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ON THE ERGODIC PROPERTIES OF CERTAIN ADDITIVE
CELLULAR AUTOMATA OVER Z,,

HASAN AKIN

ABSTRACT. In this paper, we investigate some ergodic properties of Z2-actions
Tp,n generated by an additive cellular automata and shift acting on the space
of all doubly -infinitive sequences taking values in Zy, .

1. INTRODUCTION

Mathematical study of cellular automata was initiated by Hedlund late 1960s.
Hedlund determined the properties of endomorphisms and automorphisms of the
shift dynamical system[2]. Sato studied linear cellular automata with-dimensional
cell space as well as higher-dimensional cell space[3]. The properties of endomor-
phisms of subshifts of finite type were studied by Coven et al. [1]. Sinai gave a
formula for directional entropy[5]. Ergodic properties of cellular automata have
been investigated from various aspects by Shereshevsky and proved that if the
automata map is bipermutative then associated CA- action is strongly-mixing[4].

In this paper, we shall restrict our attention to additive cellular automata over
Zm. The organization of the paper is as follows: In section 2 we establish the basic
formulation of problem necessary to state our main theorem. In section 3 we prove
our main theorem and some results. Let us provide some notation and background.

2. FORMULATION OF THE PROBLEM

Let Z, = {0,1,...,m —1} be a finite alphabet and = ZZ be the space
of double-infinite sequences z = (x,).- Tn € Zm, o is the shift in Q, ie.

n=—oo’

or =12 = {x/n}, ;v;l = Zp+1, Tn € Zmym. A continuous map foo : 2 —  commuting
with the shift (i.e. such that fo, 0 0 = 0 0 fo) is called a cellular automaton. It is
well known (see([2], Theorem 3.4)) that foo : Q@ — Q is a cellular automaton if and

only if there exist [,r € Z with [ < r and a mapping f : Z7."!*! — Z,, such that

fOO(:E) = (yn)zozfoo5 Yn = f('rn+l7 ...,$n+7«)

forallz € Q. n € Z. Tt is called the mapping f the rule of f. and the interval [I,r]
the range of f. In [5], it was assumed that o and fo, generate an action of the
group Z2 on Q: for (m,n) € Z?2 the corresponding transformation is 7, ,, = o® f.
Firstly, we consider additive cellular automata f.,determined by an automation
rule
k
f@n—ky ey Tngr) = ( Z Xinpi)(modm)(N; € Zp,).
i=—k
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A cellular automaton (CA) defined on €2 is a map F : Q@ — Q such that for x € Q
and i € Z, (Fz); = f(xi_r,..., iz, where 7 € N is radius and f : Z2' Y — Z,,
is a given local rule. Generally, we take as (A\; = 1). Let us consider a block
A =q g lia—k; - Gatk]qqp- The first preimage of the block A under f is
W€ Q: Yook = Ja—2ks o Yat2k = Jat2ks Ja—2ks s Jat2k € Zm} Where

Ya—2k + -+ Ya = ia—k(mOdm)u

Yotk + o T Yotk = ta(modm),

Ya + - + Yat2k = tatr(modm).

It is easy to see from this system of equations that (f.,)~!(A) consists of m?*

following blocks (ja—2k, ---, Jat2k). Now we calculate the measure
M((foo)_l(A)) = m2kﬂ{y €Q: Ya—2k = ja—2ku ey Yat+2k = ja+2k:7ja—2kuja+2k S Zm}
— 2Ry (kD) (k1)

2
Example. Let A = {0,1} and f(x_2,2_1,%0,21,22) = < > xi>(mod 2).
i=—2
Then

(fooo) ' (L2 [10101],) = _5 [111110000]; U _5 [100000111], U _5[010001011];
U _3[001001101], U _3 [000101110], U _3 [000011111],
U _5[111000001], U 5 [011101000], U _3 [001111100],
U _3[110100010], U _3 [110010011], U _3 [101100100],
U _3[100110110], U _3 [101010101], U _3 [010111010],

U _3[011011001];. Thus we have

(foo0) ™" (22[10101]5)) = 16(3[j 4, .., jals) = 2277 = 27°.
If we continue this operation, by the same way, we can determine the measure of
(n-1)st preimage of the block A =,_ [fa—k; - batk|atk under foo.
Evidently this (n-1)st preimage consist of such (z,)%2 _ ., for which we have
following system of equations:
Za—nk + ... + Za—(n—l)k + ...+ Za—(n—2)k = ha—(n—l)k(mOdm)v

Za—k F o+ 2a + oo + Zatk = ha(modm),



Za+(n—2)k “+ ...+ Za+(n—1)k + ...+ Za4nk = ha_,_(n_l)k(modm),
where hy_(n—1)ks -+ Pas s Rt (n—1)k € Zm- So we can calculate the measure

(D (A)) = m20r D= (GokD) =2k,

3. RESULTS

Here we shall use the terminology of Sinai [5]. Let us consider as Z% — action

Tpn=0Pfl.

