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Abstract

We show that the p-periodic logistic equation xn+1 = µn mod pxn(1 − xn) has cy-
cles (periodic solutions) of minimal periods 1, p, 2p, 3p, .... Then we extend Singer’s
theorem to periodic difference equations, and use it to show the p-periodic logis-
tic equation has at most p stable cycles. Also, we present computational methods
investigating the stable cycles in case p = 2 and 3.
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1 Introduction

Since Robert May published his famous work “Simple models with very com-
plicated dynamics” [15], the logistic difference equation

xn+1 = µxn(1− xn), µ ∈ (0, 4), xn ∈ [0, 1], n ∈ N := {0, 1, ...}

became of particular interest. The simplicity of this equation and complexity
of its dynamics make it powerful in illustrating many fundamental notions in
discrete dynamical systems. See for instance Devaney [2], Elaydi [3,4], Martelli
[14], Peitgen et al. [16], Gleick [8], and Hao and Zheng [10].

In this paper, we assume a periodically fluctuating environment, and thus we
focus our attention on the p-periodic version of the logistic equation, i.e.

xn+1 = µn mod pxn(1− xn), µ0, µ1, ...µp−1 ∈ (0, 4), xn ∈ [0, 1] ∀n ∈ N, (1)
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where p is assumed to be minimal. In the past two decades or so, some at-
tention has been given to this equation, see for instance Grinfeld et al. [9],
Jia [13], and Kot and Schaffer [12]. However, as in the autonomous case, this
equation is rich enough to be worth further investigation. Thanks to recent
developments in the theory of periodic difference equations, AlSharawi et al.
[1], Elaydi and Sacker [5,6], Henson [11], Selgrade and Roberds [17], Franke
and Selgrade [7], and computer simulations, we are able to give more details
about the dynamics of the p-periodic logistic equation in (1). We show the
existence of cycles of minimal periods 1, p, 2p, .... Then we extend Singers’s
theorem to periodic difference equations and show equation (1) has at most p
stable cycles (Section 2). In Sections 3 and 4, we use MAPLE and MATLAB
to explore the stable cycles in the 2 and 3 periodic cases.

2 Existence and stability of cycles

AlSharawi et al. [1] gave an extension of the well known Sharkovsky’s theorem
to periodic difference equations. For the reader’s convenience, we state it here,
but first we need the p-Sharkovsky’s ordering [1]. Given positive integers p > 1
and r ≥ 1, denote the least common multiple of p and r by lcm(p, r), define
Ap,r = {n : lcm(n, p) = rp}, then the p-Sharkovsky’s ordering is given by

Ap,3 ≺ Ap,5 ≺ Ap,7 ≺ ...

Ap,2·3 ≺ Ap,2·5 ≺ Ap,2·7 ≺ . . .
...

Ap,2n·3 ≺ Ap,2n·5 ≺ Ap,2n·7 ≺ . . .
...

· · · ≺ Ap,2n ≺ ... ≺ Ap,22 ≺ Ap,2 ≺ Ap,1.

Theorem 1 (Sharkovsky’s theorem for periodic difference equations)
Let fi : X → X, i = 0, 1, ..., p− 1 be continuous maps on a closed interval X.
Suppose that the p-periodic difference equation xn+1 = fn mod p(xn) has a geo-

metric r-cycle, and let ` := lcm(p,r)
p

. Then each set Ap,q, such that Ap,` ≺ Ap,q,
contains a period of a geometric cycle.

To have an equilibrium point x∗ ∈ [0, 1], the maps f0(x) = µ0x(1 − x), ...,
fp−1(x) = µp−1x(1 − x) need to intersect at x = x∗, which implies x∗ = 0
is the only equilibrium point. Li [13] proved the p-periodic logistic equation
in (1) has a p-cycle when

∏p−1
i=0 µi > 1. By Theorem 1, the existence of a

p-cycle does not assure the existence of any other cycles. Using a graphical
approach, Grinfeld et al. [9] have shown the existence of a stable 2n-cycle in
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the 2-periodic case. In fact, depending on the bifurcation theory of Henson
[11], we get a stronger result. Let us state a special version of Henson’s theory
that suits our need.

