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ON THE ERGODIC PROPERTIES OF CERTAIN ADDITIVE

CELLULAR AUTOMATA OVER Zm

HASAN AKIN

Abstract. In this paper, we investigate some ergodic properties of Z2-actions
Tp,n generated by an additive cellular automata and shift acting on the space
of all doubly -infinitive sequences taking values in Zm.

1. Introduction

Mathematical study of cellular automata was initiated by Hedlund late 1960s.
Hedlund determined the properties of endomorphisms and automorphisms of the
shift dynamical system[2]. Sato studied linear cellular automata with-dimensional
cell space as well as higher-dimensional cell space[3]. The properties of endomor-
phisms of subshifts of finite type were studied by Coven et al. [1]. Sinai gave a
formula for directional entropy[5]. Ergodic properties of cellular automata have
been investigated from various aspects by Shereshevsky and proved that if the
automata map is bipermutative then associated CA- action is strongly-mixing[4].

In this paper, we shall restrict our attention to additive cellular automata over
Zm. The organization of the paper is as follows: In section 2 we establish the basic
formulation of problem necessary to state our main theorem. In section 3 we prove
our main theorem and some results. Let us provide some notation and background.

2. Formulation of the problem

Let Zm = {0, 1, ...,m− 1} be a finite alphabet and Ω = ZZ
m be the space

of double-infinite sequences x = (xn)
∞

n=−∞
, xn ∈ Zm, σ is the shift in Ω, i.e.

σx = x
′

=
{

x
′

n

}

, x
′

n = xn+1, xn ∈ Zm. A continuous map f∞ : Ω → Ω commuting

with the shift (i.e. such that f∞ ◦ σ = σ ◦ f∞) is called a cellular automaton. It is
well known (see([2], Theorem 3.4)) that f∞ : Ω → Ω is a cellular automaton if and
only if there exist l, r ∈ Z with l ≤ r and a mapping f : Zr−l+1

m → Zm such that

f∞(x) = (yn)
∞

n=−∞
, yn = f(xn+l, ..., xn+r)

for all x ∈ Ω. n ∈ Z. It is called the mapping f the rule of f∞ and the interval [l, r]
the range of f∞. In [5], it was assumed that σ and f∞ generate an action of the
group Z2 on Ω: for (m,n) ∈ Z2 the corresponding transformation is Tp,n = σpfn

∞
.

Firstly, we consider additive cellular automata f∞determined by an automation
rule

f(xn−k, ..., xn+k) = (

k
∑

i=−k

λixn+i)(modm)(λi ∈ Zm).

1991 Mathematics Subject Classification. Primary 28D20; Secondary 37A15 .
Key words and phrases. Cellular Automata, ergodicity, weak-mixing, strong mixing.

1

http://arxiv.org/abs/math/0511261v1


2 HASAN AKIN

A cellular automaton (CA) defined on Ω is a map F : Ω → Ω such that for x ∈ Ω
and i ∈ Z, (Fx)i = f(xi−r, ..., xi+r where r ∈ N is radius and f : Z2r+1

m → Zm

is a given local rule. Generally, we take as (λi = 1). Let us consider a block
A =a−k [ia−k, ..., ia+k]a+k. The first preimage of the block A under f∞ is
{y ∈ Ω : ya−2k = ja−2k, ..., ya+2k = ja+2k, ja−2k, ..., ja+2k ∈ Zm} where

ya−2k + ...+ ya = ia−k(modm),
....
....
....
ya−k + ...+ ya+k = ia(modm),
....
....
....
ya + ...+ ya+2k = ia+k(modm).

It is easy to see from this system of equations that (f∞)−1(A) consists of m2k

following blocks (ja−2k, ..., ja+2k). Now we calculate the measure

µ((f∞)−1(A)) = m2kµ{y ∈ Ω : ya−2k = ja−2k, ..., ya+2k = ja+2k, ja−2k, ja+2k ∈ Zm}

= m2km−(4k+1) = m−(2k+1).