Proposition: Let T}, ,, = o? 7 be Z? — action as above and if p is stationary
Bernoulli measure on Q, that is, u(i) = %, Vi=0,1,....,m— 1, then both f, and
Ty, are Bernoulli measure preserving transformations.

Lemma: The surjective CA-map fo generated by the rule
@ity ooy Tngr) = (anJri)(mOdm)

i=l
is nonergodic with respect to the measure u, because the equality
,u(b[E(), [EES) eS]bJrS N fo;n(a[dov AL dk]aJrk)) = }L(b[ﬁo, EEE) es]bﬂLS):u(a[dOv ceey dk]aJrk)
can’t be obtained sometimes. But we show that Z2 — action T, ,, = oP f% defined
by (p,n) — Ty = 0P 2 on (Q, B, 1) is ergodic, weak-mixing and strong-mixing if
p>b+s+nl—a.

Theorem 1: [6, Theorem 1.17] Let (X,B, ) be a measure space and let A be a
semi-algebra that generates B. Let T:X — X be a measure-preserving transforma-
tion. Then

(i) T is ergodic iff VA, B €A

n—1

. —i —
Jim -~ E_OM(T ANB) = p(A)u(B),
(ii) T is weak-mixing iff V A,BeA

nl;rrgoz ’,u T 'ANB) (A)M(B)’ =0

and
(iii) T is strongly-mixing iff VA, B € A
lim w(T™" AN B) = u(A)u(B).
n—oo
Now we can give main theorem.
Theorem 2: Let Z,, = {0,1,...,m — 1} be a finite alphabet and Q = ZZ be

the space of double-infinite sequences z = (z,,) - Ty, € Zy. If additive cellular
automata fo, is given by the formula:

n=—oo’

foo(x) = (yn)zozfooayn = f(xn-i-fu ceey xn-l—r) = (an-ﬂ)(m(]dm)
i=0
forallz € Q. (p,n) € Z+ x Z*, then Z? — action T}, ,, = oP f is ergodic, strongly-
mixing and weak-mixing.
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Proof. To prove that T}, ,, is ergodic it is sufficient to verify (Theorem 1,ii)for any
two cylinder sets A =, [dp, ..., dk]a+x and B = [eo, ..., €s]p+s, We have

. 1
p,}fgloo]%(_;[)u(b[eoa e slors N T(—i—jy(aldo, -y diJati)) =
3

1(ol€os -y €slors)plaldo, s diJat),
where D = [0,p — 1] x [0,n — 1] N Z2. For i>b+s+jl-a we have
wvleo, - eslors NT(—i,—j)(aldos s di]arr)) = mlsleo, .., eslors)itlaldos s di)at)-

On the other hand, we show that

. 1
lim — Z pvleo, - eslors N T(—i,—j)(aldos s di]atr))

p,n—o0 PN
P7 i hep

: 1 i -
= p}}%oo_nu(b[GOV-'ues]b-i-s) Z foojo- (a[d07-'-7dk]a+k))
’ b (i.)ED

. 1 s
= plbleo, .. eslpys) lim — E fod (at0y[dos s diJatkti))
PPl eD

n—1
. 1 _ _
= /L(B)p}L@OOp—nE (n(f (aldos -y dic]atr) + -+ p(fo (asp-1ldo, -, di]atktp—1))
: =

n—1
1
— ; —(k+1)
= /L(B)p}]{lm on ;:0 [pm ]

— W(B)u(A).

So Z? — action Ty, = oP f7 is ergodic. Similarly for i > b+ s+ j¢ — a we have

wvleo, - eslors NT(—i,—j)(aldos s di]arr)) = p(pleo, -y eslors) plaldo, -, di]atr)-

Let A =, [do, ..., dk|a+r and B =y [eq, ..., €s]p+s be any arbitrary cylinder sets. Then
we have

Jim plTyy(A)NB] =l pl(foe) ™ Catpldos s ity 0 B
= u(B) lim (uf" (atpldo, s diJatisp))
— W(B)u(A).
Because every strongly-mixing transformation is weak-mixing, 7}, ) is weak-mixing.

O

One can prove that the natural extension of T}, , = o fZ, is ergodic and mixing.
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