Theorem 2 Suppose F (µ, x) is nonlinear in x, one to one in µ, C2 in both µ
and x, and the autonomous equation xn+1 = F (µ, xn) has a cycle {x0, x1, ..., xq−1}
of minimal period q. Then for sufficiently small ε, there exist µ0, ..., µp−1 ∈
[µ− ε, µ+ ε] such that the p-periodic difference equation xn+1 = fn mod p(xn) =
F (µn mod p, xn) has gcd(p, q) distinct cycles, each of which is of minimal period
lcm(p, q). Furthermore, if |Fx(µ, x0)Fx(µ, x1)...Fx(µ, xp−1)| 6= 1 then either all
of the gcd(p, q) cycles are asymptotically stable, or they are all unstable.

PROOF. See Henson [11].

Now, we have the following result.

Theorem 3 The only possible cycles of the p-periodic logistic equation (1) are
cycles of minimal periods 1 or mp, m ∈ Z+. Furthermore, for each m ∈ Z+,
there exists µ0, µ1, ..., µp−1 ∈ (0, 4) such that equation (1) has cycles of minimal
periods rp for all m ≺ r in the 1-Sharkovsky’s ordering.

PROOF.

Denote the greatest common divisor between p and r (gcd(p, r)) by s. Then
we proceed by eliminating two possibilities. First, when r divides p, r 6= p, 1.
Suppose x0 → x1 → ... → xr−1 is an r-cycle of equation (1). Then it is
necessary for the p equations

xj+1 mod r = µjxj mod r(1− xj mod r), 0 ≤ j ≤ p− 1

to be satisfied, but having µi 6= µj for some i, j ∈ {0, 1, ..., p − 1} produces a
contradiction. Second, when r is neither a divisor nor a multiple of p. Again
suppose there is an r-cycle as before, then we need the kp

s
equations

xj+1 mod r = µj mod pxj mod r(1− xj mod r), 0 ≤ j ≤ rp

s
.

to be satisfied. Observe that rp
s

> max{k, p}. If s = 1 then µ0 = µ1 = ... =
µp−1, which contradicts the fact that (1) is nonautonomous . If s > 1 then the
rp
s

equations reduces our p-periodic equation to a p∗-periodic one, for some
positive integer p∗ < p, and this contradicts the minimality of the period p.
To this end we verified the nonexistence of cycles of minimal periods different
from 1,mp. Next, given m ∈ Z+, and let r ∈ Ap,m, there exists µ ∈ (0, 4) such
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that the autonomous equation xn+1 = µxn(1 − xn) has a cycle of minimal
period r. By Henson’s Theorem 2, we perturb µ to get µ0, µ1, ..., µp−1 ∈ (0, 4)
so that equation (1) has a cycle of minimal period lcm(r, p) = mp. Finally,
invoke Theorem 1 to complete the proof.

Remark 4 From Theorems 2 and 3, the cascade of cycles associated with
the p-periodic logistic equation along a line sufficiently close and parallel to
(t, t, t) 0 < t < 4 is

3p ≺ 5p ≺ ... ≺ 2np ≺ ... ≺ 4p ≺ 2p ≺ p.

Singer’s theorem [18] is a useful tool in finding an upper bound for the number
of stable cycles in autonomous difference equations xn+1 = f(xn). For our
convenience, we write Singers theorem, then we extend it to periodic difference
equations in the form xn+1 = fn(xn). A stability definition in the autonomous
case can be found in many undergraduate texts [3,4]; however, for the periodic
nonautonomous case we adopt the following definition [1].

