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Abstract

The new economic geography literature provides a general equilibrium framework
that explains the emergence of economic agglomerations as a trade-off between in-
creasing returns at the firm level and transportation costs related to the shipment of
goods. The existence and uniqueness of short–run equilibria of this model has been
shown for the case of two regions. The proposed approach employs the differential
evolution algorithm to obtain estimates of the Lipschitz constant and the infinity
norm of the function along the boundary and utilizes these values to investigate the
existence of solutions of a function, and the computational burden of computing
the topological degree of this function. This approach is employed to investigate
the existence of short–run equilibria for more than two regions using fixed point
and topological degree theory, as well as, the differential evolution algorithm. Irre-
spective of parameter settings the criteria from topological degree theory suggest
that the model can have equilibria. The differential evolution algorithm identified
such equilibria and for none of the parameter settings that were considered more
than one equilibria were detected. The experimental results obtained also indicate
that the computation of such equilibria has an exponential worst case lower bound
complexity, as the model yields a function that is neither contractive, nor nonex-
panding. Finally, the computation of the topological degree to identify the number
of equilibria also has a very high computational cost.
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1 Introduction

The New Economic Geography has emerged from the long-existing need to ex-
plain concentrations of economic activity. The distinction between the manu-
facturing sector and farm belts, the existence of cities, and the role of industry
clusters, are issues that come within the scope of the New Economic Geog-
raphy. The literature in the field provides a general equilibrium framework in
which agglomerations of manufacturing activity emerge due to the trade-off
between increasing returns at the firm level, and transportation costs [1].

We consider a standard new economic geography model involving a finite
number of regions [2,3], and two sectors in the economy: the agricultural sector
and the manufacturing sector. In this framework, economic equilibria refer to
the allocation of the factors of production (in the model the manufacturing
labor force), and the set of prices, that arise by the optimal behavior of firms
and consumers and yield market clearing. Short-run equilibria of the model are
characterized by the fixed distribution of labor across regions, while in long-
run equilibria the spatial adjustment of workers is allowed. The present paper
focuses on issues relating to the existence and the computational complexity
of locating short-run equilibria, which correspond to fixed points of a function.

Computing fixed points, or equivalently, solving systems of nonlinear equa-
tions has long been a topic of great interest for researchers in the field of
mathematics, engineering, economics, and many other professions. Numerous
problems such as finding an equilibrium, a zero point, or a fixed point, can
be formulated as the problem of finding a solution to an equation of the form
F (x) = p in an appropriate space. Topological degree theory provides means
for examining this solution set and obtaining information about the existence
of solutions, their number and their nature. The Lipschitz constant of the
function, as well as the value of the infinity norm along the boundary of its
domain, also provide information about the existence of solutions to the afore-
mentioned problem. These values are also employed to determine the compu-
tational cost of computing the topological degree. The proposed approach
relies on the approximation of the Lipschitz constant and the infinity norm
along the boundary using an evolutionary optimization algorithm, namely the
differential evolution algorithm. In particular, we estimate the modulus of con-
tinuity of the function that serves as a lower bound for the Lipschitz constant.
The differential evolution algorithm is employed as the approximation of both
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the modulus of continuity and the infinity norm involves the minimization
of non–differentiable objective functions. This approach is applied to investi-
gating the existence and the computational complexity of locating short-run
equilibria, which correspond to fixed points of a function.

The rest of the paper is organized as follows: Section 2 outlines the basic no-
tions associated with economic geography and presents the model. Section 3 is
devoted to the presentation of background material. More specifically, subsec-
tion 3.1 discusses the basic notions of topological degree theory and provides
references to efficient methods for its computation. Subsection 3.2 is devoted
to the presentation of algorithms for computing fixed points and their compu-
tational complexity. In subsection 3.3 we briefly describe the differential evolu-
tion algorithm, which is employed by the proposed approach to obtain approx-
imations of the Lipschitz constant and the infinity norm along the boundary,
as well as, to identify short-run equilibria of the model. Section 4 provides a
detailed exposition of the proposed approach. It describes criteria, based on
the value of the Lipschitz constant and the infinity norm along the boundary
of the function, for the existence of solutions and discusses the corresponding
complexity of computing the topological degree. Section 5 is devoted to the
presentation and discussion of the experimental results. The paper ends with
conclusions.

