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Abstract

Industrial visual inspection aims at detecting surface defects in products during the manufacturing process. Although existing
anomaly detection models have shown great performance on many public benchmarks, their limited adjustability and ability to
detect logical anomalies hinder their broader use in real-world settings. To this end, in this paper, we propose a novel component-
aware anomaly detection framework (ComAD) which can simultaneously achieve adjustable and logical anomaly detection for
industrial scenarios. Specifically, we propose to segment images into multiple components based on a lightweight and nearly
training-free unsupervised semantic segmentation model. Then, we design an interpretable logical anomaly detection model through
modeling the metrological features of each component and their relationships. Despite its simplicity, our framework achieves
state-of-the-art performance on image-level logical anomaly detection. Meanwhile, segmenting a product image into multiple
components provides a novel perspective for industrial visual inspection, demonstrating great potential in model customization,
noise resistance, and anomaly classification. The code will be available at https://github.com/liutongkun/ComAD.
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1. Introduction

Automated industrial visual inspection plays an important
role in modern manufacturing quality control. Currently, it is
popular to apply anomaly detection models in this field, be-
cause these models only need to collect normal samples for
training and can theoretically detect any types of defects. In
recent years, anomaly detection models have made significant
progress [1–4] in various benchmarks [5, 6], both in terms of
detection accuracy and efficiency. On the other hand, deploying
these models in real-world scenarios is still challenging, which
involves two important factors:

Firstly, existing models often lack sufficient adjustability to
meet customized requirements. In practical applications, dif-
ferent manufacturers usually have different tolerance levels for
different anomalies. For example, anomalies that appear on the
product itself are typically more important than anomalies that
appear in the image background. However, current models usu-
ally struggle to meet this simple requirement, since under the
unsupervised setting, it’s difficult to inform the model about
what type of anomaly is important through annotated informa-
tion. Consequently, the anomaly score given by the model only
reflects the degree to which the data deviates from the normal
distribution established from a limited number of normal sam-
ples. This deviation may not necessarily correspond to human
perception of ‘defects’. Indeed, ‘anomaly’ is an objective con-
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Original image Segmented components

ComAD

Fig. 1. Examples from the MVTec LOCO AD dataset. Our method segments
images into multiple components to achieve adjustable and logical anomaly
detection.

cept from the perspective of data distribution, while ‘defect’ in-
volves more subjective human definitions. Although currently,
human intervention is often undesirable for perception tasks in
natural scenes, it may be significant for unsupervised indus-
trial visual inspection, where the definition of defects is often
subjective and variable. The anomaly detection model for real
visual inspection should be more adjustable and explainable so
that it can be easily transformed into a real ‘defect detection
model’ with the manufacturer’s personal requirement.

Secondly, existing models primarily address low-level struc-
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Fig. 2. Examples from the MVTec AD screw dataset. By identifying the com-
ponent to which the anomaly belongs, we can achieve anomaly classification
and filter out background noise.

tural anomalies, such as dents and scratches, while encounter-
ing challenges in detecting high-level semantic logical anoma-
lies [7], such as missing components and incorrect component
quantities, which require additional metrological features to
measure or count the instance. However, achieving metrolog-
ical analysis such as object counting can be very challenging
under the unsupervised setting [8]. In practice, logical defects,
such as component absence, may bring serious functional con-
sequences, which are usually far more important than some
scratches that only affect aesthetics. Nevertheless, the perfor-
mance of current methods on logical anomaly detection bench-
marks [7, 13] reveals considerable scope for enhancement.

There are several possible solutions for these two issues. For
example, in terms of the adjustability of the model, anomaly
clustering can be used [9], after which manufacturers could
customize the model by changing the weights assigned to dif-
ferent anomaly categories. However, this approach cannot be
used in cold-start scenarios, as it requires the model to have
previously encountered abnormal samples. Moreover, due to
the uncertainty inherent in anomalies, it may not guarantee that
new anomaly types are accurately assigned weights. For logical
anomaly detection, several specialized algorithms [7, 10, 11]
are proposed, which primarily rely on implicit deep global fea-
tures to model long-range context. Though effective, these
methods may also struggle to capture metrological information
[11] and they have weak interpretability and adjustability.

Considering the aforementioned problems, in this paper, we
propose a new component-aware anomaly detection framework
for industrial visual inspection. Our method can serve as a plu-
gin to simultaneously enhance the adjustability and the ability
to detect logical anomalies of existing anomaly detection mod-
els. Specifically, we leverage DINO [12] pre-trained features
with post-processing algorithms to build a lightweight (1.9 MB)
and almost training-free (less than one minute for training) un-
supervised segmentation model, as shown in Fig. 1. Despite its
simplicity, it enables effective and efficient image segmentation
thanks to the high semantic DINO pre-trained features and the
relatively homogeneous distribution of the industrial dataset.
By integrating this component segmentation model with the ex-

isting anomaly detection model, we can identify anomalies in
specific components, enabling more granular model adjustment
based on the component’s significance. Concretely, we can as-
sign stricter thresholds to important components. Also, we can
ignore anomalies that appear in irrelevant background areas,
thereby improving the model’s noise resistance. Besides, our
segmentation model can help achieve anomaly classification,
i.e., classify the anomalies based on the components they be-
long to rather than the anomalies themselves, thus better adapt-
ing to cold-start problems and new unknown anomalies. A typ-
ical example can be seen in Fig. 2, where the ‘Thread Side’,
‘Scratch Neck’, and ‘Scratch Head’ in the third row are offi-
cially provided anomaly categories in the MVTec AD screw
dataset [36]. For logical anomaly detection, our model mainly
focuses on those metrological anomalies, e.g., the incorrect
component quantities, which are typically difficult for existing
methods. Based on our segmentation model, we design an al-
gorithm to explicitly model the metrological features and there-
fore achieve effective and interpretable logical anomaly detec-
tion. Finally, our contributions are summarized as follows:

1. We provide a new perspective, i.e., segmenting the im-
age into multiple components, to achieve adjustable and logical
anomaly detection in industrial visual inspection. Experimen-
tally, we have demonstrated its feasibility and advantages.