Definition 5 Let cr = {x̄0, x̄1, . . . , x̄r−1} be a geometric r-cycle of xn+1 =
fn mod p(xn) in an interval X. Then

(i) cr is uniformly stable (US) if given ε > 0 there exists δ > 0 such that for
any n0 = 0, 1, . . . , p− 1, and x ∈ X,

|x− x̄n0 mod r| < δ implies |Φn(fn0)x− Φn(fn)x̄n0 mod r| < ε

for all n ∈ Z+, where Φn(fn0) = f(n0+n−1) mod p ◦ · · · ◦ f(n0+1) mod p ◦ fn0.
(ii) cr is uniformly attracting (UA) if there exists η > 0 such that for any

n0 = 0, 1, . . . , p− 1, and x ∈ X,

|x− x̄n0 mod r| < η implies lim
n→∞Φns(fn0)x = x̄n0 mod r,

where s = lcm(r, p).
(iii) cr is uniformly asymptotically stable (UAS) if it is both uniformly stable

and uniformly attracting.
(iv) cr is globally asymptotically stable (GAS) if it is UAS and η = ∞.

For a better understanding of stability, uniform stability, and a stability cri-
teria, we refer the reader to [1] and [3].

Definition 6 Let f : X → X be differentiable on the closed interval X. Then
the Schwarzian derivative of f is defined by

S(f(x)) :=

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.
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Theorem 7 ( Singer’s theorem) Let f : X → X be defined on the closed
interval X such that the Schwarzian derivative is negative for all x ∈ X. If f
has m critical points in X, then the difference equation xn+1 = f(xn) has at
most 2 + m attracting cycles.

PROOF. See Singer [18], or Elaydi [4], page 63.

Theorem 8 (An extension of Singer’s theorem) Let fi : X → X be
defined on the closed interval X such that S(fi(x)) < 0 for all x ∈ X and
∀ i = 0, 1, ..., p − 1. If fi has mi critical points in X, then the p-periodic
difference equation xn+1 = fn mod p(xn) has at most 2 +

∑p−1
i=0 mi uniformly

attracting cycles.

PROOF. Define g(x) = fp−1 ◦ fp−2 ◦ ... ◦ f0(x), then we divide the proof into
two steps

Step One: xn+1 = g(xn) has at most 2+
∑p−1

i=0 mi stable cycles. Since S(fi) < 0
for each i = 0, 1, ..., p − 1, then it can be shown by mathematical induction
that S(g) < 0. Now, in Singers theorem, the number of stable cycles of g(x) is
built on the number of critical points. Thus let us concentrate on the critical
points of g(x). Denote the critical points of fi by ci,j, 1 ≤ j ≤ mi. Then

g′(x) = f ′p−1 (fp−2 ◦ ... ◦ f0(x)) · f ′p−2 (fp−3 ◦ ... ◦ f0(x)) · ... · f ′0(x)

implies

x = c0,j, j = 1, ..., m0

f0(x) = c1,j, j = 1, ..., m1

f1(f0(x)) = c2,j, j = 1, ..., m2

...

fp−2(...(f1(f0(x)))) = cp−1,j, j = 1, ..., mp−1.

Clearly, the first line of equations in this system has m0 solutions, and con-
tribute to the m0 orbits

O+(c0,j) = {c0,j, g(c0,j), g
2(c0,j), ...}, 1 ≤ j ≤ m0.

It is difficult to determine how many solutions the second line of equations
may provide; however, they contribute to the m1 orbits

O+(y1,j) = {y1,j, g(y1,j), g
2(y1,j), ...}, 1 ≤ j ≤ m1, and y1,j = fp−1◦...◦f1(c1,j).

Similarly, for the rest of the above equations. Thus, instead of determining
the number of critical points of g, which is difficult, we count the number of
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orbits associated with the critical points. Thus we have 2 +
∑p−1

i=0 mi orbits
associated with the critical points, and this is the maximum number of stable
cycles of g.

Step Two: g(x) has an attracting r-cycle if and only if xn+1 = fn mod p(xn) has a
uniformly attracting q-cycle for some q ∈ Ap,r. Suppose g(x) has the attracting
r-cycle, x0, x1, ..., xr−1, we set these points on the fiber F0 (see [1], [5] and [6]
for more details about the structure of the fibers). Then we set the r distinct
points f0(xi), 0 ≤ i < r on the fiber F1, the r points f1 ◦ f0(xi), 0 ≤ i < r
on the fiber F2, and so on. Since the maps fi are continuous and convergence
is preserved under continuity, then it is a straight forward to check that this
construction provides a UA geometric cycle of minimal period q for some
q ∈ Ap,r. Conversely, whenever xn+1 = fn(xn) has a UA q-cycle, q ∈ Ap,r, we
take the r points on the fiber F0, that provide an attracting r-cycle for the
autonomous equation xn+1 = g(xn).