2 Economic Geography

Lately the increasing interest in the field of economic geography has attracted
numerous scientists from various disciplines ranging from economics to re-
gional science and geography. There is no doubt that the building of the Eu-
ropean Union and the several policy issues which come along have contributed
to boost interest in the field.

Space has always been a concern in economics. If mainstream economics has
rather neglected it during the past, it is not so much because economists
have been uninterested in the subject, but rather because it has remained
intractable for a long time. Modeling tools that had been developed to ana-
lyze industrial organization, international trade, and economic growth, have
allowed to overcome technical problems arising when dealing with imperfect

competition in a general equilibrium framework, see [1–3].

The New Economic Geography has emerged from the long-existing need to
explain concentrations of economic activity. The literature in the field pro-
vides a general equilibrium framework explaining the emergence of economic
agglomerations as a trade-off between increasing returns at the firm level and
transportation costs related to the shipment of goods. This means that this
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literature provides economic motives for agglomeration rather than assuming
that some regions are more productive than others ex ante. Recent work in
the field has incorporated additional economic concerns into the analysis (e.g.
capital, welfare analysis, expectations), while at the same time, an empirical
literature testing the theory with data has emerged.

The main ingredients of the New Economic Geography are transportation
costs, and the interaction of market size with increasing returns which cre-
ates a cumulative process in which larger markets attract additional economic
activity. A central feature of the models in the literature is that a higher
taste for product variety, a larger share of the manufacturing expenditure,
and lower transportation costs, favor the emergence of agglomerations (e.g.
spatial concentration of economic activities).

We consider a standard new economic geography model involving a finite num-
ber of regions, see [2,3]. This model can be viewed as an extension of Krug-
man’s core-periphery model [1] to the case of a spatial economy consisting ofN
regions. As in Krugman’s original work, there are two sectors in the economy.
The agricultural sector employs farmers and produces a single homogeneous
good under constant returns to scale. The manufacturing sector employs work-
ers and produces a differentiated good, giving rise to manufacturing varieties.
Consumers (workers and farmers) buy the agricultural good on a perfectly
competitive national market and manufacturing varieties on monopolistically
competitive regional markets. In addition, transporting manufacturing vari-
eties from their production place to the place where they are consumed, is
costly.

Economic equilibria define economic allocations and prices derived from opti-
mal behaviors of firms and consumers that are compatible with market clear-
ing. On the one hand, short-run equilibria are obtained under the assumption
of no spatial adjustment. These short-run equilibria are thus viewed as im-
plicitly determined by some given spatial distribution of labor. On the other
hand, long-run equilibria refer to steady states of a spatial economy where
workers are allowed to adjust their location over time. In the case of a spatial
economy consisting of 2 regions, a short-run equilibrium has been shown to
exist and to be unique (see [4]), and the number and stability of steady states
have been studied (see [2]). However, in the case of 3 or more regions, no
analytical result concerning short- or long- run equilibria has been derived so
far.

In this paper we focus on short-run equilibria. Regions are denoted by i =
1, . . . , N . Consider some spatial distribution of labor Li across these regions.
The proportion of the labor force in region i is then given by λi = Li/

∑N
j=1 Lj .

The variables of the model are yi, θi, and wi respectively the income, the
manufacturing price index and the manufacturing wage in region i. The system
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of equations defining short-run equilibria of the spatial economy can be written
in the following reduced form:

yi =(1 − µ) /N + µλiwi,

θi =







N
∑

j=1

λj w
(1−σ)
j exp

[

−τ(σ − 1) d(i, j)
]







−1/(σ−1)

,

wi =







N
∑

j=1

yj θ
(σ−1)
j exp

[

−τ(σ − 1) d(i, j)
]







1/σ

, (1)

where:

d(i, j) : distance between locations i and j,

σ > 1 : elasticity of substitution among manufacturing varieties,

µ ∈ (0, 1) : share of manufacturing expenditure,

τ > 0 : transportation cost per unit of distance for manufacturing

goods.

The final equation of the system in Eq. (1) corresponds to the level of nom-
inal wages at which manufacturing in region i breaks even. Throughout the
remaining paper we refer to this equation as fi(w) to avoid confusing notation
when revering to the fixed point problem f = w, or the zero point problem
f − w = 0.

3 Background Material

3.1 The topological degree and its computation

This subsection is devoted to a brief presentation of topological degree theory
for the determination of the exact number of zeros of a system of nonlin-
ear transcendental equations. This is achieved by computing the value of the
topological degree using Kronecker’s integral [5] on Picard’s extension [6,7].

