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Abstract

We consider an optimal control problem for a system governed by a Volterra integral eqitation w
impulsive terms. The impulses act on both the state and the control; the control cossifishaigs at
discrete times. The cost functional includes both, an integrated cost rate (contintjoaischswitching
costs at the discrete impulse times (discrete part). We prove necessaalityptiomditions of a form
analogous to a discrete maximum principle. For the particular case of a system govermaal$iye
ordinary differential equations, we obtain an impulsive maximum principle as a spgsgabdf the
necessary optimality conditions for impulsive Volterra equations.



1. Introduction.

In this paper, we obtain necessary conditions for optimality for Volterra integral
equations with impulsive terms and piecewise constant controls. The cost functibnal tha
is to be minimized includes an integral term for the rate of cost per unit timell @&s we
discrete switching costs at the times of changing the values of the control. Forigimplic
we consider only discrete controls and fixed switching times. The combination of
continuous and discrete controls, and the case of variable switching times, are objects of
ongoing work and will be reported elsewhere.

The novelty of the problem we consider here lies in the inclusion of impulsive terms in
the Volterra integral equation. Without impulsive terms in the state dynamics sthefca
piecewise constant controls has been treated in [S1, S2, S3]. We note here that the
general questions of optimality conditions for optimal control problems governed by
Volterra integral equations have been studied in, among other references, [B, BA, CA,
RS, S1, S2, S3, S4].

It is well known that Volterra integral equations can be used to model many classes of
phenomena, for example population dynamics, continuum mechanics of materials with
memory, economic problems, the spread of epidemics, non-local problems of diffusion
and heat conduction, etc. Some of these applications may be found in the classical
references [D, K], and other examples can be found in more specialized works. The
corresponding control problems for such systems lead to optimal control problems for
Volterra integral equations. An explicit example of applying the methods of optimal
control of Volterra integral equations to economics is the paper [KM].

All kinds of control systems can be subjected to impulsive conditions. Impulsive control
systems may arise from state models that are intrinsically impulsive, ighybieal

model without a control function (the uncontrolled model) still involves impulsive terms,
as it happens, for example, in systems of variable structure when a system involves
transitions through different operating regimes. Impulsive control problems can a&so ari
because the action of the control may involve impulses applied to the state of the system,
as, for example, investment decisions in economics, or the injection of a medical drug
into a patient in mathematical models in pharmacology. Therefore, it is of interest t
study the optimal control of impulsive Volterra integral equations.

The mathematical analysis of problems with discrete controls is useful not onlyhehen t
original formulation of the state dynamics of a controlled system involves discrete
controls, but also when one tries to numerically solve an optimal control problem that
was originally formulated as a problem with continuous controls. The numerical solution
of optimal control problems often involves a discretization of the control function (see,
e.g., [VS] for discrete approximations to ODE control problems), and in that case one has
to solve the corresponding optimal control problem with a discrete-valued control
function.

The problem of impulsive control of a Volterra integral equation with fixed instants of
impulses or switching of the control leads to a novel type of necessary conditions of
optimality, analogous to the discrete version of Pontryagin's maximum principle. The
discrete maximum principle, for systems governed by finite-difference equations (the
discrete analogue of ordinary differential equations) has been treated by several
researchers; rigorous results have been obtained notably in [BI, BO]. The problem we



consider in this paper also lead to a discrete version of a maximum principle, butehe stat
dynamics in our problem is a Volterra equation in continuous time with additional
impulsive terms. To the best of our knowledge, this problem has not been previously
considered in the researcg literature. The results of this paper rely on a thorougls analysi
of the associated variational equations for impulsive Volterra integral equatiese T
results are proved in sections 4 through 6 of this paper. For the particular case of
impulsive ordinary differential equations, we prove, in section 7, a version of a maximum
principle for impulsive ODE as a particular case of the results for impulsierxéol

integral equations.



2. Statement of the problem.

We consider a controlled Volterra equation with impulses at specified times
0<T11<Typ<:--<T\ <T, where [0, T] is the time-horizon of the optimal control

problem. The system dynamics is described by

X(©) = h(S)+J§ fetx®.u)dt+ ¥ GET,x()u),ur))

i:0<t1;<s

(2.1)

where the control function u(.) is piecewise constant,

u(t) =a; for tj_q <t <r;
(2.2)

Of course,u(ty) =a;, u(t{") = a4, fori =12,....N. We settg:=0, Tys1:= T.

The control function u takes values in a compact $etR™ . A control policy is
identified with an ordered (N+1)-tuple of elements of®,,a,,--- ,ayn ,an+1 SO)that

the associated control functiar(l) is given by (2.2) for i=1,2,...,N+1.
The functions f and G satisfy the following conditions:

(C1) f(s,t,x,a) and G(s,t,x,a,b) are continuoustfart <s<T, xin IR", aand b in U.