From steps one and two, and by counting the two boundary points of the
domain X, the p-periodic difference equation xn+1 = fn mod p(xn) has at most
2 +

∑p−1
i=0 mi UA cycles.

Corollary 9 The p-periodic logistic equation in (1) has at most p attracting
cycles.

PROOF. Since f ′i(x) = 0 at one point x = 1
2

for each i = 0, 1, ..., p− 1, and
the boundary points 0 and 1 are attracted to the origin, then equation (1) has
at most p attracting cycles in the interval (0, 1).

3 The case p = 2

Throughout this section we consider p = 2; i.e. f0(x) = µ0x(1−x) and f1(x) =
µ1x(1 − x). This can be thought of as a model for species with two non-
overlapping generations each year, one for the winter and one for the summer.
Since µ0 = µ1 reduces equation (1) to the autonomous case, we consider
µ0 6= µ1. Also, observe that µ0 < µ1 and µ1 < µ0 exhibit the same dynamics.

In equation (1), the origin x∗ = 0 is GAS with respect to the domain [0, 1]
as long as µ0µ1 ≤ 1. This case can be considered trivial, thus we focus our
attention on the domain (0, 1), and consider µ0µ1 > 1. It is well known that
the autonomous equation xn+1 = µxn(1 − xn) has a GAS fixed point when
1 < µ < 3, namely x∗ = µ−1

µ
, and an asymptotically stable 2-cycle when

3 < µ < 1 +
√

6. By Theorem 2, equation (1) has a GAS 2-cycle for all
µ0, µ1 ∈ [µ − εµ, µ + εµ], 1 < µ < 3, and two UAS 2-cycles when µ0, µ1 ∈
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[µ− εµ, µ + εµ], 3 < µ < 1 +
√

6. But Theorem 2 does not help in the case of
large perturbations, so we need to approach these 2-cycles differently. Using
resultants, and MAPLE, we solve the following systems of equations for µ0

and µ1





x1 = f0(x0)

x0 = f1(x1)

f ′0(x0)f
′
1(x1) = 1,

and





x1 = f0(x0)

x0 = f1(x1)

f ′0(x0)f
′
1(x1) = −1.

The first system comes from the idea of a tangent bifurcation. After solving
and simplifying, we get µ0µ1 − 1 = 0 and

−4µ1µ
2
0 + µ2

1µ
2
0 − 4µ2

1µ0 + 18µ1µ0 − 27 = 0. (2)

Denote the curve branches of equation (2) by Γ1L and Γ1U . Then a GAS 2-
cycle is born at µ0µ1 = 1, and it changes from a GAS to a UAS when a new
UAS 2-cycle is created at Γ1L and Γ1U , see Figures 1 and 2,3. The second
system comes from the idea of a saddle-node bifurcation. After solving and
simplifying, we get

−4µ2
1µ

3
0 + 12µ1µ

2
0− 85µ1µ0 + 15µ2

1µ
2
0 + 12µ2

1µ0 + µ3
1µ

3
0− 4µ3

1µ
2
0 + 125 = 0, (3)

we denote the curve branches of this equation by Γ2L and Γ2U , see Figure
1. A 2-cycle loses stability to a 4-cycle when it bifurcates into a 4-cycle at
Γ2U and Γ2L. Thus in the region bounded by the curves Γ2L, Γ2U , Γ1U , Γ1L and
3 < µ0 < 1 +

√
6, µ0 6= µ1, we have two UAS 2-cycles, see Figure 3.