Suppose that a function Fn = (f1, f2, . . . , fn) : Dn ⊂ R
n → R

n is defined and
twice continuously differentiable in an open and bounded domain Dn of R

n

with boundary ϑDn. Suppose further that the zeros of the equation Fn(x) = p,
where p ∈ R

n is a given vector, are not located on ϑDn, and that they are
simple, i.e., the determinant, det JFn

, of the Jacobian matrix of Fn at these
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points is non–zero.

Definition: The topological degree of Fn at p relative to Dn is denoted by
deg[Fn,Dn, p] and is defined by the following sum:

deg[Fn,Dn, p] =
∑

x∈F−1
n (p)∩Dn

sgn
(

det JFn
(x)
)

, (2)

where sgn(ψ) stands for the three valued sign function.

The topological degree is invariant under changes of the vector p in the sense
that, for any q ∈ R

n, it holds that: deg[Fn,Dn, p] ≡ deg[Fn − q,Dn, p − q],
where Fn − q denotes the mapping Fn(x) − q, x ∈ Dn [8, p.157]. Therefore,
we only consider the case where the topological degree is defined at the point
Θn = (0, . . . , 0) in R

n.

The topological degree deg[Fn,Dn,Θn] can be represented by the Kronecker
integral which is defined as:

deg[Fn,Dn,Θn] =
Γ(n/2)

2πn/2

∫ ∫

ϑDn

· · ·
∫

∑n
i=1Aidx1 · · · dxi−1dxi+1 · · · dxn
(

f1
2 + f2

2 + · · ·+ fn
2
)n/2

, (3)

where Ai denote the following determinants:

Ai = (−1)n(i−1) det

[

Fn
∂Fn

∂x1
· · ·

∂Fn

∂xi−1

∂Fn

∂xi+1
· · ·

∂Fn

∂xn

]

,

(4)

where, ∂Fn

∂xk
=
(

∂f1

∂xk
, ∂f2

∂xk
, . . . , ∂fn

∂xk

)

is the kth column of the determinant det JFn

of the Jacobian matrix JFn
.

The topological degree can be generalized when the function is only continu-
ous [8]. In this case, Kronecker’s theorem [8] states that Fn(x) = Θn has at
least one zero in Dn if deg[Fn,Dn,Θn] 6= 0. Furthermore, if Dn = D1

n ∪ D2
n

where D1
n and D2

n have disjoint interiors and Fn(x) 6= Θn for all x ∈ ϑD1
n∪

ϑD2
n, then the topological degree is additive, i.e.:

deg[Fn,Dn,Θn] = deg[Fn,D
1
n,Θn] + deg[Fn,D

2
n,Θn].

Since deg[Fn,Dn, Θn] is equal to the number of zeros of Fn(x) = Θn that
give positive determinant of the Jacobian matrix minus the number of zeros
that give negative determinant of the Jacobian matrix, the total number N r

of zeros of Fn(x) = Θn would be equal to the value of deg[Fn,Dn, Θn] if the
determinant of the Jacobian matrix at all these zeros had the same sign. Note
that, by assumption, all the zeros of Fn(x) = Θn are simple. To this end, Picard
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proposed the following extension of the function Fn and the domain Dn:

Fn+1 = (f1, . . . , fn, fn+1) : Dn+1 ⊂ R
n+1 → R

n+1,

where fn+1 = y det JFn
, and Dn+1 is the direct product of the domain Dn

with an arbitrary interval of the real y–axis containing the point y = 0. Then
the zeros of the following system of equations:

fi(x1, x2, . . . , xn) = 0, i = 1, . . . , n,

y det JFn
(x1, x2, . . . , xn) = 0,

(5)

are the same as the zeros of Fn(x) = Θn provided that y = 0. Moreover, the
determinant of the Jacobian matrix of (5) is equal to [det JFn

(x)]2 which is
always nonnegative (positive at the simple zeros). Thus we may conclude:

Theorem [7]: The total number N r of zeros of Fn(x) = Θn is given by

N r = deg[Fn+1,Dn+1,Θn+1], (6)

under the hypotheses that Fn is twice continuously differentiable and that all
the zeros are simple and lie in the strict interior of Dn+1.

Several methods for the computation of the topological degree have been pro-
posed [5,9,10]. These methods are based on Stenger’s method that is an almost
optimal complexity algorithm for a number of classes of functions [10].