2. We propose a simple yet effective approach for unsuper-
vised component segmentation and logical anomaly detection.

3. Our logical anomaly detection model achieves state-of-
the-art performance with interpretable results on the MVTec
LOCO AD [7] and CAD-SD [13] datasets.

2. Related Work

2.1. Industrial visual inspection

Industrial visual inspection, also known as surface defect de-
tection, has long been a widely researched topic. Early ap-
proaches [14, 15] mainly rely on handcrafted rule design, which
offer strong interpretability and required few training samples.
However, these methods are less generalizable and often en-
counter obstacles in complex scenarios. Later, researchers
turned to supervised deep-learning models [16, 17]. Although
these models have improved upon the limitations of traditional
handcrafted methods, they also introduce new issues, such as
the need for a large number of defect samples for training and
the difficulty of adapting to novel defect categories. As a re-
sult, in recent years, visual anomaly detection models are be-
coming increasingly popular, since they only require normal
samples for training and can intrinsically generalize to outlier
defects. Our method follows the basic setting of anomaly de-
tection, where we only use normal samples for training without
additional annotations.

2.2. Industrial visual anomaly detection

Existing methods can be broadly classified into
reconstruction-based and feature-based methods.

Reconstruction-based methods assume that models trained
on normal samples can only reconstruct normal patterns, and
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Fig. 3. ComAD Overview. 1. We utilize KMeans clustering on the DINO pre-trained features to achieve component segmentations. 2. We extract regions from each
segmentation map and further extract features within these regions to model the normal samples. 3. For test images, we compare their region features with those of
training samples to achieve logical anomaly detection.

will produce large reconstruction errors in abnormal regions.
Typical models include autoencoders [18–22], GANs [24],
VAEs [23], etc. Their advantage is that they have a certain
level of interpretability, as people can analyze and adjust the
model by observing the reconstructed images. On the other
hand, the fuzzy generalization ability of reconstruction models
often makes it difficult to find a good balance between recon-
struction accuracy and distinguishability.

Feature-based methods first project the image into a feature
space through discriminative feature extractors. Due to the ab-
sence of negative samples for supervision, it’s preferable to use
ImageNet [35] pre-trained [26] models or self-supervised [27]
pre-trained model to extract features. The extracted features
can be further modeled by gallery-based [1], density-based
[28], flow-based [29], and student-teacher-based models [30],
and the anomaly will be evaluated through either distance or
density-based metrics. Overall, benefiting from the strong rep-
resentation power of deep features, these methods typically out-
perform reconstruction-based algorithms. On the other hand,
their interpretability is generally weaker.

Currently, both reconstruction-based and feature-based
methods have achieved excellent performance on low-level
structural anomalies, but face challenges in logical anomaly de-
tection. Meanwhile, due to the lack of annotated information,
compared to supervised models, it’s more difficult to introduce
prior knowledge to adjust anomaly detection models for cus-
tomized requirements. Consequently, our framework does not
focus on detecting structural anomalies but rather places more
emphasis on model adjustability and logical anomaly detection
capability.

2.3. Unsupervised semantic segmentation and DINO pre-
trained models

Many unsupervised semantic segmentation approaches are
designed for natural scenes. Some representative methods in-
clude IIC [31], PiCIE [32], etc. Apart from convolutional neu-
ral network-based methods, Vision Transformer (ViT) [33] has
shown advantages in long-range modeling. Specifically, Caron
et al. [12] (DINO) use self-distillation to train ViT in a self-
supervised manner, and its self-attention shows meaningful se-

mantics such as object boundaries. Hamilton et al. [34] further
distills the intermediate dense features of DINO to apply them
to unsupervised semantic segmentation.

Our framework employs the unsupervised semantic segmen-
tation model to segment industrial images into multiple com-
ponents. Compared to the diverse images in natural scenes, the
distribution of industrial images is relatively fixed, which re-
duces the requirement for the model’s generalization ability. In
particular, for the task of anomaly detection itself, a segmen-
tation model with too strong a generalization ability may be
harmful. Experimentally, we find that a simple clustering of the
DINO pre-trained features can satisfy our requirements, while
the above segmentation models may not bring additional bene-
fits but even worse results.

3. Methods

The proposed method is mainly designed for products with
multiple components, without considering homogeneous tex-
tures, as the latter does not involve logical anomalies.

3.1. Segmenting image into multiple components

Given a training set of normal images X = {x1, x2, . . . xi}, we
follow the strategy in [34] to leverage the first block of the pre-
trained DINO ViT-S/8 to calculate each image xi ∈ RH×W×C’s
intermediate feature, and denote it as fi ∈ RI×J×D, where (H,W)
and (I, J) represent spatial dimensions and C,D represent chan-
nel dimensions. Then we perform corset sampling as [1] on
each fi with a sampling ratio r = 0.01 to remove redundant
background features and reduce their storage cost, obtaining
f
′

i ∈ RN×D, where N = br × I × Jc represents the number of
reserved feature vectors. Remark that we do not perform di-
mensionality reduction on the feature vectors like some other
methods [1, 34] since we find it detrimental to final results.

