused across multiple rules.

By naming each rule segment with a string, the whole rule chain can be named with a string by
linking the strings of all segments, and then each prefix of a rule chain has a corresponding
prefix string, as shown in Figure 4. The deep-caching strategy records the correspondence so
that a previously visited nodeset can be re-found according to the prefix string of a rule chain.

As a result, rather than starting from the root nodeset every time, the algorithm can start from a
visited nodeset with the longest common prefix. In a large ruleset, there are usually multiple
rules with a common prefix. For example, all rules for checking the type properties of an
“IfcWall” instance should have the common prefix “IfcWall->IsTypedBy:
IfcRelDefinesByType->RelatingType:IfcTypeObject->HasPropertieS
ets:IfcPropertySet”, so the nodeset of the corresponding “IfcPropertySet” nodes can

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

be reused across the rules. In our experiments, the deep-caching strategy is effective in
speeding-up without significantly increase memory usage.

4. Experiments

4.1 Experiment Setup

The performance of the proposed MVDLite algorithm is compared with several “matching-
checking” tools on models and rulesets in different sizes. The effect of the deep-caching
strategy is also compared.

Tools. The MVDLite tool is implemented in C# based on an IFC tool named “STEParser”. The
compared tools include the xBIM MVD plugin (xBimTeam, 2016) with DataTable caching,
and the tool based on BIMserver and IfcOpenShell (Oraskari, et al., 2021) with HashMap
caching. For a fair comparison, our own “matching-checking” implementation with HashMap
caching on the same STEParser tool is also tested.

Rulesets. Three mvdXML rulesets based on IFC4 are used, including UnitTest.mvdxml with
58 statements (xBimTeam, 2016), RV.mvdxml with 1,770 statements and DTV.mvdxml with
1,791 statements (buildingSMART, 2018).

Models. The IFC4 models used are shown in Figure 6, including two sample models from NIBS
(2012) (Duplex.ifc with 52 MB and Office.ifc with 193 MB, both converted to IFC4 and
merged parts in multiple disciplines), and a real-world model B01.ifc with 841 MB.

(a) Duplex.ifc (b) Office.ifc (c) B01.ifc

Figure 6: The models used in the experiments.

Table 1: Time usage in MVD validation tasks (in seconds).

Models Rulesets

Tools

MVDLite
MVDLite
(no deep-
caching)

STEParser
matching-
checking

(Oraskari, et
al., 2021)

(xBimTeam,
2016)

 UnitTest.mvdxml 0.4 0.5 1.3 2.5 2.4

Duplex.ifc RV.mvdxml 1.3 2.0 11.2 21.1 7.1

 DTV.mvdxml 1.4 2.0 11.5 21.6 6.0

 UnitTest.mvdxml 0.8 1.5 5.8 8.6 177.3

Office.ifc RV.mvdxml 6.0 9.7 88.5 97.0 185.7

 DTV.mvdxml 6.0 10.3 84.5 107.9 178.3

 UnitTest.mvdxml 5.0 13.1 49.8 55.8 10745.1

B01.ifc RV.mvdxml 73.2 126.7 388.9 480.6 8722.8

 DTV.mvdxml 68.6 123.9 393.5 613.7 8707.5

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

4.2 Experimental Results

The time usage of the tools in MVD validation tasks are listed in Table 1 (in which the time
usage for loading and parsing IFC data are excluded), with minimum values in bold. All the
experiments are performed on a PC with a 3.60 GHz processor and 32GB of physical memory.

The experimental results show that the MVDLite algorithm is significantly faster than the
“matching-checking” tools in all tasks. The results also show that the deep-caching strategy can
improve the performance of MVD validation in checking multiple rules.

5. Conclusion and Future Work

The proposed MVDLite algorithm remarkably speeds up MVD validation. In a typical task, the
time usage may reduce from minutes to seconds, which is beneficial in promoting IDM-MVD
applications in the industry.

With the fast MVD validation algorithm, the future work will focus on the usage of MVD
technology in more flexible scenarios, such as querying the IFC dataset using MVD, and
extracting the partial model according to an MVD ruleset for a certain exchange requirement.

Acknowledgements

This work was supported by the National Key Research and Development Program of China
(2021YFB1600303) and the 2019 MIIT Industrial Internet Innovation and Development Project
"BIM Software Industry Standardization and Public Service Platform".