3.2 Fixed Points and their computation

The development of fixed point algorithms has been an intensive research
area since 1922 when Banach in his famous dissertation proposed the simple
iteration algorithm [8,10,11]:

xk+1 = Fn(xk), k = 0, 1, . . . (7)

which for a function Fn : Dn ⊂ R
n → R

n which is contractive on a closed
set Qn ⊂ Dn and that Fn(Qn) ⊂ Qn, converges to the unique fixed point
x∗ ∈ Qn for any arbitrary starting point x0 ∈ Qn [8]. For Lipschitz functions
Fn with constant L < 1 and large dimension n the iteration algorithm (7)
is optimal [10,12,13] and requires ν = ⌈log2(ε

−1) / log2(L
−1)⌉ function eval-

uations to compute the approximation x̃ of the fixed point x∗ such that
‖x̃− x∗‖2 6 ε‖x∗‖2 (see: [10]).

Numerous algorithms have been proposed since Banach’s algorithm, includ-
ing homotopy continuation, simplicial and Newton type methods [14–17]. The
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latter algorithms, for Lipschitz functions with constant L > 1 with respect
to the infinity norm, exhibit exponential complexity in the worst case when
computing ε-residual approximation x̃ : ‖Fn(x̃) − x̃‖∞ 6 ε, (that is the com-
puted approximation x̃ satisfies the residual criterion ‖Fn(x̃)− x̃‖∞ 6 ε where
ε > 0) and that the lower bound on the complexity is also exponential [18].

On the other hand, the computation of fixed points of a function that is con-
tractive (L < 1) is a commonly encountered problem in numerical computa-
tion (for nonlinear problems and large scale linear systems). Furthermore, fixed
points of contractive, or nonexpanding (L = 1), functions appear in numerous
fields including economics, game theory (especially ergodic games), meromor-
phic functions, nonlinear differential equations and dynamical systems. In the
study of dynamical systems with two degrees of freedom, such fixed point (pe-
riodic orbits) problems model conservative or dissipative systems depending
on whether the mapping is area-preserving or area-contracting, respectively
(see [19–27]).

Several algorithms for approximating a fixed point, x∗, of a Lipschitz function
that is contractive or nonexpanding with respect to the second norm have
been developed [10,28,29]. An efficient method for the computation of fixed
points is the interior ellipsoid method [10,28,30]. In the nonexpanding case
and moderate dimensions n the interior ellipsoid algorithm is optimal [28].
This algorithm requires ν = c n log(ε−1) function evaluations to compute an
ε-residual approximation x̃ : ‖Fn(x̃) − x̃‖2 6 ε. Notice that the worst-case
complexity of computing an ε-absolute approximation x̃ : ‖x̃−x∗‖2 6 ε for the
nonexpanding case is infinite [10]. This means that there exists no algorithm
based on function evaluations that solves this problem for all functions in
this class. For the contractive case the interior ellipsoid algorithm computes
x̃ : ‖x̃−x∗‖ 6 ε within ν = c n (log(ε−1)+log((1−L)−1)) function evaluations.

A recently proposed algorithm named PFix for approximating a fixed point
of a function Fn, where Fn has arbitrary dimensionality, is defined on a rect-
angular domain, and is Lipschitz continuous with respect to the infinity norm
with constant one, has been presented in [31]. This algorithm computes an
approximation that satisfies the residual error criterion, and can also compute
an approximation satisfying the absolute error criterion when the Lipschitz
constant is less than one. Furthermore it is a recursive algorithm, in that
it uses solutions to an n-dimensional problem to compute a solution to an
(n+ 1)-dimensional problem.
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3.3 Differential Evolution Algorithm

The Differential Evolution algorithm (DE) [32] is a population–based stochas-
tic optimization algorithm that exploits a population of potential solutions,
called individuals, to probe the search space. New individuals are generated
by the combination of randomly chosen individuals from the existing popula-
tion. An operation which is called mutation in the context of DE. Specifically,
for each individual xk

g , k = 1, . . . ,NP, where g denotes the index of the cur-
rent generation, a new individual vi

g+1, called mutant individual, is generated
according to one of the equations below:

vi
g+1 = xbest

g + µ(xr1

g − xr2

g ), (8)

vi
g+1 = xr1

g + µ(xr2

g − xr3

g ), (9)

vi
g+1 = xi

g + µ(xbest
g − xi

g) + µ(xr1

g − xr2

g ), (10)

vi
g+1 = xbest

g + µ(xr1

g − xr2

g ) + µ(xr3

g − xr4

g ), (11)

vi
g+1 = xr1

g + µ(xr2

g − xr3

g ) + µ(xr4

g − xr5

g ), (12)