Example. Let A = {0, 1} and f(x−2, x−1, x0, x1, x2) =

(

2
∑

i=−2

xi

)

(mod 2).

Then

(f∞σ)
−1

(−2 [10101]2) = −3 [111110000]5 ∪ −3 [100000111]5 ∪ −3 [010001011]5

∪ −3 [001001101]5 ∪ −3 [000101110]5 ∪ −3 [000011111]5

∪ −3 [111000001]5 ∪ −3 [011101000]5 ∪ −3 [001111100]5

∪ −3 [110100010]5 ∪ −3 [110010011]5 ∪ −3 [101100100]5

∪ −3 [100110110]5 ∪ −3 [101010101]5 ∪ −3 [010111010]5

∪ −3 [011011001]5. Thus we have

µ((f∞σ)
−1

(−2[10101]2)) = 16µ(−3[j−4, ..., j4]5) = 242−9 = 2−5.

If we continue this operation, by the same way, we can determine the measure of
(n-1)st preimage of the block A =a−k [ia−k, ..., ia+k]a+k under f∞.

Evidently this (n-1)st preimage consist of such (zn)
∞

n=−∞
, for which we have

following system of equations:
za−nk + ...+ za−(n−1)k + ...+ za−(n−2)k = ha−(n−1)k(modm),
....
....
....
za−k + ...+ za + ...+ za+k = ha(modm),
....
....
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....
za+(n−2)k + ...+ za+(n−1)k + ...+ za+nk = ha+(n−1)k(modm),

where ha−(n−1)k, ..., ha, ..., ha+(n−1)k ∈ Zm. So we can calculate the measure

µ(f−(n−1)
∞

(A)) = m2(n−1)km−(2nk+1) = m−(2k+1).

3. Results

Here we shall use the terminology of Sinai [5]. Let us consider as Z2 − action

Tp,n = σpfn
∞
.

Proposition: Let Tp,n = σpfn
∞

be Z2 − action as above and if µ is stationary
Bernoulli measure on Ω, that is, µ(i) = 1

m
, ∀ i = 0, 1, ...,m− 1, then both f∞ and

Tp,n are Bernoulli measure preserving transformations.

Lemma: The surjective CA-map f∞ generated by the rule

f(xn+l, ..., xn+r) = (
r
∑

i=l

xn+i)(modm)

is nonergodic with respect to the measure µ, because the equality

µ(b[e0, ..., es]b+s ∩ f−n
∞

(a[d0, ..., dk]a+k)) = µ(b[e0, ..., es]b+s)µ(a[d0, ..., dk]a+k)

can’t be obtained sometimes. But we show that Z2 − action Tp,n = σpfn
∞

defined
by (p, n) 7→ Tp,n = σpfn

∞
on (Ω,B, µ) is ergodic, weak-mixing and strong-mixing if

p > b+ s+ nℓ− a.

Theorem 1: [6, Theorem 1.17] Let (X,B, µ) be a measure space and let A be a
semi-algebra that generates B. Let T:X → X be a measure-preserving transforma-
tion. Then

(i) T is ergodic iff ∀A,B ∈A

lim
n→∞

1

n

n−1
∑

i=0

µ(T−iA ∩B) = µ(A)µ(B),

(ii) T is weak-mixing iff ∀ A,B∈A

lim
n→∞

n−1
∑

i=0

∣

∣µ(T−iA ∩B)− µ(A)µ(B)
∣

∣ = 0

and
(iii) T is strongly-mixing iff ∀A,B ∈ A

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B).