References

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R., Van
Campenhout, J. (2011). A semantic rule checking environment for building performance checking.
Automation in Construction, 20(5), pp. 506–518.

Pauwels, P., Zhang, S. (2015). Semantic rule-checking for regulation compliance checking: an overview
of strategies and approaches. In: 32rd international CIB W78 conference, 2015, Eindhoven, Netherlands.

Beach, T.H., Rezgui, Y., Li, H., Kasim, T. (2015). A rule-based semantic approach for automated
regulatory compliance in the construction sector. Expert Systems with Applications, 42(12), pp. 5219–
5231.

Zhang, H., Zhao, W., Zhang, R., Liu, H., Gu, M. (2019). Semantic web based rule checking of real-
world scale BIM models: a pragmatic method. In: International Congress and Conferences on
Computational Design and Engineering (i3CDE), 2019, Penang, Malaysia.

buildingSMART. (2010). Information Delivery Manual Guide to Components and Development
Methods. https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-
IDMC_004-v1_2.pdf, accessed January 2022.

Lee, G., Park, Y.H., Ham, S. (2013). Extended Process to Product Modeling (xPPM) for integrated and
seamless IDM and MVD development. Advanced Engineering Informatics, 27(4), pp. 636–651.

Venugopal, M., Eastman, C.M., Sacks, R. (2012) Configurable model exchanges for the precast/pre-
stressed concrete industry using semantic exchange modules (SEM). In: International Conference on
Computing in Civil Engineering, 2012, Clearwater Beach, United States.

Weise, M., Katranuschkov, P., Scherer, R.J. (2003). Generalised model subset definition schema. In:
CIB W78’s 20th International Conference on Construction IT, 2003, Waiheke Island, New Zealand.

29th International Workshop on Intelligent Computing in Engineering (EG-ICE)

See, R., Karlshoej, J., Davis, D. (2012). An Integrated Process for Delivering IFC Based Data Exchange.
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf,
accessed January 2022.

Chipman, T., Liebich, T., Weise, M. (2016). mvdXML: Specification of a standardized format to define
and exchange Model View Definitions with Exchange Requirements and Validation Rules.
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf,
accessed January 2022.

Eastman, C.M., Lee, J.M., Jeong, Y.S., Lee, J.K. (2009). Automatic rule-based checking of building
designs. Automation in Construction, 18(8), pp. 1011–1033.

Zhang, C., Beetz, J., Weise, M. (2014). Model view checking: automated validation for IFC building
models. In: eWork and eBusiness in Architecture, Engineering and Construction: ECPPM, 2014, Vienna,
Austria.

Solihin, W., Eastman, C., Lee, Y.C. (2015). Toward robust and quantifiable automated IFC quality
validation. Advanced Engineering Informatics, 29(3), pp. 739–756.

Lee, Y.C., and Eastman, C.M. and Solihin, W., See, R. (2016). Modularized rule-based validation of a
BIM model pertaining to model views. Automation in Construction, 63, pp. 1–11.

Lee, Y.C., Eastman, C.M., Solihin, W. (2018). Logic for ensuring the data exchange integrity of building
information models. Automation in Construction, 85, pp. 249–262.

Simplebim. (2022). Support site for Simplebim users - mvdXML. https://www.simplebim.com/support/
addon-mvdxml.html, accessed January 2022.

Weise, M., Liebich, T., Nisbet, N., Benghi, C. (2016). IFC model checking based on mvdXML 1.1, In:
eWork and eBusiness in Architecture, Engineering and Construction: ECPPM, 2016 Limassol, Cyprus.

xBimTeam. (2016). XbimMvdXML. https://github.com/xBimTeam/XbimMvdXML, accessed January
2022.

Oraskari, J., Zhang, C. (2021). mvdXML Checker. https://github.com/jyrkioraskari/mvdXMLChecker,
accessed January 2022.

buildingSMART. (2018). IfcKit - exchanges. https://github.com/buildingSMART/IfcDoc/tree/master/
IfcKit/exchanges, accessed January 2022.

NIBS. (2012). Common Building Information Model Files And Tools. https://www.wbdg.org/bim/
cobie/common-bim-files, accessed January 2022.