Next, the autonomous equation has an asymptotically stable 4-cycle for 1 +√
6 < µ < γ, where gamma is a positive real number less than 4. It is not

easy to find the exact value of γ; however, a numerical approximation shows
that γ ≈ 3.544090360. Using MAPLE, we find that the exact value of γ can
be written in an interesting way. The equation

µ6 − 12µ5 + 47µ4 − 188µ3 + 517µ2 + 4913 = 0
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Fig. 1. The bifurcation curves for the stable 2-cycles and 4-cycles in the 2-periodic
logistic equation

has a real zero between 5 and 6, which we denote by α. Then γ = 1+
√

1 + α.
By Theorem 2, equation (1) has two UAS 4-cycles for some µ0, µ1 ∈ [µ −
εµ, µ + εµ] and 1 +

√
6 < µ < 1 +

√
1 + α. We get a better understanding of

these 4-cycles by solving the following equations for µ0 and µ1.





x1 = f0(x0)

x2 = f1(x1)

x3 = f0(x2)

x4 = f1(x3)

f ′0(x0)f
′
1(x1)f

′
0(x2)f

′
1(x3) = 1,

and
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



x1 = f0(x0)

x2 = f1(x1)

x3 = f0(x2)

x4 = f1(x3)

f ′0(x0)f
′
1(x1)f

′
0(x2)f

′
1(x3) = −1,

Again the first system comes from the idea of a tangent bifurcation and the
second system comes from the idea of a saddle-node bifurcation. After some
MAPLE manipulation, the first system provides

x8y8−8x8y7−8x7y8+16x8y6+64x7y7+16x6y8−112x7y6−112x6y7−64x7y5+
8x6y6−64x5y7+720x6y5+720x5y6−1504x5y5+256x6y3−832x5y4−832x4y5+
256x3y6−2176x5y3 +1682x4y4−2176x3y5 +4792x4y3 +4792x3y4 +3328x4y2 +
4896x3y3+3328x2y4−13680x3y2−13680x2y3−432x2y2−19872x2y−19872xy2+
77760xy + 91125 = 0,

where (x, y) is used in place (µ0, µ1) to shorten the equation, we denote its
curve branches by Γ4U and Γ4L. The second system provides a lengthy poly-
nomial equation in µ0 and µ1 of degree 24, we denote its curve branches by
Γ3U and Γ3L (see Figure 1). In Figures 2 and 3 we use MATLAB to plot the
stable cycles of the 2-periodic logistic equation along parametric curves in the
µ0, µ1 plane. Now, we summarize

Fig. 2. The stable cycles along the line
µ0 = t, µ1 = 5.6− µ0, 0 ≤ t ≤ 5.6

Fig. 3. The stable cycles along
µ0 = 0.1 cos(t)+3.4,µ1 = 0.1 sin(t)+3.4,
0 < t < 2π.

• A UAS 4-cycle is born at Γ2U and Γ2L, another one is born at Γ4U and Γ4L.
• A UAS 4-cycle bifurcates into a UAS 8-cycle at Γ3U and Γ3L.
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• In the region bounded by Γ2U , Γ1U , Γ3U and Γ2L, there is a UAS 2-cycle and a
UAS 4-cycle. The situation is similar for the region bounded by Γ2L, Γ1L, Γ3L

and Γ2U . See Figures 3 and 1.
• In the region bounded by Γ2L, Γ3U and µ1 = µ0, we have two UAS 4-cycles.

The situation is similar in the region bounded by Γ2U , Γ3L and µ1 = µ0. See
Figures 3 and 1.

Remark 10 (i) In general, the dynamics of the 2-periodic equation changes
dramatically to the right or above the bold parts of the curves Γ3L and Γ3U .
So we give no description in that region. However, the same method used
above can be used to locate the region in the µ0, µ1 plane where UAS 8-cycles
exist.

(ii) Our analysis does not capture those cycles that are born unstable and stay
unstable, see Example 11.

We end this section by the following specific example.

Example 11 Fix µ0 = 2.29 and µ1 = 3.8174, and observe the location of
(2.29, 3.8174) in Figure 1. Numerical calculations reveal the existence of the
following.

