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Evaluation of series with Hurwitz and Lerch  zeta function coefficients by using
Hankel contour integrals.

Khristo N. Boyadzhiev

Abstract. We introduce a new technique for evaluation of series with zeta coefficients and
also for evaluation of certain integrals involving the logGamma function. This technique is based
on Hankel integral representations of the Hurwitz zeta, the Lerch Transcendent, the Digamma and
logGamma functions.
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1. Introduction.

The Hurwitz zeta function  is defined for all  by

 , (1.1)

and has the integral representation:

. (1.2)

When , it turns into Riemann’s zeta function, .

In this note we present a new method for evaluating the series 

(1.3)

and (1.4)
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 in a closed form. The two series have received a considerable attention since

Srivastava [17], [18] initiated their systematic study in 1988. Many interesting results were

obtained consequently by Srivastava and Choi (for instance, [6]) and were collected in their recent

book [19]. Fundamental contributions to this theory and independent evaluations belong also to

Adamchik [1] and Kanemitsu et al [13], [15], [16], Hashimoto et al [12]. For some recent

developments see [14].

The technique presented here is very straightforward and applies also to series with the

Lerch Transcendent [8]:

 , (1.5)

in the coefficients. For example, we evaluate here in a closed form the series

(1.6)

The evaluation of (1.3) and (1.4) requires zeta values  for positive and negative

integers . We use a representation of  in terms of a Hankel integral, which makes it

possible to represent the values  for positive and negative integers by the same type of

integral. The series (1.3) and (1.4) are evaluated here in terms of the functions

, (1,7)

and similar expressions are used for (1.6). Here  is the Digamma function and

 (1.8)

 (  is Euler’s constant). The values  are also well-known and can be written in terms of

Bernoulli’s polynomials [3], [19]:

. (1.9)

The values , however, represent a challenge and give rise to new constructions [1], [7],
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[10], [14], [19].

In section 2 we introduce Hankel contours and obtain integral representations for  

and . Hankel integral representations for the Digamma function  and the  logGamma

function  are given in section 3. The series (1.3) and (1.4) are evaluated in section 4,

while sections 5 and 6 deal with the series (1.6). 

Our method makes it possible to evaluate integrals of the form

,

for functions  which have certain Hankel integral representations. Some integrals like

(1.10)

have already been evaluated by Gosper [11] and Adamchik [1], see also [6], [7], [9], [10], [19].

Using the Hankel integral technique we give an independent evaluation of (1.10) in Section 7. In

that section  we also obtain a Hankel integral representation for , where  is the

Barnes function.

The Appendix at the end of the paper contains a list of some of the Hankel integral

representations for easy reference.

.

2. Hankel integrals.

For  consider the integral

, (2.1)

where is the Hankel contour consisting of three parts: , with the “lower

side”  (i.e. ) of the ray , traced left to right, and  the “upper

side”  ( ) of this ray traced right to left. Finally,  is a
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small circle traced counterclockwise and connecting the two sides of the ray. This contour is used,

for example, in [3, p.253] and [20, p.48]. The integral does not depend on  and setting

one can easily see that the contribution from   approaches zero. Evaluating the limit we

find:

.

Therefore,

. (2.2)

In particular,  for every positive integer . From (2.2)

, (2.3)

and also

, (2.4)

in view of the identity

.

Equation (2.4) will be used to represent   for negative integer values of , while (2.3) will

be used for the positive integer values. First, a note is due: the above equations were obtained for

; the function , however, is defined and holomorphic for every complex
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, and therefore equation (2.4) extends and represents the Hurwitz zeta function for every

.Similar representations of the Hurwitz zeta function by a Hankel integral with a

contour stretching along the positive semi-axis can be found in [8], [19] and [21].

For  , (2.4) gives:

. (2.5)

We can not plug in (2.3) or (2.4) directly, so we write (using limit and the rule of

L’Hospital in (2.3)):

,

. (2.6)

The first part of the following lemma is ready.

Lemma 1. Equation (2.5) holds for  and equation (2.6) holds for

  . Also,  for all 

, (2.7)

In particular, for :

, (2.8)

where  is the Digamma function (see below section 3).

Proof. Equation (2.7) results from (2.4) by differentiation for :

,
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and (2.8) comes from (2.7) with .

Remark. It follows immediately from the representation (2.8) that the functions 

satisfy the relation:

, (2.9)

or . (2.10)

Equation (2.10) can be use used for an alternative proof of Theorem 2 below by consecutive

integration. 