We concatenate all the f
′

i in the training setX to build a mem-
ory bank M ∈ RR×D where R refers to the total number of all
the reserved feature vectors. Then, we perform KMeans to clus-
ter those feature vectors in M and therefore obtain K clusters
along with their center feature fkmeans ∈ RK×D. For the original
method, we employ K = 5 in all the experiments.
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Reserved component Filtered component

Fig. 4. Examples of the segmented components under K = 5.

Through computing the cosine similarity between fkmeans and
the original feature map fi, we can obtain the preliminary seg-
mentation map and then interpolate it to the size of the original
image. Then we apply Fully connected Gaussian Conditional
Random Fields (CRF) [37] for post-processing to obtain our
segmentation map S ∈ RH×W×K . For CRF, we use PyDense-
CRF with 2 iterations. The parameters w.r.t the equation:

wcr f (vi, v j) = a exp(−

∣∣∣pi − p j

∣∣∣2
2θ2

α

−

∣∣∣Ii − I j

∣∣∣2
2θ2

β

)+b exp(−

∣∣∣pi − p j

∣∣∣2
2θ2

γ

)

(1)
are set as a = 4, b = 3, θα = 67, θβ = 3, θγ = 1, which are the
same as those in [34].

Considering the uncertainty of unsupervised clustering, we
do not apply ‘argmax’ to S ’s last dimension to assign a specific
class to each pixel. Instead, we represent each sub segmentation
map s ∈ RH×W separately for further refinement (discussed in
the following section). Overall, the above process can be seen
in Fig. 3.1.

3.2. Component-based logical anomaly detection model

Standardized manufactured products usually share uniform
metrological features (the component size, quantities, etc.)
within the same specification. Although these features cannot
cover all types of anomalies, they are often the weak points of
existing methods. For our logical anomaly detection model, we
leverage the above segmentation map S to capture the product’s
metrological features. Consequently, it can serve as an effective
supplement to existing methods, allowing better performance
on logical anomalies through ensemble detection.

                                            

Fig. 5. Qualitative comparisons of different region extraction algorithms.

3.2.1. Selecting the core components
As the unsupervised segmentation task is inherently am-

biguous, and the optimal value of K is unknown when using
KMeans, there may be some unexpected segmentation results
in S . Therefore, we first choose to filter the noise and back-
ground components in S . To identify the noise component,
we apply a mean filter with a size of (11, 11) to each compo-
nent map, and regard those maps whose maximum values are
less than 0.5 (the value range of each map is [0, 1]) as noise
components. To identify the background component, we apply
OTSU [39] to convert each component map into regions, and
adopt the strategy in [38], where we suppose the background
regions should occupy more than two corners of the image.
Based on the above operations, our segmentation map under-
goes a change from S ∈ RH×W×K to S ∈ RH×W×K

′

, where K
′

refers to the number of reserved categories. For the products in-
volved in this paper, the aforementioned operations can be com-
pleted using only one training image. The retained component
categories will be recorded and there is no need for redundant
calculations during testing. Fig .4 illustrates some qualitative
examples of the reserved and filtered components for several
industrial products.

3.2.2. Modeling the metrological features
Extracting component regions. In order to obtain stable

metrological features, we need to accurately extract the compo-
nent region. In the field of image segmentation, a commonly
used approach is to leverage the ‘argmax’ function to assign
specific labels to each pixel. For our segmentation model, we
find it less effective. A better approach is to perform binary
classification on each component map individually. Conse-
quently, we leverage OTSU algorithm and make slight modi-
fications to it. Specifically, OTSU can automatically determine
the binary segmentation threshold by maximizing the inter-
class variance between the foreground and background classes.
Considering that our foreground may contain some noise, we
apply a certain offset to the OTSU threshold to make the fore-
ground criteria more stringent. To determine the offset, we em-
ploy a constraint that the optimal binary threshold should mini-
mize the variance of the training set’s region areas. Concretely,
for each component’s segmentation map s ∈ RH×W , given the
threshold calculated by the original OTSU τ, we scale it by
each c from {1, 1.1, 1.2, 1.3, 1.4} respectively. Then we use each
scaled cτ to binarize the image and calculate the foreground
area variance of the entire training set. Finally, we choose the
scaling factor c∗ which corresponds to the minimum variance.
Also, c∗ will be recorded, so we do not need to recompute
it during testing. We show some qualitative comparisons of
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‘argmax’, ‘OTSU’, and our ‘Adaptive scaled OTSU’ in Fig. 5.
Extracting component areas and colors. After extracting

the component region, we choose its area as our primary metro-
logical feature. While simple, it can effectively indicate the
component’s states including the existence, quantities, etc. (We
will also verify whether more complex deep features can cap-
ture these states in Sec 5.1.). However, we find that the DINO
pre-trained features may group the objects with similar seman-
tics but different colors into the same component category. For
example, in the 1st row of Fig. 4, the ‘orange’ and ‘peach’ can
not be distinguished by our segmentation model. Therefore,
we further introduce the color features within each component
region to refine the component discrimination.