• A UAS 2-cycle {x0, x1} = {0.831606, 0.320685}.
• A UAS 4-cycle {x0, x1, x2, x3} = {0.373333, 0.535758, 0.949469, 0.109869}.
• A UAS 4-cycle {x0, x1, x2, x3} = {0.423867, 0.559227, 0.940959, 0.127221}.
• An unstable 4-cycle {x0, x1, x2, x3} = {0.383656, 0.541503, 0.947775, 0.113350}.

4 The case p = 3

Throughout this section we concentrate on the 3-periodic logistic equation;
i.e.

f0(x) = µ0x(1− x), f1(x) = µ1x(1− x), f2(x) = µ2x(1− x).

The three parameters in this case make it more complex. Nevertheless, we
find it possible to determine the regions in the µ0, µ1, µ2 space, where a GAS
3-cycle exist. Also, we determine the region where three UAS 3-cycles exist.
Let us recall that the autonomous equation xn+1 = µxn(1 − xn) has a GAS
fixed point for 1 < µ < 3, and an asymptotically stable 3-cycle for 1 + 2

√
2 <

µ < γ∗ ≈ 3.841499008, where γ∗ is the positive root of

µ2−2µ+
1

480
(7660+540

√
201)

2
3 (27

√
201−383)− 1

6
(7660+540

√
201)

1
3− 8

3
= 0

(finding γ∗ is not obvious, nevertheless, MAPLE calculations helped in getting
this form). By Theorem 2, there exist µ0, µ1, µ2 ∈ [µ − ε, µ + ε], µ ∈ (1, 3)
such that equation (1) has a GAS 3-cycle, and µ0, µ1, µ2 ∈ [µ − ε, µ + ε], µ ∈
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(1 + 2
√

2, γ∗) such that equation (1) has three UAS 3-cycles. Recall from
Theorem 3, the cascade of cycles in this case is given by

9 ≺ 15 ≺ ... ≺ 12 ≺ 6 ≺ 3.

The 3-cycles are the most simple ones to deal with in this case. In fact, they
are the most interesting ones here. We give an explicit description of these
cycles by solving the following systems of equations for µ0, µ1, µ2.





x1 = f0(x0)

x2 = f1(x1)

x0 = f2(x2)

f ′0(x0)f
′
1(x1)f

′
2(x2) = 1,

and





x1 = f0(x0)

x2 = f1(x1)

x0 = f2(x2)

f ′0(x0)f
′
1(x1)f

′
2(x2) = −1.

Fig. 4. The surfaces µ0µ1µ2 = 1 (left)
and S2(right)

Fig. 5. The surfaces µ0µ1µ2 = 1, S1

and S2.

The first system of equations gives two surfaces. The first is µ0µ1µ2 = 1 which
is the place where a GAS 3-cycle is born. The second, which we call S1 is
the place where three UAS 3-cycles are born. The second system of equations
gives one complex surface, which we denote by S2, Figure 4 shows the region
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Fig. 6. The region between S1 and S2 where three UAS 3-cycles exit

between the surfaces µ0µ1µ2 = 1 and S2, where a GAS 3-cycle exist. Exiting
this region through the surface S2 contributes to the bifurcation of the GAS
3-cycle into a UAS 6-cycle, then the period doubling phenomenon takes over.
As we see in Figure 5, the surfaces S1 and S2 intersect to form a “chamber”, we
magnify this chamber in Figure 4. Entering the chamber through a positive
direction in µ0, µ1 or µ2 contribute to the creation of a UAS 3-cycle. Thus
inside the chamber we have three UAS 3-cycles. Of course now exiting the
chamber in a positive direction in µ0, µ1 or µ2 contribute to the bifurcation
of a UAS 3-cycle into a UAS 6-cycle, then the period doubling phenomenon
takes over again. Figures 7 and 8 show the stable cycles along two parametric
curves in the µ0, µ1, µ2 space.

Fig. 7. The stable cycles along
µ0 = 3.8, µ1 = 3.5,µ2 = t, 0 < t < 4.

Fig. 8. The stable cycles along
µ0 = 0.5 cos(t) + 3, µ1 = 0.5 sin(t) + 3,
µ2 = 3.5, 5.5 < t < 2π + 2.5.
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