Now we can give main theorem.
Theorem 2: Let Zm = {0, 1, ...,m− 1} be a finite alphabet and Ω = ZZ

m be
the space of double-infinite sequences x = (xn)

∞

n=−∞
, xn ∈ Zm. If additive cellular

automata f∞ is given by the formula:

f∞(x) = (yn)
∞

n=−∞
, yn = f(xn+ℓ, ..., xn+r) = (

r
∑

i=ℓ

xn+i)(modm)

for all x ∈ Ω. (p, n) ∈ Z+×Z+, then Z2−action Tp,n = σpfn
∞

is ergodic, strongly-
mixing and weak-mixing.
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Proof. To prove that Tp,n is ergodic it is sufficient to verify (Theorem 1,ii)for any
two cylinder sets A =a [d0, ..., dk]a+k and B =b [e0, ..., es]b+s, we have

lim
p,n→∞

1

pn

∑

(i,j)∈D

µ(b[e0, ..., es]b+s ∩ T(−i,−j)(a[d0, ..., dk]a+k)) =

µ(b[e0, ..., es]b+s)µ(a[d0, ..., dk]a+k),

where D = [0, p− 1]× [0, n− 1] ∩ Z2. For i>b+s+jℓ-a we have

µ(b[e0, ..., es]b+s ∩ T(−i,−j)(a[d0, ..., dk]a+k)) = µ(b[e0, ..., es]b+s)µ(a[d0, ..., dk]a+k).

On the other hand, we show that

lim
p,n→∞

1

pn

∑

(i,j)∈D

µ(b[e0, ..., es]b+s ∩ T(−i,−j)(a[d0, ..., dk]a+k))

= lim
p,n→∞

1

pn
µ(b[e0, ..., es]b+s)

∑

(i,j)∈D

f−j
∞

σ−i(a[d0, ..., dk]a+k))

= µ(b[e0, ..., es]b+s) lim
p,n→∞

1

pn

∑

(i,j)∈D

f−j
∞

(a+i)[d0, ..., dk]a+k+i))

= µ(B) lim
p,n→∞

1

pn

n−1
∑

j=0

(µ(f−j
∞

(a[d0, ..., dk]a+k) + ...+ µ(f−j
∞

(a+p−1[d0, ..., dk]a+k+p−1))

= µ(B) lim
p,n→∞

1

pn

n−1
∑

i=0

[pm−(k+1)]

= µ(B)µ(A).

So Z2 − action Tp,n = σpfn
∞

is ergodic. Similarly for i > b+ s+ jℓ− a we have

µ(b[e0, ..., es]b+s ∩ T(−i,−j)(a[d0, ..., dk]a+k)) = µ(b[e0, ..., es]b+s)µ(a[d0, ..., dk]a+k).

Let A =a [d0, ..., dk]a+k and B =b [e0, ..., es]b+s be any arbitrary cylinder sets. Then
we have

lim
p,n→∞

µ[T(−p,−n)(A) ∩B] = lim
p,n→∞

µ[(f∞)−n(a+p[d0, ..., dk]a+k+p ∩B]

= µ(B) lim
p,n→∞

(µf−n
∞

(a+p[d0, ..., dk]a+k+p))

= µ(B)µ(A).

Because every strongly-mixing transformation is weak-mixing, T(p,n) is weak-mixing.
�

One can prove that the natural extension of Tp,n = σpfn
∞

is ergodic and mixing.

Acknowledgement

The author is grateful to Professor Nasir Ganikhodjaev for encouragement and
many helpful discussions during the preparation of this work.



5

References

[1] E. M. Coven and M. E. Paul, Endomorphisms of irreducible subshift of finite type, Math. Sys.
Theory, 8 (1974), 167-175.

[2] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Sys.
Theory, 3 (1969), 320-375.

[3] T. Sato, Ergodicity of Linear Cellular Automata over Zm, Inform.Processing Letters 61 (1997),
169-172.

[4] M. A. Shereshevsky, Ergodic properties of certain surjective cellular automata, Monatsh. Math.
114 (1992), 305-316.

[5] Ya. G. Sinai, An answer to a question by J. Milnor, Comment. Math. Helvetici 60 (1985),
173-178.

[6] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag (1982).

Harran University

Arts and Sciences Faculty

Department of Mathematics
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