For each component k, we denote its area and color features
by Ak and Cok respectively. Specifically, the area Ak is calcu-
lated by the sum of the number of pixels in the region. To rep-
resent the color feature, we first convert the image from RGB
to CIELAB space, which includes three components L, a, and
b. We ignore L to avoid the influence of lighting and only retain
b and a. For each pixel, we calculate b

a and finally average that
value over the entire region, thus obtaining Cok. After obtaining
the area and color features of each component, we concatenate
them together to construct the global feature vector. Before this,
we need to scale them to similar scales. Since a product may
have multiple specifications, these features may not follow a
Gaussian distribution, but instead a mixture of Gaussians with
multiple centers. Therefore, we do not use standardization tech-
niques such as z-score which require the data to follow a single
Gaussian distribution. Meanwhile, to avoid sensitivity to noise,
we do not apply Min-Max normalization. As a compromise,
we normalize the feature by dividing it by its mean value in the
training set, i.e.,

A
′ k
i =

Ak
i∑Ntrain

n=0 Ak
n/Ntrain

(2)

Co
′ k
i =

Cok
i∑Ntrain

n=0 Cok
n/Ntrain

(3)

where i represents the ith image and k represents its kth com-
ponent. Ntrain represents the number of training images. There-
fore, for each original image i, we can obtain a global feature
vector Gi, which is:

Gi = (A
′1
i ,Co

′1
i , A

′2
i ,Co

′2
i , . . . , A

′ k
i ,Co

′ k
i ) (4)

We store all the Gi in the training set. For the jth test image,
we calculate its anomaly score DG using the average l2 distance
to its kNN (k-nearest neighbors), thus:

DG = |G j − kNNGtrain (G j)|2 (5)

Based on DG, we can obtain the image-level anomaly detection
results. Meanwhile, by tracking back the specific components
in G j that contribute to the DG, we can obtain interpretable in-
formation about the component-level anomalies.

Object counting based on segmentation maps. Through
using area and color features, we can detect missing compo-
nents or their incorrect quantities to some extent. However, this

may not be suitable for the counting issue with a large num-
ber of instances. The main reason is that the area error of each
instance, either from production error or segmentation error, ac-
cumulates, making the total area unable to reflect the accurate
instance number. If these instances are not all morphologically
adjacent, we can additionally leverage the connectivity of the
regions to estimate the instance number, as can be seen in Fig.
6. Specifically, for the training set, we use the 8-connectivity
criterion to divide the region into multiple separate regions and
filter those tiny noises whose area is less than 0.1 % of the im-
age area. Then, we use DBSCAN [40] algorithm to group these
regions based on their area features. After that, each connected
region can be assigned to a group based on which cluster it is
closest to. Finally, for the ith image and its kth component,
we count the number of instances in each group to obtain a
histogram Hk

i , which approximately reflects the number of in-
stances.

When the segmentation results are poor or there is signifi-
cant instance variance, the histogram may have a high dimen-
sionality, which affects the stability of detection. Therefore, we
further regularize it based on the dimensionality nk

i of the his-
togram, i.e., the number of groups obtained by DBSCAN:

H
′ k
i =

Hk
i

nk
i

(6)

Meanwhile, we do not concatenate the H
′ k
i of each component

into a global vector to avoid excessively high-dimensional fea-
ture vectors. Similarly, we store all the H

′ k
i in the training set.

For the jth test image, we calculate its anomaly score DH using
the average l2 distance to its kNN, thus:

DH =

K
′∑

k=0

|H
′ k

j − kNNHk
train

(H
′ k

j)|2 (7)

Overall, the complete anomaly score D is represented as:

D = DG + αDH (8)

where α is determined by the importance of object counting
and in all experiments, we set α to 0.5. For the DBSCAN al-
gorithm, we set its radius to be 10% of the average area of the
connected regions, and the minimum samples of 10. For all the
kNN algorithms, we use 5-NN.

4. Experiments

4.1. Datasets

We primarily choose those datasets that involve logical
anomalies to evaluate our logical anomaly detection model.
Meanwhile, we evaluate the performance improvement brought
by combining our method with other existing methods. Be-
sides, we also select the benchmarks for structural anomalies
so as to verify the overall performance. We use the area under
the curve (AUC) of the receiver operating characteristics (ROC)
as the evaluation metric.
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Fig. 6. Illustration of object counting using region connectivity and DBSCAN
clustering algorithms.

Fig. 7. Example images of the MVTec LOCO AD dataset.

MVTec LOCO AD. The MVTec LOCO AD dataset [7] con-
sists of five product categories and is mainly intended for log-
ical anomaly detection. Specifically, logical anomalies differ
from traditional structural anomalies in that the components
themselves may appear to be in good condition (i.e., no visi-
ble scratches or dents), but at the product level, there may be
errors in their quantities or assembly relationships. The dataset
also involves structural anomalies. To clearly demonstrate the
difference between logical and structural anomalies, we provide
some examples in Fig. 7. The entire dataset involves 1772 nor-
mal images for training and 304 normal images for validation.
For the test set, there are a total of 575 normal images, 432
structural anomaly images, and 561 logical anomaly images.

Co-occurrence Anomaly Detection Screw Dataset (CAD-
SD). The CAD-SD [13] involves a type of logical anomaly
called ‘co-occurrence anomalies’. Specifically, this refers to
the assembly relationship of screw rods and hex nuts. In the
normal training set, a screw rod is constrained to be assembled
with only one nut. Therefore, the violation of this constraint
such as missing nut or double nut assembly will result in log-
ical anomalies. Similarly, the dataset also includes structural
anomalies of scratches and paint. The entire dataset involves
400 normal images for training. For the test set, there are a to-
tal of 210 normal images, 80 structural anomaly images, and 84
logical anomaly images. Some examples are shown in Fig. 8.

MVTec AD. The MVTec AD [36] dataset consists of 15 dif-

              

 
 
  
 
 
 
 
 
 
  
 

 
 
 
  
 
 

 
 
 
 
 
  
  

 
  
 
  
 
  
 

 
 
 
 
 
  
  

     

Fig. 8. Example of images of the CAD-SD dataset.

ferent industrial products, including 10 object and 5 texture
categories. Their anomaly detection task primarily focuses on
traditional structural defects. The entire dataset involves 3629
normal images for training. For the test set, there are a total of
467 normal images and 1258 abnormal images. The proposed
method is solely evaluated on the object categories without con-
sidering the homogeneous texture categories.