(C2) fand G are Lipschitz in x, uniformly in s, t, a, b :

[T tx,0) - fSt,X0,a) € Cr [ X1 = X2 |
|G E1,%,0,B) —G S t,x2,0,B) [ Co [ X1 — X2 |
(2.3)

The objective of the optimal control problem is to minimize a functional J defined by



(2.4)



3. Existence and elementary properties of solutions of the state equation.

We use the definitions and notation of the previous section. We set
1= (Tl,Tz,...,TN.,_l) ,

a= (al,...,aN+1) .
For each collection of impulse times and corresponding value of the control, we seek a
solution of (2.1) in the space C(OrY pf functions x(t) that are bounded on [0,T],
continuous on each intervét;_4,T;), i =12,...,N +1, and have limits
X(18), X(Tn+1), X(t7) for 1<i <N (wherex(t¥):= lim x(t)).

t—»Ti

Theorem 3.1.Under conditions (C1, C2) of section 2, for evegnda, equation (2.1)
possesses a unique solution x(.) in the space @J0,T

Proof: Define y; O C([1j—1,Tj] — IR )as follows:

y1 is the unique solution (guaranteed by conditiohs@2) of the Volterra equation

Y1) = h(s)+ﬁ f(t,s x(t),a)dt, sU[0,14]

(3.1)
and, inductively, for i=1, 2, ..., Ny is solution of
i .
Yi+16) = h@©) + 2. [_[[Tj'l fEtyj(t),a)dt+G 614, y(T)).85.a+)] +
=1
+[0 fEtyim.apdt, for sO[T;, T
(3.2)
Then the function x(s) defined by
X(S) =y; ) for sU(tj—,15); 1=22,...,N+1,
X(17) = yi (6)ix (1) = yi (4) + G (T, T3, Vi (1), & ,84)
(3.3)

solves the impulsive Volterra equation (2.1). ///



For the purpose of devising iterative methods @dviag impulsive Volterra equations, it
is useful to obtain the solution of an impulsiveltéaa equation via an iterative method.
First, we notice that, under the stated assumptiwashave

X(T) =h(E)+ KLU S 600 5@ u0), ue))

=1

We consider the space V:=C(0rl¢IR" with a vector-valued norm, defined for each
(x,n) in V (with xJ C(0,Tx), n=(N1.N2....nn) E IRY) by

||(a,n)||p=[”z”“};||z||u:= sup 67 |z(t>D;||n||p=];nig§(e‘““ i)

Tupl" 0<t<T

Even though, for simplicity, we use the same synfto&ll 3 norms, the norrjl|}, on
C(0,T), the norm||(||, on IR", and the IR-valued norm|(|{, on C(0,TT)XIR", it

should be clear from the context which norm is ugseghch case.
The problem of solving the impulsive Volterra egoiat(2.1) amounts to finding a fixed
point of an operator S defined on V by

SEN) ::[Sc(é,n)}

Sy(&:n)
S:VHCO, T;1); SdZVHlRN;

SEMO=he+ [ FELEO.UD)+ Y GETN;u(T),uE):;

jjO<tj<s

SE€n) =h(m) + [ (6, L8O, uM)dt+ ¥ G, Tj,n;,u(Tw)), u(T)))

j<j<i-1

We follow the standard convention that a sum owegrapty set of indices is, by
definition, equal to zero; for example, the sunt dggpears in the definition & above

is zero when i=1.
We shall call and G the continuous and the discrete components of S.

We have:

Lemma 3.1Solving (3.1) is equivalent to finding a fixed pbof the operator S.



Proof: If x is a solution of (3.1), then we can tai&a(s) = x(s) for st and
n? =x(tj) fori=12,...,N; then(E*,n*) is a fixed point of S.
Conversely, if(E*,r]*) is a fixed point of S in V, then, fot5[0, 1) , we have

£ ©=hO+[ f6LE B.uM)dt

and attywe have
ny=h(wy) + [t (11,48 (1), u(D)dt

thereforerﬁ = E* (t1) . Inductively, if

£O=hE+[ fELE O.u)dt+ ¥ GETLE (T)).u(T),u(t))

j;O<tj<s

for all s<ty, slI1, and rﬁ = E* ('l'j_) for j=1,2,...,k-1, then we have, s,

Mk =h(m) + [ (T, 68 (), u()de+
+§G(Tk,T,-,n’},u(r,-‘),u(T,-*)) =

=h(t) + [ (1o L8 (), ut)de+
+Tg_llG(rk,r,-,a*(r,-‘),u(r,—‘),u(r,-*)) =& (1)

and, forsO(tTy, T41)

* * k * - +
¢ @©= h(S)+ﬁ fetE (), u®)dt+> GET)N;,u(Ty)uTy)) =
=1

* k * +
=h@+ [ fetE ()um)dt+Y GETLE (1)),u(T)).u(T)))
=1



SO thatE* solves the impulsive Volterra equation nty 1) . The induction is complete,

thus showing thaE* solves the impulsive Volterra equation on [0, il af; = E* (Tj_)
forall =1, 2, ..., N. ///

Lemma 3.2If p>0 is sufficiently large, then, for any two elermafﬁl, nl), (Ez,nz) of
V, we have

1Sc (B ) - Se (B2 n?) s g [1EH &% ||, +aga [Nt -n? iy
ISa €LY -Sa(E2n?) s ap [1EH-E2 I}y +ags It —n?
(3.4)

where all constants; @re nonnegative and the eigenvalagsA, of the matrix

a, @
A::{ 11 12} satisfy| A [<1 for i=1, 2.
a1 a2

Note: The nonnegativity of all elements of A is equivdle A being an order-preserving
operator on IRwith respect to the coordinate-wise partial oiddR? .

Proof: We recall (cf., e.g., [DM]) that the necessary anfficient condition for a real
2% 2 matrix A to have eigenvalues with moduli lesathas|tr(A)|-1<det(A) <1,

where tr(A) and det(A) are the trace and the datent of A.