(13)

where, xbest
g is the best member of generation g; µ > 0 is a real parameter,

called mutation constant, which controls the amplification of the difference
between two individuals so as to avoid the stagnation of the search process;
and r1, r2, r3, r4, r5 ∈ {1, 2, . . . , k − 1, k + 1, . . . ,NP}, are mutually different
random integers, different from the running index k. To further increase the
diversity of the mutant individuals, they are combined with other predeter-
mined individuals – the target individuals – through an operation known as
recombination – to produce trial individuals. At the recombination stage, for
each component l (l = 1, 2, . . . , D) of the mutant individual vk

g+1, a random
real number r in the interval [0, 1] is drawn and compared to the recombina-
tion constant, ρ. If r 6 ρ, then the l–th component of the trial individual uk

g+1

is set equal to the l–th component of the mutant individual vk
g+1. Otherwise,

the l-th component of the target vector, xk
g , becomes the l–th component of

the trial vector. After the completion of recombination the trial individuals
are subjected to selection. Each trial individual, uk

g+1, is accepted for the next
generation, if and only if, it yields a reduction in the value of the error func-
tion relative to the individual of the previous generation, xk

g . Otherwise, xk
g ,

is retained at the next generation.
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4 The proposed approach

An approach for the investigation of the existence of roots requires the value
of the Lipschitz constant of the function, as well as, the infinity norm of the
function along the boundary of Dn [10,34,35]. These values are also relevant
for the estimation of the computational burden, in terms of required function
evaluations, for the computation of the topological degree of the function. The
value of the topological degree, under certain conditions, provides information
regarding the existence of roots. Moreover, by properly extending the function
and the corresponding domain, the value of the topological degree gives the
number of simple roots of the function, within the interior of Dn.

Consider the class F of Lipschitz functions with Lipschitz constant L, defined
on the n–dimensional unit hypercube C,

Fn = (f1, f2, . . . , fn) : C ⊂ R
n → R

n,

such that for every Fn ∈ F we have

‖Fn(x)‖∞ > δ > 0,

for all x ∈ ϑC, where ϑC denotes the boundary of C. Then, the following
existence criteria hold [10]:

(i) if L/(2δ) > 4, then the function Fn may have zeros in C;

(ii) if L/(2δ) < 1, then the function Fn does not have any zeros in C.











(14)

The case 1 6 L/(2δ) < 4 is still an open problem [10].

Furthermore, using the values of L and δ, Boult and Sikorski proved in [34]
that the topological degree can be computed using

A =
(⌊

L

2δ
+ 1

⌋

+ 1
)n

−
(⌊

L

2δ
+ 1

⌋

− 1
)n

, (15)

function evaluations for every Fn ∈ F , n > 2. This can be done by an algo-
rithm due to Kearfott [36], with cost given by A(c + (n2/2)(n − 1)!), where
c is the cost of each function evaluation, while the cost of elementary arith-
metic operations and comparisons is unity. Thus, for a small n, e.g., n 6 5,
and a small value of L/(2δ), e.g., L/(2δ) 6 9, the degree can be computed
in time at most 105(c+ 300). For large n and/or large L/(2δ) the problem is
intractable [10,34].

The Lipschitz constant can also be used for the determination of the com-
plexity of the fixed point problem, in the case of the residual error criterion,
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in the class of functions Fn : C → C, satisfying the Lipschitz condition with
Lipschitz constant L > 1 [10,18].

In numerous cases, the parameters δ and L are not a priori known, and their
computation is a heavy task [35,37]. In this paper, the Differential Evolution
(DE) algorithm is used to estimate the parameter δ and the Lipschitz con-
stant, L, of a function, to infer conclusions regarding the existence of roots and
estimate the computational burden, in terms of the required function evalua-
tions, for the computation of the topological degree. DE is a population–based
optimization method, that requires function values solely. Consequently, in
general, neither derivatives nor an analytic representation of the function is
needed.