4.2. Implementation details

We implement all the experiments with an NVIDIA GeForce
GTX 3090TI and I7-12700 in Pytorch. For our ComAD, We
resize all the images into 224 × 224 and each image takes ap-
proximately 40 ms for the component segmentation and 0.007
ms for anomaly detection. We five-run all the experiments and
take the average value as the result.

4.3. Results

We choose several state-of-the-art industrial anomaly detec-
tion models as our baselines, including reconstruction-based
DRAEM [20]1, and feature-based AST [2]2, PatchCore [1]3,
and RD4AD [25]4. We also compare our method with the
specific logical anomaly detection model GCAD [7] and SA-
PatchCore [13]5. For the chosen baselines [1, 2, 13, 20, 25], we
implement them with their official codes. For Patchcore, we use
the WideResNet-50 [41] as the backbone. For GCAD, as there
is no official code, we directly report the performance of their
paper. To combine our ComAD with other baselines, we sim-
ply add their anomaly scores. The results on the MVTec LOCO
AD and CAD-SD datasets are shown in Table. 1 and Table. 2
respectively.

Based on our results, it can be observed that the existing
methods generally perform poorly in logical anomaly detection
except for the ‘juice bottle’ category, whose normal samples
share a relatively small intra-class variance. When the normal
category has a larger intra-class variance, such as the rotated

1https://github.com/VitjanZ/DRAEM.
2https://github.com/marco-rudolph/AST
3https://github.com/amazon-science/patchcore-inspection
4https://github.com/hq-deng/RD4AD
5https://github.com/IshidaKengo/SA-PatchCore

6



Table 1: Quantitative comparisons of image-level detection results on the MVTec LOCO AD dataset. (AUROC%)

MVTec LOCO Category PatchCore RD4AD DRAEM AST GCAD ComAD
+ComAD +ComAD +ComAD +ComAD

Logical
Anomalies

Breakfast Box 80.0 91.1 66.7 84.9 75.1 83.4 80.0 91.0 - 94.7
Juice Bottle 92.3 95.0 93.6 95.5 97.8 98.8 91.6 93.9 - 90.9

Pushpins 73.8 95.7 63.6 91.2 55.7 89.0 65.1 90.5 - 89.0
Screw Bag 55.7 71.9 54.1 73.4 56.2 68.0 80.1 85.0 - 79.7

Splicing Connectors 75.6 93.3 75.3 92.3 75.2 90.3 81.8 90.3 - 84.4
Average.log 75.5 89.4 70.7 87.5 72.0 85.9 79.7 90.1 86.0 87.7

Structural
Anomalies

Breakfast Box 75.2 81.6 60.3 69.1 85.4 86.2 79.9 80.6 - 70.0
Juice Bottle 97.8 98.2 95.2 97.8 90.8 93.2 95.5 96.6 - 80.5

Pushpins 81.9 91.1 84.8 91.9 81.5 89.9 77.8 93.1 - 93.8
Screw Bag 88.6 88.5 89.2 89.2 85.0 84.8 95.9 87.4 - 65.0

Splicing Connectors 94.9 94.9 95.9 95.9 95.5 95.2 89.4 89.3 - 63.8
Average.str 87.7 90.9 85.1 88.8 87.6 89.9 87.7 89.4 80.6 74.6

Average 81.6 90.1 77.9 88.2 79.8 87.9 83.7 89.8 83.3 81.2

Table 2: Quantitative comparisons of image-level detection results on the CAD-SD dataset. (AUROC%)

CAD-SD Category PatchCore RD4AD DRAEM AST SA-PatchCore ComAD
+ComAD +ComAD +ComAD +ComAD +ComAD

Logical
Anomalies Screw 64.6 100.0 48.7 100.0 46.9 100.0 81.7 100.0 98.8 100.0 100.0

Structural
Anomalies Screw 100.0 99.7 99.7 99.7 97.8 98.1 97.3 97.4 95.9 97.2 81.3

Average 82.3 99.9 74.2 99.9 72.4 99.1 89.5 98.7 97.4 98.6 90.7

Table 3: Quantitative comparison of image-level detection results on multiple benchmarks. (AUROC%)

Datasets PatchCore RD4AD DRAEM AST
+ComAD +ComAD +ComAD +ComAD

MVTec LOCO Logical 75.5 89.4 70.7 87.3 72.0 86.0 79.7 90.2
MVTec LOCO Structural 87.7 90.9 85.1 89.0 87.6 89.9 87.7 89.4

CAD-SD 82.3 99.9 74.2 99.9 72.4 99.3 89.5 98.9
MVTec AD Object 99.2 97.7 98.0 97.4 97.5 96.0 98.5 97.0