Let h:= min (1; —Tj—1), and, for each s, le&¥lg:=max{i=20:1; < sfThen we have
I<i<N+1

e 1S (€L nD)E) ~ & (E2.n2))(9)

N
<Cre [ 181D ~E2()1dt+ Coe ™Y Iy —npy k<
i=1

NS
<Cre [ e 1I& ~E, I|y dt+Cae ™Y & Imj g s
i=1

Now,

l-e

—uT
0 1€1 &2 Ly

1-e ™S
- <
0 €1 -&2 Ly

N AN

and
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syt g SRS
ey i Im-nalL=| > e Vlina—n2 s

i=1 i=1
[ Ng-1l o 1— e (Ns=Dph
|1+ e “J“]nnl—nzm:[he W |2 s
j:l 1-e

1o (N
<|1l+e uhl—e—"”h [N —n2 L

thus

1-eHT
0 €1 —E2 1} +

11 (E1.11) = Se(€2,n2) 1< Cs
_up 1-e " (N~Duh
+[1+e e lIng-n2 iy

1-g HN

Also, by the same type of calculation,

—1IT: 1_.e_Uﬁ
e M 1(Sc(€1.m1))i — Sc(€2.n2))i £ Cy €1 —E2 [l +
i-1
+Ce Y e M Ing-n, i,
j=1
and
1 . - —u(N-Dh
: e (T TJ) < Z e—|.ljh < Z e—wh _e—uh 1-e W( )
—_eaHh
J:l J:l J:l 1-e
thus
1_e_l"lTN
11Sc (€1.n1) =Sc(§2.n2) = C T”El_EZHH +
_un 1-e H(NDh
+Cge “h—_uhllﬂl‘flzllp

Thus, we can take, in the inequalities (3.4),
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—e HT —in 1—e (N=Duh
a11 =a11(W) = Cy gy =agp() =|1+e T
1-e™H
1-e MIN —ph 1-e M(N=Dh

ap1 = ax (M) =Cy T az (W) =Cge

(3.5)

It follows from (3.5) above tha, (1), a01(1),a05(1)) - (0,0,0) asp - «, and
ay5(1) remains bounded gs — o ; consequently, (tr(A), det(A)y (0, 0) asp — o,
and therefore, fou sufficiently large, the inequalitidgr(A) | -1<det(A) <1 will be
satisfied. ///

We consider the following iterative scheme for slodution of (2.1):

(& (0),r](0)) is an arbitrary element of V;
for k=0, 1, 2, ...(§(k+1).N(k+1)) Is defined by

E(k+1) ©) = h(5)+ﬁ fELEx M. u)dt+ > GETi Ny, Ui ). u));
i:0<T;<s
_ i-1
Nk+1,i =h(T;)+ g' F(T, 68 g (O, u)dt+ X G(Ti, 1), ey, U(T) ), u(T))
j=1

(3.6)

Then we have:

Theorem 3.2Under the conditions (C1, C2), the iterative mdtdefined by (3.6) above
converges tax (D} (x(t1 ), X(12),...X(Tn)) , ask — «; the convergence df ) to x()) is
uniform on each intervdltj_4,7;], i =12,...,N +1, in the sense that, if we define the

restrictions&i(k),xi of &y, X(D to the intervaltj_4,7; ]by

E.I(k) (t)= E(k) (1), Xi (t) = x(t), for tD(Ti—l’Ti);

Ei(k) (Ti-2) =& 1o (1) X' (Tim) =X(1y); Ei(k) (1) = &0 (1) X' (1) =x(1})

then Ei(k) - x"ask - o uniformly on[tj_4,7;] for alli=1, 2, ..., N+1.
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Proof: By lemma 3.2, ift is sufficiently large, the operator S is a contitatwith respect
to the vector-valued norifl ||, on V. The contraction property with respect totketor-

valued nornfi(|}, means that, for all z, win V, we ha{|€z-Sw]|;< Al|z-w |,

where the 2-by-2 real matrix A has nonnegative el@and the eigenvalues of A have
moduli less than 1. Consequently, the iterates @it arbitrary initial data, converge to
the unique fixed point of S in the topology induaedV by the vector-valued norm

{1} ; this is a well-known extension of the standaradzn fixed-point theorem to the

case of a vector-valued metric, and the proof prdses in the standard case.
Convergence with respect to the nojififj, on C(0,Tt) is equivalent to uniform

convergence on eagi_q,Tj] . The fixed point of S gives the solution of (3al)
lemma 3.1. ///

Remark 3.1.1t follows from (3.6) thatk+1),i = &(k+1)(Ti ) for all k=0, so that, for
k=1, (3.6) can also be written in the form

E(k+1) ©) = h(S)“LJ‘DS FELER @ uM)dt+ Y GE T & (Ti).ulti ) u(T))

i:0<tj<s

Of course, ifn(g) is chosen ag)(g) i =& o) (ti ), then (3.) holds for all k=0, 1, 2, ... ./l
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4. Linear Volterra equations with impulses.

The theory of ordinary Volterra equations (withoupulses) contains particular results
for the case of linear integral equations, inclgdime method of iterated kernels and the
duality properties of the resolvent. Inasmuch asvidriational equations associated with
an impulsive optimal control problem are linear &tpns, we have to establish the
corresponding results for linear impulsive Volteeguations.