As it has been already mentioned, the values of main interest that have to be
computed, are

δ = min
x∈ϑDn

‖Fn(x)‖∞, (16)

and

L = max
x 6=y

x,y∈Dn

‖Fn(x) − Fn(y)‖∞
‖x− y‖∞

, (17)

where Dn is an n–dimensional polyhedron.

The value L can be estimated by performing the maximization of the corre-
sponding fraction on x, with y being randomly selected at each evaluation of
the fraction, following a uniform distribution. Alternatively, one can estimate
the modulus of continuity of Fn on Dn:

ω(Fn, t) = sup{‖Fn(x) − Fn(y)‖, for x, y ∈ Dn, and ‖x− y‖ 6 t}. (18)

Note that if Fn is Lipschitz for some real number L and for all x, y ∈ Dn then
we immediately have:

ω(Fn, t) 6 L t. (19)

In the proposed approach, DE is employed to compute δ, through subsequent
optimization on the boundary of the domain under consideration. Moreover,
L is estimated by approximating the modulus of continuity, Eq. (18). In gen-
eral DE has proved to be considerably noise–tolerant. The procedure for the
estimation of the modulus of continuity can be considered, in regions of small
size, as a noisy optimization procedure with noise proportional to the value of
the function.

Obviously, the estimates δ′ and L′, of δ and L, respectively, which are obtained
through the aforementioned procedures, will differ from their actual values.
Since the value of δ is computed through a minimization procedure with a
prespecified accuracy, where δ is the global minimum, it holds that δ′ > δ.
Similarly, the obtained estimate, L′, of the Lipschitz constant, will be L′ 6 L
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(as shown in Eq. (19)), i.e., there will always be an underestimation of L and
an overestimation of δ. However, if

L′

2δ′
> 4,

for the computed values in the unit hypercube, then, the function may have
roots (c.f. criterion in (14)), since

4 6
L′

2δ′
6

L

2δ
.

Thus, the proposed approach can provide valuable information regarding the
existence of roots of functions with unknown Lipschitz constant and infinity
norm along the boundary. We recall that in the case of L′/(2δ′) < 4, conclu-
sions cannot be derived.

Furthermore, it is evident that the quantity

A′ =

(⌊

L′

2δ′
+ 1

⌋

+ 1

)n

−

(⌊

L′

2δ′
+ 1

⌋

− 1

)n

, (20)

constitutes a lower bound on the number of function evaluations, A, required
for the computation of the topological degree, as defined in Eq. (15), since A
is non–decreasing with respect to L/(2δ).

5 Presentation of Experimental Results

As previously mentioned, we employ the Differential Evolution algorithm (DE)
to obtain an estimate for the modulus of continuity (which in turn is used to
obtain a lower bound of the Lipschitz constant, L) and also to approximate
the infinity norm along the boundary, δ, of the function. The domain of the
function FN of Eq. (1) is determined by the requirement of the economic
geography model to have the sum of nominal wages across regions constant:

N
∑

j=1

λjx
i
j = 1,

where, xi denotes the ith DE individual, and xi
j , j = 1, . . . , N stands for the

nominal manufacturing wage at region j, wj. As DE is an unconstrained opti-
mization algorithm, we employ the following normalization to the individuals,
xi, to evaluate FN :

xi
p = ‖xi‖/

mi
∑

j=1

‖λjx
i
j‖,
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where mi is the number of regions. Note that this normalization is used only
when evaluating the individuals and not to constraint the population of the
algorithm in the domain of the function. If the normalized individuals, xi

p,
replace the original individuals, xi, our experience suggests that the diversity
of the population decreases drastically and this in turn causes the premature
convergence of the considered methods. To evaluate the fitness function for the
case of computing the modulus of continuity, for each DE individual (xi), 1000
random points within a fixed range, t = 0.1, from xi (using as a distance metric
the infinity norm) are generated. The fitness function for each individual, xi, is
an estimate of the negative of the modulus of continuity in the neighborhood
of the individual:

−max
rj

{‖F (xi) − F (rj)‖∞}, j = 1, . . . , 1000,

where rj, j = 1, . . . , 1000 represents a random point within the specified dis-
tance from the individual xi. The global minimum of this fitness function
corresponds to the negative of the modulus of continuity.