Average 86.2 94.5 82.0 93.4 82.4 92.8 88.9 93.9
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screw in the CAD-SD datasets, even if it looks very simple,
existing methods struggle with its logical anomalies. For the
multiple component products, the variance will be even larger,
e.g., if each component has a certain degree of rotational varia-
tion, their combinations will generate countless image patterns.
In such scenarios, our method can reduce the image complexity
by decoupling the product into individual components. Mean-
while, those metrological features such as the area of the com-
ponent are less susceptible to the component’s pose transfor-
mations. Therefore, when ComAD is used alone, it achieves
state-of-the-art performance in logical anomaly detection tasks.
We provide qualitative comparisons between normal and log-
ically abnormal samples’ segmentation maps in Fig. 9, where
we can observe significant differences. On the other hand, since
our model mainly considers those metrological features, it can
not detect other types of logical anomalies. For example, in the
‘splicing connectors’ category, many logical anomalies mani-
fest as structural variations, such as the breakage or misalign-
ment of the wire. In this case, combining our model with exist-
ing baselines for ensemble detection can achieve better perfor-
mance. Besides, the performance is still unsatisfactory in the
‘screw bag’ category, even though its logical anomalies are all
caused by the incorrect number or size of components. We at-
tribute its reasons to 1. the area differences between each com-
ponent are relatively large, either due to occlusion or due to
projection transformation during imaging; 2. for small annu-
lar objects such as washers and nuts, our segmentation results
are ambiguous where sometimes only the ring is considered,
while other times the entire object is included; 3. our segmen-
tation model cannot make a more fine-grained distinction be-
tween the components ‘washer’ and ‘nut’. In this situation, it
may be preferable to use instance-level perception algorithms.

In terms of structural anomalies, our method is unable to
detect fine-grained structural differences, but can to some ex-
tent detect larger structural defects. For example, our method
achieves the best structural anomaly detection results in the
‘pushpins’ category, where many structural defects are mani-
fested as large color differences or incomplete components.

For ensemble detection, our method significantly improves
the performance of existing models on the MVTec LOCO AD
and CAD-SD datasets. To verify its stability, we further con-
duct experiments on the MVTec AD dataset, which mainly con-
sists of fine-grained structural anomalies. As shown in Table.
3, we observe a performance decrease on the MVTec AD Ob-
ject dataset. This is because the object categories in the MVTec
AD dataset are mainly composed of single-component prod-
ucts, which may lead to an over-segmentation with the original
segmentation number K. We will discuss this in our ablation
studies (Sec 5.2, Table. 5). In general, integrating our method
with existing models leads to significant performance improve-
ments. Meanwhile, it offers more model adjustability, as previ-
ously mentioned in Fig. 2.

Normal sampless Abnormal samples

Fig. 9. Qualitative comparisons of segmented components in normal and logi-
cal abnormal samples.

5. Discussion

5.1. The leverage of the pre-trained features

Using ImageNet supervised pre-trained features is a common
approach in industrial anomaly detection. In this paper, how-
ever, we utilize self-supervised DINO pre-trained features to
segment images into multiple components. From the perspec-
tive of feature reuse, we can consider the following questions:
1. Can ImageNet supervised features be clustered for unsuper-
vised segmentation? 2. Can DINO pre-trained features be used
for structural anomaly detection? Besides, for logical anomaly
detection, we leverage the explicit area features to capture the
component’s metrological information. Therefore, we will also
explore whether this information can be implicitly captured by
the deep pre-trained features.

Can ImageNet supervised features be clustered for unsu-
pervised segmentation? We fix other settings and only replace
the pre-trained backbone in ComAD with an ImageNet super-
vised pre-trained WideResNet-50. Specifically, we use the fea-
tures from ‘layer 2’. The segmentation results are shown in Fig.
10. As compared to Fig. 4, we observe poor results with lower
contrast and meaningless components in most cases. Among
them, the results of the ‘splicing connectors’ and ‘pushpins’
categories are marginally acceptable. We also attempt to use
deeper layer features including ‘layer3’ and ‘layer4’, but exper-
imentally, they do not bring any improvement.

Can DINO pre-trained features be used for structural
anomaly detection? We leverage PatchCore and replace its
extracted features with the DINO pre-trained intermediate fea-
tures from its first block. We denote it as PatchcoreDINO and
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Fig. 10. Segmentation results based on supervised pre-trained feature cluster-
ing.

do experiments on the MVTec AD dataset. As shown in Table.
4, we find that the DINO pre-trained features are not discrimi-
native for low-level structural differences. Similarly, selecting
deeper transformer blocks does not lead to any improvement.

Can deep pre-trained features capture the metrological
information? We create a toy dataset that is made of the same
circle element but with different quantities, as shown in Fig.
11. Specifically, the dataset is divided into 12 categories based
on the number of circles (from 2 to 13) in each image. Each
category contains 100 images with the dimension of 256×256×
3. The pixel value of all the circles is [20, 20, 20], and their
radius is 15. For each image, the positions of the circles are
randomized. The circles may be adjacent to each other but will
not overlap excessively.

We attempt two strategies to model the image. 1. We simply
employ global average pooling to obtain a global feature vector
of each image. 2. Assuming that the regions of the circles
are already known, we only sum the feature vectors within the
circle regions (we denote it as ‘Masked sum’). For the deep
pre-trained features, we leverage the WideResNet-50 ‘layer2’
and the intermediate features from the first block of DINO as
above. Finally, we visualize the distribution of each category
using t-SNE [42], as shown in Fig. 12.

From the results, we can observe that the deep pre-trained
features can only identify the metrological difference when the
number of circles is small. As the number of circles increases,
they become ineffective. Comparatively, ‘Masked sum’ per-
forms relatively better than global pooling, and supervised fea-
tures perform relatively better than DINO’s features. However,
they do not bring substantial changes. Meanwhile, we also at-
tempt to select features from different hierarchical levels, but
the issue remains unresolved.