A linear Volterra equation with impulses has therfo

x©)=h@+ [ Kex®di+ ¥ LETHXT)

i:0<ti<s

4.1)
where

X(ti ) =h(t;) + E‘ K(T; ,t)x(t)dt + Z L(Ti,Tj)X(Tj_)
jr<i

(4.2)

We can represent the solution of (4.1) by usinfiysttconvolutions of the impulsive
parts of the operator M, i.e. the terms contairtiregfunctionsL(s,1;) ; this leads to a

discrete resolvent. For every pair of indices)(with i>j, we define the sdR(j, i) of
increasing paths from j to i as the set of all cedecollections s of the form

0= (), Tiy 1 Ty 1Tk o Ti) 1 1 <Ky <Ko <..<Kg <i

and we define the discrete resolvent kernel L by
NA(0) = L(T; ,qu)L(Tka 7Tka_l)-'-L(Tk1 ,Tj)

We extend the definition of b to the case j=i by setting L(s)=1af{ 1; }.
Then we can show:

Theorem 4.1.Equation (4.2) is equivalent to
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X(17) = ZI: 2. N)h(t)) + Ei K(tj,tx(tdt] , i=1, 2, ..., N
j=1 oTP(j,i)
(4.3)

i.e., if x(.) is the solution of (4.1) then the qtiies x(t; ) can be calculated either from
(4.2) or from (4.3).

Proof: For i=1, we have, from (4.1),
X(11) =h(t7) + [ K(tg, Hx(t)at

which agrees with (4.3) for i=1. Inductively, if

i
X=X AOIhT)+ [* KT Hx(tdi]

k=1 o0OP(k, j)
0j=12,.... -1

then we substitute the above into (4.2) and we get
. j
X(Ti ) = h(t;) + E' K, Ox@dt+ > > > LT, 1)A(0)0
j:j<i k=1 oOP(K, j)

Ih(t) + [ K(t, x(t)dd

Now, everyo' in P(k,i) with k<i is obtained as concatenation of same
P(k,j) for some j<i (including the possibility j=lgnd the additionat; after the lastr;

of 0. Therefore, for such @, we have

N(0") =L(1j,Tj)\(0)

For k=i, the only element d®(k, i) is {t1i}.
By making a change in the order of summation, wesha



15

j i
2 2 2 LEnapAe) =32 > AO)

jrj<i k=1 oP(k, ) k=1 o'OP(k,i)

and consequently

X(17) =h(t) + [ Kt Hx(t)dt+

+Y Y AO)IhT)+ [ KT xd]

k=1 o'OP(k,i)

The induction is complete. ///

Remark 4.1.An expression like

Y 2 Mo,

j=1 olP(j,i)
for any variable<;: j=12,...,N, can also be written as

00

&+ 2 > > [&k, L(Thy » Th, )L (Thy s Tieg )

m=1 (ky,Kz,...Km) (Tkp:Thy o3 Tkpy)

Lt 0Tk )L (T 0 Ti)]
(4.4)

sinceL(ty,Tj) =0if k=i. The third summation in (4.4) above is taken over all

(Tkl,TkZ,"',Tkm)in{Tl,Tz,...,TN}m I

As a consequence of theorem 4.2, equation (4.1) takes the form
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©=hO+ LKEOXOdr ¥ Y ¥ LET)A@Ih)+

i:0<ti<s j=1 olP(j,i)

+ gi K (1, )x()dt]
(4.5)

The calculations can be somewhat simplified if we make the following conventions: we
extend K(s,t) so that it is defined for gf t) ([0, T]x[0, T] with K(st) =0fort=>s,

and similarly we extend.(s 1) for all i=1,2,...,N with the convention that

L&T) =0if 1j=s

By using these extensions of K and L, we can replace the intgd;rm(Tj,t)x(t)dt on

the right-hand side of (4.2) above lﬁ/ K(tj,t)x(t)dt without violating the validity of
(4.2). Then (4.5) is a linear Volterra integral equation of the form

x@©) =h() + E K (s t)x(t)dt

(4.6)
with discontinuous kernel K given by
i
Ksh=KE)+ Y Y Y LET)AOKTY)
i:0<ti<s j=1 olP(j,i) (4.7)
and discontinuous forcing term
i
he:=hEe+ > 2 X LETH)AO)N(T)
i:O<Ti <s J:l O'DP(J,I) (48)

We extend the definition d®(j, i) to all pairs (j, i) by settind®(j, i) :=0 when i<].

|
We note that, in expressions like}, > > LET)AO)K(Tj,1)
ii0<ti<s j=1 olP(j,i)
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|
or > > 2. LETi)A)N(T)) , the expression inside the summation becomes
ii0<ti<s j=1 oP(j,i)
zero when i<jor &t; . Then we have

N N
2 2 2 LemAEKED=> > 3 LETHAOK(TL;

i:0<t;<s j:1 oP(j,i) i=1 j=1 oP(j,i)
N N
)3 Z Y. LETA@NT)=% > X LETAO)N(T)
i0<t;<s j=1 olP(j,i) i=1 j=1 oOP(j,i)

N N
Further, we make the convention to wrile ~ for > >’
i,j,0 i=1 j=1 ol P(j,i)

We shall prove:
Theorem 4.2The problem (4.1, 4.2) is equivalent to the problem (4.6, 4.7, 4.8).