At a first step, we investigated whether the Lipschitz constant of the function
FN is lower than unity for a number of parameter settings. Employing the DE
algorithm to compute the modulus of continuity for a number of parameter
settings, and for three to five regions equidistributed along the unit circle,
the obtained results for all instances of the problem yielded a lower bound
on the Lipschitz constant through the modulus of continuity, which was sub-
stantially larger than one. As previously mentioned, fixed point algorithms for
Lipschitz functions with constant L > 1 with respect to the infinity norm,
exhibit exponential complexity in the worst case when computing ε-residual
approximation.

Next we proceed to investigate whether the criteria from topological degree
theory can provide information concerning the existence of equilibria and es-
timate the computational complexity associated with the computation of the
degree for this type of functions. Since short–run equilibria correspond to
fixed points of Eq. (1), while the topological degree of a function provides
information concerning the number of simple zeros of a function in a domain,
we transform the fixed point problem to a root finding problem through the
following manipulation:

GN = (fi(w) − wi, . . . , fN(w) − wN) (21)

where fi(w) and wi are as in Eq. (1). To obtain a lower bound for the Lipschitz
constant we estimate through DE the modulus of continuity ω′(GN , t) for fixed
t = 0.1, and from Eq. (19) we have L′ > ω′(GN , t)/t. In Tables 1–3 the results
obtained for the case of three to five regions are summarized. Note that due to
space limitations, all entries in the tables are rounded to three decimal places.
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Parameter Setting δ′ L′

µ σ τ λ1 λ2 λ3

0.513 4.288 2.043 0.245 0.462 0.292 2.558 32.990

0.840 4.386 2.538 0.477 0.267 0.254 2.538 36.835

0.304 4.021 2.870 0.382 0.166 0.450 2.071 48.522

0.121 1.503 2.637 0.350 0.361 0.288 2.413 11.963

0.449 1.680 2.171 0.651 0.140 0.208 1.840 18.343

Table 1
Estimation for the infinity norm along the boundary and the Lipschitz constant for
the three–region model

Parameter Setting δ′ L′

µ σ τ λ1 λ2 λ3 λ4

0.709 3.606 1.404 0.262 0.404 0.261 0.070 2.150 13.500

0.735 3.224 2.744 0.238 0.155 0.339 0.266 2.128 45.349

0.765 4.536 2.013 0.204 0.471 0.212 0.111 2.245 35.344

0.625 2.526 2.370 0.239 0.083 0.323 0.353 2.022 36.120

0.071 3.883 1.815 0.334 0.298 0.021 0.344 2.040 20.109

Table 2
Estimation for the infinity norm along the boundary and the Lipschitz constant for
the four–region model

Parameter Setting δ′ L′

µ σ τ λ1 λ2 λ3 λ4 λ5

0.851 2.512 1.889 0.192 0.207 0.182 0.353 0.066 2.143 27.925

0.423 3.299 2.284 0.147 0.221 0.098 0.124 0.410 2.218 43.522

0.889 3.358 2.373 0.128 0.283 0.023 0.181 0.386 2.043 45.992

0.490 1.912 2.649 0.249 0.246 0.214 0.141 0.149 2.274 17.106

Table 3
Estimation for the infinity norm along the boundary and the Lipschitz constant for
the five–region model

In all the conducted numerical experiments the ratio L′/2δ′ exceeded the
value of four, indicating that the function under consideration may have ze-
ros (Eq.(14)). The existence of zeros of the function for different parameter
settings has been verified through their computation using the DE algorithm.
A point was considered a short–run equilibrium if ‖GN‖1 6 10−6. Due to
space limitations, only a small sample of the parameter settings tested and
the corresponding short–run equilibria are reported in Tables 4–6. For each
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Parameter Settings Equilibrium Point

µ σ τ λ1 λ2 λ3 w1 w2 w3

0.277 1.230 2.841 0.203 0.367 0.428 1.053 0.995 0.978

0.803 2.781 2.289 0.357 0.316 0.325 0.932 1.053 1.022

0.907 1.492 2.611 0.458 0.095 0.445 1.021 0.814 1.017

0.719 4.679 2.178 0.353 0.403 0.242 0.942 0.825 1.374

0.898 1.303 2.135 0.257 0.393 0.348 0.934 1.038 1.005

0.060 3.524 2.380 0.357 0.316 0.325 0.931 1.054 1.022

0.776 4.383 2.509 0.357 0.316 0.325 0.931 1.054 1.022

0.348 3.115 2.737 0.353 0.403 0.242 0.942 0.825 1.373

0.798 1.976 2.433 0.458 0.095 0.445 0.883 2.035 0.897

0.803 3.575 2.55 0.458 0.095 0.445 0.728 3.470 0.748

0.871 1.600 2.402 0.357 0.316 0.325 1.000 0.999 0.999

Table 4
Short–run equilibria for the 3–region model.

parameter setting the DE algorithm was executed ten times. It is important
to note that DE did not locate more than one equilibria for all the parameter
settings considered, indicating that the fixed point of the short–run economic
geography model might be unique.