In conclusion, our experiments show that while DINO
pre-trained features can capture high-level semantics for

Table 4: Quantitative comparisons of image-level detection results for Patch-
core with different pre-trained features on the MVTec AD dataset. (AUROC%)

MVTec AD dataset PatchCore PatchcoreDINO

Carpet 98.4 57.7
Grid 98.0 74.0

Leather 100.0 55.3
Tile 99.1 80.2

Wood 99.0 64.3
Bottle 100.0 99.7
Cable 99.8 87.5

Capsule 97.9 84.7
Hazelnut 100.0 62.0
Metal Nut 99.9 85.3

Pill 96.6 46.2
Screw 98.7 58.0

Toothbrush 99.7 89.4
Transistor 100.0 83.8

Zipper 99.5 95.0
Average 99.1 74.9

          

Fig. 11. A toy dataset for validating whether deep pre-trained features can
capture metrological information. There are a total of 12 categories, and within
each category, the number of circles in the images is consistent.
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Fig. 12. Visualization of the image distributions in our toy dataset under different pre-trained features and feature extraction strategies.

component-level perception, it may ignore fine-grained texture
differences and is therefore not well suited for low-level struc-
tural anomaly detection tasks. In contrast, ImageNet supervised
pre-trained features exhibit nearly opposite characteristics. In
addition, both of them are difficult to directly apply to metro-
logical statistical problems. Besides, we find that the features
from different blocks in DINO perform similarly in our tasks,
therefore, for simplicity, we only select the features in the first
block.

5.2. Segmentation granularity

The segmentation granularity has a significant impact on the
use of the model. In ComAD, we first apply corset sampling to
the feature maps and then use KMeans to cluster the reserved
features. We find that both the corset sampling ratio r and the
K of KMeans can affect the segmentation granularity. For the
corset sampling ratio r, under the same K value, a higher r will
lead to more fine-grained segmentation of the background re-
gion, as the background region usually occupies the majority
of the reserved features. Conversely, a lower r can reduce the
weight of the background region, thereby allowing the model to
focus more on segment foreground components. A typical ex-
ample is shown in Fig. 13, where there is a ‘screw bag’ image
with the same K but different r. It can be observed that when
r = 0.01, the model has achieved the detailed segmentation
on the foreground ‘screw’ and the ‘washer and the nut’, while
when r = 1, the model exhibit over-segmentation of the ‘bag’.
In this scenario, we recommend using a lower value of r, which
can make the model focus more on the foreground components
and also reduce memory consumption.

For the value of K in KMeans, increasing K can gen-
erally lead to finer-grained segmentation results in multiple-
component products. However, for products with relatively
fewer components, this may lead to over-segmentation, intro-
ducing meaningless noise. A typical example is shown in Fig.
14, where an increasing number of K benefits more detailed
segmentation of the ‘breakfast box’ image while harming the
segmentation of the ‘capsule’ image. Furthermore, we conduct
experiments to verify the impact of different K values on the

anomaly detection tasks. We combine our model with Patch-
Core, which has shown the best performance for previous en-
semble detection. The results are shown in Table. 5. We ob-
serve that larger K values are more suitable for products with
multiple components. Conversely, for single-component prod-
ucts such as the products in the MVTec AD object categories,
it’s preferable to reduce the K value.

Besides, we find that no matter how much we increase the
value of K, the model always can not distinguish between
‘oranges’ and ‘peaches’ in the ‘breakfast box’ category, de-
spite their obvious visual differences. Similar examples include
‘nuts’ and ‘washers’ in the ‘screw bag’ category, and different
colored ‘wires’ in the ‘splicing connector’ category. These are
the limitations of our model. To further differentiate these com-
ponents, it may be necessary to introduce additional features.

5.3. The influence of CRF

CRF is capable to refine the initial segmentation results. We
show some qualitative segmentation results with and without
CRF in Fig. 15. It can be observed that using CRF can result in
sharper segmentation results. We further conduct experiments
to verify its impact on our anomaly detection tasks. As shown
in Table. 6, incorporating CRF generally improves the overall
performance but decreases the performance in the ‘screw bag’
category. In this case, although using CRF produces clearer re-
sults, the segmentation results without CRF may be more con-
sistent, as in the case of ring-shaped objects. Also, using CRF
will cost more computational time. In our configuration, CRF
itself takes about 35ms per image, while without CRF, the en-
tire segmentation process takes less than 5ms per image. For
some simple cases, such as the logical anomalies in the screw
of the CAD-SD dataset, CRF may be unnecessary and can be
omitted to improve efficiency.

5.4. The analysis of the logical anomaly detection model

Region extraction. As previously shown in Fig. 5, The
leverage of the ‘argmax’ function, OTSU, and our Adaptive
scaled OTSU can lead to different region extraction results.
Here we verify their impacts on anomaly detection. As shown
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Table 5: Quantitative comparison of image-level detection results with different K values on multiple benchmarks. (AUROC%)

Datasets K = 3 K = 4 K = 5 PatchcoreComAD +PatchCore ComAD +PatchCore ComAD +PatchCore
MVTec LOCO Logical 84.1 85.9 87.7 89.1 87.7 89.4 75.5

MVTec LOCO Structural 71.0 89.6 73.1 90.9 74.6 90.9 87.7
CAD-SD Logical 99.5 95.5 100 100 100 100 64.6

CAD-SD Structural 53.6 100 70.8 100 81.3 99.7 100
MVTec AD Object 67.9 99.2 72.7 98.3 70.2 97.7 99.2

Average 75.2 94.0 80.9 95.7 82.8 95.5 85.4

Table 6: Quantitative comparisons of image-level detection results with (w/)
and without (w/o) CRF on the logical anomaly detection benchmarks. The
results are represented as (logical anomaly detection AUROC %, structural
anomaly detection AUROC %)

Category w/ CRF w/o CRF
Breakfast Box (94.5, 70.0) (92.7, 63.3)
Juice Bottle (90.8, 80.5) (89.5, 78.0)