Proof: By theorem 4.1, if x(.) solves (4.2, 4.3), then it also solves (4.6, 4.7, 4.8); it
remains to show that, if x(.) solves (4.6, 4.7, 4.8), and if edch) is defined by

_ _ S _
X(t7) = () + [ KT Dx(dt
(4.9)

then x(.) must also solve

x©=h@+ [ KEeOxmdi+ > LETX()
i:0<tj<s

(4.10)

We assume that x(.) solves (4.6, 4.7, 4.8). We have
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X(t) =h(t) + [ K(ti,t)x(t)dt =

:h(‘[k)+ Z L(Tk,Ti)/\(O')h(Tj)+

ij,0

+ [ KT+ Y L (T, T)A(O)K (1, )]x(t)dlt

i,J,0
(4.11)
and consequently
LeT)x (1) = LeTo)h(t) + 2. LET)L(Tk, Ti)A()(T)) +
1,),0
+E [LET)K(TK, 1)+ > LET)L(T, T)AO)K(T),t)]x(t)dt
ij,0
(4.12)
Since x(.) solves (4.6), we have
X@=hE+ > LET)A(O)(T))+
i,j,0
+PIKED+ Y LETAOK (T, DIx()dt
ij,0
(4.13)

From (4.12), and also taking into account the propertie’s(of that were established in
the proof of theorem 4.1, we have
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> Let)x(t) =
k

=2 [Letoh(t) + 2 LET) Ltk t)A@)N(T)) +
K

i,j,0

+ [ ALETOK () + Y LTI L(T, TAO)K (1), D} x(t)d] =

i,j,0

= 2 LET)A(@)h(T) +

i'j,0"
+PIKEY+ X LET)AG)K(T, DXt

i'j,o

(4.14)

It follows from (4.13) and (4.14) that x(.) solves (4.1). The fact #ifaf ) , as evaluated

in (4.11), coincides with the&(t, ) that would be evaluated according to (4.2) follows by
a similar argument. ///

The solution of (4.6, 4.7, 4.8) can be expressed by means of a reR(set)tdefined

via iterated kernels computed from the discontinuous k#&(&lt). We define the
convolution of two kernel¥(.,.) and K5 (.,.) by

(K1 Ko)(s 9 = [Ka(s K Aty )ity
(4.15)

The class of kernels for which the convolution (4.15) is defined consists of functions
K(s, t) that are bounded on 0<t<s<T, are continuous in the second variable, and have at
most jump discontinuities at the poirds 1, i=12,...,N. It is readily verified that this
convolution is associative, and therefore it is meaningful to define the convolutional

powersK*n , Where the exponent signifies n-fold convolutiooivith itself. We have:

Theorem 4.3Define the resolvent kern®(s, t) by
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R(s9:=) K(s 9

n=1
(4.16)
whereK is the kernel defined in (4.7).
Then the solution x(.) of (4.6, 4.7, 4.8) is given by
S
x(9 =h(3+ [ 'R(s Jh() dt
(4.17)
Furthermore, the resolvent keriRIsatisfies
R*K=K*R=R-K
(4.18)

The proofis analogous to he proof for the case of continuous kernels. ///

We turn to the issue of duality. For ordinary (non-impulsive) linear Volterra equations,
duality says that if the equation
X() = h(s) + E K (s, t)x(t)dt

has resolvent kernel R(s,t), so that, for every function h(.), the solution is

X@©) = h@) + Jg R (s t)h(t)dt

then the solution of the dual equation
T

y(t) =h(t) + L y©)K (s t)ds

is given, for every h(.), by

Y =h+ | hOREHds
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For applications to optimal control and variational problems, we need to establish the
corresponding results for impulsive Volterra equations.

We have

Theorem 4.3.If the resolvent kernel of equation (4.6 Rés,t), so that, for every h(.) in
C([O, T]~ IR), the solution of

X(©) = h©)+ [ K tx(t)dt

(4.19)
is given by
X@©) = h@) + E R (s h(t)dt
(4.20)
then, for everyy in C(0,Tg), the function
y®:=nt)+ [ nEORE s
(4.21)
satisfies the integral equation
yO=n®+ [ yOK Gtds+
N
+ Y > Y KEHA@f yeLeT)ds
jit<t<Ti=j o0P(j,i)
(4.22)

Proof: The function y given by (4.20) satisfies
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y(0) =)+ [ y(IK(s 9 ds
(4.23)

This follows from the properties & stated in theorem 4.2, by a calculation analogous to

the case of continuous kernels. In view of the representation (4.7) of the Kearad by
interchanging the summation over i and j, i.e., for s>t,

N
D LETHNOXaE)= D > Y K@t Ne) 1)
ij,0 jt<t<T i=j olP(ji)
(4.24)

it follows that (4.23) is tantamount to (4.22). ///
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5. Variational equations.

We denote by;dhe admissible variations in the contralsinder a change of the control
u(t) from the values;&o a+eq;, the state x(t) changes tgty, and the cost functional J
changes to.J We are interested in calculating the variations

()= lim S(x,(t)-x(), 8= lm L, -J)
e-0" € e-0" €

(5.1)

The equations for the variatiods anddJ are found by standard methods of the calculus
of variations:

OX(§) = E {fx Gtx(1),u(®)ox(t) +fy E1.x(H),u(t)du(t)}dt+
+ 2 A{GK 6T X (T, u(T), u(T))dx(ti ) +

i:0<T;<s

+Ga 6T, X(1i ), u(Ti),u(ti e +Gp 6T, (1), u(T), u(ti))aj+1}

(5.2)
where
du(t) =a; for Tj_1 <t<T;;
GalsT,xab)=2C6LXD) g (oo o p) - OCET.XAD)
oa ob
(5.3)

For fixed x(.) and u(.), Eg. (5.2) is a linear ingue Volterra equation, and it is
convenient to write it in the form