As illustrated in Tables 1–3, the ratio L′/(2δ′) assumes large values sometimes
even exceeding the threshold of nine. Hence, the computation of the number
of short–run equilibria of the economic geography model through the compu-
tation of the topological degree of the function GN is a computationally hard
task, as suggested by the lower bound on the number of function evaluations
(Eq. (15)) that has been suggested by Boult and Sikorski [34].

6 Conclusions

The new economic geography literature provides a general equilibrium frame-
work that explains the emergence of economic agglomerations as the outcome
of increasing returns at the firm level coupled with transportation costs re-
lated to the shipment of goods. The existence and uniqueness of short–run
equilibria of this model has been shown for the case of two regions. In this
paper we applied criteria from the theory of fixed points and that of topo-
logical degree to investigate the existence and the computational complexity
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Parameter Settings Equilibrium Point

µ σ τ λ1 λ2 λ3 λ4 w1 w2 w3 w4

0.984 4.886 2.678 0.211 0.261 0.272 0.254 1.184 0.955 0.917 0.981

0.757 2.152 2.570 0.155 0.161 0.311 0.372 1.379 1.389 0.867 0.783

0.325 2.487 2.572 0.211 0.261 0.272 0.254 1.175 0.958 0.919 0.983

0.903 2.493 2.688 0.155 0.161 0.311 0.372 1.442 1.442 0.847 0.751

0.931 2.323 2.785 0.087 0.322 0.185 0.403 1.600 0.954 1.132 0.844

0.066 1.294 2.712 0.211 0.261 0.272 0.254 1.033 0.996 0.975 1.002

0.610 4.691 2.576 0.155 0.161 0.311 0.372 1.612 1.550 0.802 0.671

0.682 2.844 2.597 0.155 0.161 0.311 0.372 1.581 1.535 0.809 0.685

0.720 2.305 2.168 0.103 0.337 0.141 0.418 1.508 0.929 1.311 0.826

0.769 3.451 2.027 0.155 0.161 0.311 0.372 1.563 1.527 0.813 0.693

Table 5
Short–run equilibria for the 4–region model.

Parameter Settings Equilibrium Point

µ σ τ λ1 λ2 λ3 λ4 λ5 w1 w2 w3 w4 w5

0.839 4.458 2.778 0.154 0.163 0.231 0.214 0.236 1.296 1.224 0.864 0.931 0.847

0.965 3.398 2.112 0.282 0.145 0.176 0.148 0.246 0.837 1.148 1.154 1.167 0.887

0.980 3.962 2.426 0.282 0.145 0.176 0.148 0.246 0.750 1.289 1.148 1.288 0.834

Table 6
Short–run equilibria for the 5–region model.

of computing short–run equilibria of the general equilibrium framework for
a spatial economy consisting of three to five regions. The criteria employed
make use of the Lipschitz constant, or alternatively the modulus of continuity,
and the infinity norm along the boundary of the domain, of the function. The
proposed approach employs the Differential Evolution algorithm to obtain an
estimate of these quantities as their approximation involves the minimization
of non–differentiable objective functions. The obtained experimental results
for a number of different parameter settings of the model suggest that the
function is neither contractive, nor nonexpanding. The complexity of com-
puting ε-residual approximations to fixed points of Lipschitz functions with
constant L > 1, with respect to the infinity norm, is exponential in the worst
case. For all the parameter settings tested, the existence criteria from topo-
logical degree theory state the function can have zeros in the domain under
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consideration. However, the estimated Lipschitz constants and infinity norms
along the boundary indicate that the computation of the topological degree
for this type of problems is computationally very demanding. The application
of the Differential Evolution algorithm to directly obtain short–run equilibria
suggests that such points exist. For each parameter setting a number of exe-
cutions of the algorithm were performed to investigate whether more than one
equilibria can be located. This was not the case for all the considered param-
eter settings, suggesting that the equilibrium might be unique for a spatial
economy with more than two regions.
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