Pushpins (89.0, 93.8) (85.2, 88.5)
Screw Bag (79.9, 65.0) (84.5, 69.5)

Splicing Connectors (84.3, 63.8) (82.8, 59.4)
Average.MVTec LOCO (87.7, 74.6) (86.9, 71.7)

Screw(CAD-SD) (100, 81.3) (100, 85.9)

Table 7: Quantitative comparisons of image-level detection results with differ-
ent region extraction methods (‘ASO’ refers to ‘Adaptive scaled OTSU’ ) on the
logical anomaly detection benchmarks. The results are represented as (logical
anomaly detection AUROC %, structural anomaly detection AUROC %)

Category argmax OTSU ASO
Breakfast Box (94.5, 66.2) (94.5, 70.0) (94.5, 70.0)
Juice Bottle (84.2, 75.0) (90.8, 80.5) (90.8, 80.5)

Pushpins (79.4, 72.5) (87.0, 93.5) (89.0, 93.8)
Screw Bag (84.0, 74.6) (77.5, 64.6) (79.9, 65.0)

Splicing Connectors (84.2, 59.7) (84.3, 63.8) (84.3, 63.8)
Average.MVTec LOCO (85.3, 69.6) (86.8, 74.5) (87.7, 74.6)

Screw(CAD-SD) (100, 64.7) (100, 73.0) (100, 81.3)

Fig. 13. Qualitative comparisons when applying the same K but different corset
sampling ratio r.

𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5 𝐾 = 6

Fig. 14. Qualitative comparisons when applying different K values on the
multi-component product (‘breakfast box’) and single-component product
(‘capsule’ from the MVTec AD dataset).

w
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C
R

F
w

/
C

R
F

Fig. 15. Qualitative comparisons of segmented results with (w/) and without
(w/o) CRF.

in Table. 7, we find that using multi-class competition for re-
gion extraction (‘argmax’) is generally suboptimal compared to
the binary classification of each component map (‘OTSU’ and
‘Adaptive scaled OTSU’). Compared to OTSU, the proposed
Adaptive scaled OTSU improves the performance in categories
with more segmentation noise, such as the ‘pushpins’ and the
‘screw bag’ categories.

Selected region features. We leverage the region area fea-
tures (A), color features within the region (Co), and region con-
nectivity (H) to model the metrological features of the compo-
nents. Here we conduct ablation experiments to analyze their
effects, and the results are shown in Table. 8. We find that incor-
porating color information can significantly improve the over-
all performance of the model, since the original DINO features
may not effectively distinguish components that have similar
semantics but different colors. The region connectivity is pri-
marily applicable to components with distinct separations, such
as the ‘pushpins’ category. In this scenario, it can serve as an
indirect counting approach to detect logical anomalies caused
by the wrong number of components.

5.5. Limitations
Our component segmentation model relies on the DINO pre-

trained features, so it’s limited by the representation ability of
DINO and therefore may require additional post-processing al-
gorithms in specific scenarios. This issue may be addressed
by more powerful zero-shot segmentation models [43] with
a trade-off between model complexity and accuracy. As for
the model’s adjustability, our model is designed to classify the
anomalies based on the components they belong to. Therefore,
it is not able to classify anomalies based on their own texture
features and not applicable to homogeneous texture anomaly
detection tasks. For logical anomaly detection, we primarily
utilize semantic segmentation results. However, these segmen-
tation maps lack instance-level perception, resulting in subopti-
mal performance on complex counting problems and instance-
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Table 8: Quantitative comparisons of image-level detection results with different selected features on the logical anomaly detection benchmarks. The results are
represented as (logical anomaly detection AUROC %, structural anomaly detection AUROC %)

Category A A + Co A + H A + Co + H
Breakfast Box (83.4, 69.3) (95.2, 70.3) (83.0, 69.6) (94.5, 70.0)
Juice Bottle (82.3, 67.0) (90.8, 80.0) (85.3, 67.3) (90.8, 80.5)

Pushpins (80.2, 57.0) (79.0, 95.7) (88.9, 59.8) (89.0, 93.8)
Screw Bag (74.4, 62.0) (79.0, 62.8) (75.0, 62.1) (79.9, 65.0)

Splicing Connectors (79.6, 60.3) (82.4, 61.3) (80.8, 62.3) (84.3, 63.8)
Average.MVTec LOCO (80.0, 63.1) (85.3, 74.0) (82.6, 64.2) (87.7, 74.6)

Screw(CAD-SD) (100, 76.0) (100, 81.8) (100, 76.4) (100, 81.3)

pose anomalies. Meanwhile, our selected area and color fea-
tures may struggle to represent complex situations. In these
cases, the selected features need to be expanded. For logical
anomaly localization, we can trace back to the anomalous com-
ponents, but it is challenging to present pixel-level results. For
example, when a component is missing, we can identify which
component is missing but it is difficult to indicate its intended
location in the image.

6. Conclusion

In this paper, we propose to segment the product into multi-
ple components for solving adjustable industrial visual inspec-
tion and logical anomaly detection. Specifically, we propose
a simple yet effective component segmentation model and an
explainable logical anomaly detection model. The proposed
framework can achieve more adjustable anomaly detection
which helps better meet the customized tuning requirements for
practical applications. Additionally, it achieves state-of-the-art
performance on logical anomaly detection tasks. Besides, our
framework is lightweight and requires minimal training. Over-
all, our approach differs from previous logical anomaly detec-
tion methods that focus on long-range modeling. Therefore, we
hope it can bring a new perspective to the challenging logical
anomaly detection tasks and becomes more effective with the
advancements in more powerful large zero-shot visual percep-
tion models.
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