3x©=nO+ [ fx GLXO.UOXOAH Y Gy 6T, (1))

i:0<T1j<s

(5.4)

where



N = [ fu LX), u()du(t)dt+

+ 2 {Ga T X)), uT), U)o + Gp 6T, (1)), u(T ), uT))ai+g}

i:0<t;<s

We note that

NS
Efu Gt x(t), ut)du(tydt= Y f_il fy Gt X(t),a)a;dt+
i=1 "

+ fN fu Gt x(t),an +1)0 N +10t

S

The variation of J is

0J= LT {9x (t,x(0), u(t))ox (1) + gy (1, x(t), u(t))du(t)}dt +

+'\£1{6¢(X(T1_),X(T§) ,,,,, X(TN+1),81 8-, aN+1)6X(Ti_)+
=1

aXi

+ OO(X(TD) X(12),.- X(TRi41), 81 B2, - A1)
03,

ai}

and we have

b 9utx(®,um)du(t)dt = by k', gutx().a)ajdt
i=1 "

The variational equation (5.4) is of the type (4vith

K1) =y SLXO,UM), LET) =Gy 6T1,X(T),a ai+1)

24

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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and the solution dx(t) can be represented in t&fntise resolvent R defined in section 4
of this paper,

5x(e)=n()+ [ RGHn(t)dt

(5.10)
Acording to the results of section 4, (5.10) implie
i
- - T|
X(T)=Y, D TO)In(t))+ L’ K(tj,t)3(t)dt]
j=1 o[P(j,i)
(5.11)

or equivalently, in view of (5.5) and (5.9),

i)=Y 3 r(o)[j” FECTH 6 X(), WD) BX(Y +Fu(Tj, (1), u(D) Bu(h} dt +
j=1 oOP(j,i) 0
-1
+D {Ga(5Ti XTW), & &)k + G T Ki), & Re1)d K1}l
k=1
(5.12)

The resolvent kerndR is obtained from the continuous and impulsive k&sigiven by
(5.9). The discrete resolvent kernE(o) corresponding to any increasing path

0= (T}, Ty Ty ooor Tk, » Ti) 1S given by

F(0) = Gy (Ti, Tk, X(Tk, )8k, Bk +1)Cx (Tky + Ty X (Tk gy )18k g Bk gq +1) ®

o0 Gy (Tye, » Tju X(T), 8 8 41)
(5.13)



26
By substituting (5.12) into (5.7), we obtain

8= [ [ox (tx(®),u(®) +

N+1L i
202 2 Oy (X(11)s X(TN+1) @ @N+DT (0 (T), 1 X (1), ()] dx (t)dt +
i=1 j=1 oP(j,i)
N+1
+ [ gutxO.u®)But)dt+ > dp (X(T1),wr-X(TN41). B Bn42)0l +
i=1
N+1L i .
FY Y Y by XOD e X (TN BN DT O [ (T, 6X (1), u()Bu(t)dlt +
i=1 j=1 oP(j,i)
-1

+ Z {Ga (S’Tk’X(TE),ak ’ak+l)ak + Gb (S,Tk,X(TE),ak ’ak+1)ak+]}]
k=1

(5.14)

For later reference, we also write down the explarim of (5.10), namely

59 = [ fu(s LX), WU Y s

+ ) {GAsTi (TP, @, &0 + G( &, &), 18209 +1} +
i:0<Ti<s

+f:0 J;O R(s, ) f,(r,t,x(t),u(t))du(t)dtdr+

[ 2 RS DG ET (T, & @20 + G111, X(17).a  &ea )l 41} dr

T ji0<Ty<r

(5.15)

where the double integral in (5.15) can also béterias

S S
Lo J‘r:t R(s nfy (r,t,x(t),u(t))du(t)drdt.



6. Maximum principle.

We define

&(1) = gy (t,x(t), u(t)) +

N+1 i
P Y Y XU @y, XD X(TR42), e AN)
i=1 j=1 oP(j,i)
(6.1)
;
() =-£0 - [ EGR(s Y ds
(6.2)

Then we have, by the duality results of section 4,

W(t) = —gx (t.x(1), u(t)) -

N+1 i
-2 2 2 B tx@),u)Nr @y, (x(t),-X(Tn),as,-an+1) +
i=1 j=1 oCP(j,i)

+ [ Wt G X, u(D)dt+
N+1

£ Y YT HEEOUON©) [ WEGK 6 T.X(E).u), ur))ds

jt<t;<T =] olP(j,i)

(6.3)

The expression fadJ can be written as

27
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31= [ EMS(t)dt+ [ gy (tx(0),u()du(t)dt +
N+1

N+1L i

202 2 bx (1) X(TN4) A AN (ON(T))

i=1 j=1 oCP(j,i)
(6.4)

We usedx(t) = n(t) + E R(t,t1)n(ty)dt4 in (6.4) and we find

3= [ gmnmdt+ [ [1 E(t)R(ty, Hdun(t)dt +

* LT gy (t,x(t), u(t))du(t)dt +
N+1
+ Z ¢ai (X(TI) ----- X(T[_\]),al ..... aN+1)a| +

i=1
N+1 i
DI DY ¢xi(X(T1_) ..... X(Tn),ag,-an+)l (o)n(t)) =
i=1 j=1 oOP(j,i)
= wOn®dt+ [ gy (L@, um)du(dt +
N+1

N+L |
22 2 by (X(tp),X(TN) g an+) T (O)N(T))
i=1 =1 ol P(j,i)

(6.5)
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In view of the results of section 4, we have

b wonwdt= [ [ wefu Gx(.um)dsu(bdt
£ O (Galtt X)) U ey +
s

- _Nill[ o[ wef, Gtx.ub)dsits

+ [ O Gt T, x(1). Ul ) u(r ) +

+01Gp (8T, X (1)), U(T), u(Ti"))}dt]
(6.6)

Further, we have (cf. (5.8))

N+l
b gultx®.umBuddt=Y o [ gutx®.a)dt;
i=1 '

N+1 i

S Y by (XA X(TNa2), BT (OIN(T]) =
i=1 j=1 ol P(j,i)
N+L | ) i
= z Z Z ¢xk(X(T1) ..... X(TN+1), 8, an+) (0) O
i=1 j=1 ofP(j,i)

j T
T o X fulr, tx(@,u()de+
k=1

-1
+ 3 {0 Ga(T), T, X(T), U(Ti), u(TR)) +
k=1
+ 011G (T, T, X (T ), U(TR ), U(TiO)
(6.7)
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Thus, we have:

N+1
o= —Z AiCXi
i=1

(6.8)
where the termg); are expressed in terms of xyy,G, ¢, as follows:
A= [ WOy Gtx(),u®)dsdt+
i-1
+ [ WG T, X (), u(r), u(r)dt +
+ 1 WG (4T, X(170), U(ti), u(ta))dt -
= 0g (X(T1) 1o X(TN 1), L eensBN 1) — jfii_l gu (t (), a5)dt -
N+1 k
=22 2 Oy (X(11)y X(TN 1), 818N ) (0) O
k=i j=i oOP(jk)
Q7 (e b x(,u(®)dt+ G (), T, (), U(G), U(Ta))] =
N+1 k
-> > D Oy (X(11), X(TN+1) BN +)T (0) O
k=i—1j=i-1 oOP(jk)
[Ga(Tj, X(T), u(ti), u(ti"))
(6.9)

The necessary condition for a minimum of J, namely

0J= 0 for every admissibléu

is tantamount to



31

N+l
Y hjaj <0for every admissible=(ay,....0n+1)
i=1

(6.10)

We note that the expression

H(t, x,u,0(D) = —g(t, x(t),u(t)) -

N+L i
-2 2 2 FEtx@,u)r(0)dy, (X(t1 ), X(Tn+1)s 8y, @n+1) +
i=1 j=1 olP(j,i)
+ [ 0O LX) uw)ds+

N+1
£ Y Y Y tx®um)r© [ WEGK 6T X ), u(T),ut)ds

jt<t<T i=j olP(j,i)

(6.11)
is the impulsive Hamiltonian, in the sense that the co-gtattisfies
0
W(t) = Vil (t,x,u,p(D)
X
(6.12)

where, in the partial differentiation opera’eg())iC , the symbol "x" refers to the slots, in the
X

expression of H, that are occupied by x(t), buttodhe termsx(t; ) .

On the basis of the results above, we have

Theorem 6.1(The maximum principle for impulsive Volterra egoas with discrete
controls.) Under the conditions of continuous d#f&iability of the functions f, G, g
with respect to X, Lg, assuming the existence of an optimal controlgyohive denote by

a an optimal choice faa, by u*([ﬂ the associated control law as a function of t, layd

x*(m the associated solution of the Volterra integcplagion (2.). We denote by*([ﬂ
the solution of
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9

HtLX ,u 0 Q)
1)

W)=

where H is defined by (6.11). Then the first-ordecessary condition for optimality is

N+
D" Aja; 20 for all admissiblea;
i=1

WhereA’} is calculated from (6.) with”, u’ (0, x*([ﬂ, and qJ*([)] in lieu ofa, u, x, and
U, respectively. /I/
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7. Application to impulsive differential equations.

In this section, we examine how the results ofisadi can be specialized, from the
general case of impulsive Volterra equations tgpdaicular case of impulsive ordinary
differential equations. Impulsive control problefas systems governed by ordinary
differential equations have been studied in [M] #melfurther references therein. The
maximum principle for impulsive ODE control problens contained in [M], but in a
form different from the results we state in thists®n. The problem we consider here has
the impulses, in both the state dynamics and teefaactional, dependent on the current
and the switched value of the control (i.e. thecfioms G andb depend on both

g anda;,q); this type of controls amounts to having the aihle values of the control
w; = (g ,a+1) dependent on the previous vale 1, a type of constraint that does not
fall within the scope of [M] and other referencesimpulsive control of ODE. Our
contribution in this section is to demonstrate thatmaximum principle (conditions
(7.13) below) for impulsive ODE with impulsive coois can be obtained as a particular
case of the maximum principle for controlled impdsVolterra equations proved in the
previous section.

Now, we consider the controlled impulsive ODE

(v =f(t,x(t),u(t)), for t #1;; xX(0) =Xq;

X(T1) =x(17) + G(1;, X(T} ), & ,8j41), i =12,....N

(7.1)
which can also be written in integral form
XO=xo+ [ fex©uElst Y Gt Xt )2 fa)
i:0<T; <t
(7.2)

We shall use the notation and terminology of sesti®-6 above, with the indicated
specializations. The cost functional J is taketheform

N
3= [ g0, U dtr Y. O(XT), 2 pa)* 8% T)
i=1
| (7.3)
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The functional J is plainly a particular case @& thnctional (2.4), with

N
OX(TD)se- X AN+ AL B4 1)E D © XET )@ s 8 (4R 1))
i=1
(7.4)

The co-state p(t) for the problem (7.2-7.3) is wledi in terms of the co-stajgt)
introduced in section 7:

N
pO=[ wEeds+ Y Y Y Moo
Jt<t<T i=j olP(j,i)
-, (X(T) )3 Bi30) + G (1 X(1)). &) [} WO -
- Y T(0)gox(X(TN+1)

Jjt<t;<T olP(j,N+1)
(7.5)

We define the continuous and the discrete HamdiasiH. and Hy, respectively, for
this problem, by

H¢ (t,x,p.a) = g(t,x,2)—pf (t,x,a);

Hq (t,X,p,ab) = ® (t,x,ab) - pG (t,x,3b)
(7.6)

We shall show that the co-state p(t), defined by)(&atisfies



dp(t) _ OHc(tx(®), p(t), u(t) -\ o =012, N+I
dt OX ’ b T

- +
o(TE) - p(Ti) = aHd(Tk’X(Tk)ép(Tk)’ak A1) for k=12, N;
X

P(TN+1) =90,x (X(TN+1)

(7.7)

First, we establish the jump condition on p, e $econd equation in (7.7).
It follows from the definition of p that

N
P ) -p) ==Y > (00

i=k oTP(k,i)
M-y, (T, X(Ti ), 8 ,@441) + Gy (T3, X(T7 ), & ,8j41) I[T Y (E)ds +
+ 2 T(0)90x (X(Tn+1))
O P (IN+])
(7.8)

and

P = [f wEds+

N N

£ Y OOy (1 X8 A1) + G (T X(T).3 A41) | WO -
j=k+1 i=j oOP(j,i) :

N+1

-2 Y. T(0)gox(X(tn+1))

j=k+1 oOP(j,N+1)
(7.9)

Thus, in order to verify that

P(Ti) ~ P(Tic) = Py, (T, X(Tic)s Bk Bk+1) ~ P(T )G (The, X(Tk ), B 1B +1)
(7.10)

35
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it suffices to prove that

N
> 2 @O

i=k oOP(k,i)

Iy, (6 X(7), 8 8i40) =G (51, X(T )84 @) || WO +

+ D T(0)gox(X(Tn+1))} =
o0P (k,N+1)

=@y, (X(Tk), 8k ak+1) ~ Gx (Tk, X(Tk ) Ak 13k+1) U

qf weds+

N N
+ Y Y Y OO X ). a40) * Gy (1, X(7),a 140) [ WEAS -
j=k+1 i=j oOP(j,i) :

N+1

-2 Y. T(0)gox(X(Tn+D))}

j=k+1 oOP(j,N+1)
(7.11)

Now, everyo UP(k,i) is one of the following: if i=k, thero={ 1, }; if i>k, then g is
either {ty,T; } or the concatenation ofg,1;}, for some j, k <j<i, with some
o'JP(j,i). Correspondingly, we have:

if o={ 1}, thenT (0)=1, by definition;

if G:{ Tk7Ti }’ then r(o) = GX (Tk,X(TE),ak ’ak+1) ;
if o is the concatenation oft{,tj}, for some j, k <j<i , with somed'lJP(j,i), then

[(0) = Gy (Ty, X(Ti), & @k +)T (0') -

Therefore,



37

N
> 2 oo

i=k oTP(k,i)
10, (51X, 812) =G (11 X5, i) | 0+
N+1 )
+ ) > M(0)do,x (X(TN+1)) =
i=k GTP(j,N+1)
=@y, (X(Tk), ak Ak +1) ~ Gx (Ti, X(Tk ), Ak 1Ak +1) D_[gl—( Y ()ds+
N i
DI Y. T(0)Gx (T, X(Tk), 8 »ak+1) O
i=k+1 j'=k+1 c'OP(j',i)
10y, (11, X(T7),81 3 42) =G (11 X(T )21 30) | WO -
N+1
-2 Y Gyt x(ty),ay ay+1) O
j'=k+1 o'TOP(j',N+1)

[T (0")go,x (X(Tn+1))}

(7.12)

and then (7.11) follows by a change in the ordessusnmation, namely
N i N N

2 X =2 2

i=k+1 j'=k+1 j=k+li=j'

The first equation in (7.7) follows from (6.12) athe observation that, under the stated
definitions, fort T, we have

P ——4(1) and Ho(tx(0,p(O.U(0) = =H (XU ()

whereH (t,x,u, (D) is defined in (6.11).
Finally, the condition

P(TN+1) = o x (X(TN+1)

follows from the definition of p in (7.5) and theéservation that, for k=N+1, the only
element ofP(k, N+1) iso={ Ty+1} for which I'(0)=1 by definition.
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Consequently, we have shown:

Theorem 7.1(Maximum principle for impulsive ordinary differgal equations.) Under
conditions of continuous differentiability of f, @, ®, G with respect to x, @&, and with
the superscript "*" denoting optimality, we have first-order necessary conditions for
the problem (7.1, 7.2 ) as follows:

dp (1) _ OH(tX (0. .U (M) (o 14r iz 012 N4t
1 ) , iz 012,

* — * + * *
E):aHd(Tk,X (TP (k)-8 @+1) o0 =12 N

*'[+_*T
p (tx)—p ( ™

P () =Gox (X (TN+0);
N+,

> A aj =0 for all admissiblen;
=

(7.13)

where each; is evaluated from (6.9) witkp(t) := —%. 1"

The impulsive differential equation (7.1) can ab&owritten in the Hamiltonian form

dX (1) _ _OH(tX (0.0 (MU (1) (s =012 N1
dt op : T ’

_OHg (T X (TP (G0, A1) o =12 N-

X () =X (Tj) = o fork=12..,

X (19) = Xo
(7.14)
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