The functions  are similar to the generalized polygamma functions 

introduced by Espinosa and Moll [9] and the results obtained by them for  can easily be

written in terms of  and vise versa.

3. The Digamma function.

At this point we need to provide a Hankel integral representations also for the Gauss

Digamma function  and the logGamma function . The Digamma function is defined

by  ([2], [19], [20], [21]):

,

it has the integral representation (Gauss), [2, p. 26]:

, (3.1)

and the series representation:

, (3.2)
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where

  (3.3)

is Euler’s constant. The values of on the positive integers are given by  (1.8).

Lemma 2. The Digamma function has the following representations by Hankel integrals

:

, (3.4)

also:

, (3.5)

, (3.6)

. (3.7)

Proof. Setting in the contour one computes:

,

since the last limit is zero (this is left to the reader). The parts with  ‘ ’ cancel out.

Next, we use the representation of the Gamma function  by a Hankel contour

integral [19, p. 48] (same contour as described above):

, (3.8)

and differentiate both sides for .This leads to (3.5) and (3.6) follows from there when .
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Finally, (3.7) is a combination of (3.4) and (3.6). The lemma is proved.

From (3.7) , for  we find

, (3.9)

and from (3.2):

,

which symbolically can be written as

 . (3.10)

In the spirit of Lemma 2 we obtain also a Hankel integral representation for the

logGamma function.

Lemma 3. The following representation holds:

, (3.11)

i.e. .

Proof. When  equation (2.8) becomes

. (3.12).

At the same time, (see, for example, [19], pp. 91-92, or [21], p. 271):

. (3.13)

which together with (3.3) lead to (3.11).

Note. Differentiating  (3.11) for the variable  gives a second proof of  (3.7).
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4. Evaluation of the series with zeta values.

First, we present two simple cases in order to explain the method. Consider the series

, (4.1)

i.e. S = . By (2.6) we find

,

, (4.2)

and therefore, by (3.9):

. (4.3)

The second example is the series

, (4.4)

which can be evaluated by integrating (4.3). We shall give a different proof, though, in order to

illustrate our method. Instead of (4.3) we integrate (4.2) for  to obtain:

(4.5)

(the integration constant  is  in order to make the right hand side zero for ). Splitting

this integral into three parts we write:

(4.6)
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,

 and use (3.7) for the first one and (2.8) for the second and the third:

.

In view of  (3.12) and (3.13) this becomes

, (4.7)

([21, p. 276]; see also [19, p.159]) .

For the general case we need a simple integration formula.

Lemma 4. For every :

. (4.8)

Proof: Integration by parts.

We are ready now to evaluate the series (1.3).

Theorem 1.  For every integer ,  , and :

(4.9)

where the functions are defined by (2.8) .

Proof. We multiply both sides of equation (4.2), i.e.

by   and integrate for , taking antiderivatives which are zeros at . Thus:

. (4.10)
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According to (4.8)

(4.11)

.

The first integral here we replace by  from (3.7). For the second and the third integrals

we use (2.8) . This gives (4.9) and the theorem is proved.    

In a similar way we can evaluate the series (1.4).

,  

Theorem 2.  For every integer ,  , and :

(4.13)

Proof. We integrate equation (4.2) for  consecutively times to obtain:

,

where  and its derivatives for  are zeros at , so that

.

Therefore,



12

.

The integrals here can be evaluated by (2.8) and (3.7) and thus one comes to (4.13).

5. Series with the Lerch Transcendent 

The Lerch Transcendent , also called Hurwitz-Lerch or Lerch zeta function, is

defined by (1.5) for  and .  When  it becomes

the Hurwitz zeta function . We exclude this case which has already been considered. For

, the Lerch Transcendent turns into the polylogarithmic function:

.

 Information about  can be found, for instance, in [8] and [13]. The standard integral

representation of this function is similar to (1.2):

,

and the Hankel integral representations (obtained in the same way as (2.3) and (2.4)) are:

, (5.1)

, (5.2)

where  is the same contour described in section 2 . Equation (5.2) holds for all  
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where both sides are defined. In particular, it is true for . One has for :

 , (5.3)

(note that this integral does not depend on ). As before, (5.1) leads to 

. (5.4)

In contrast to (2.6), however, this representation is true also for , i.e.

, (5.5)

as both sides are well defined. This is the analog of (3.7). Differentiation of  (5.3) gives

, (5.6)

which corresponds to (2.8).

Theorem 3. For any  and :

(5.7)

.

Note that the summation on the left side in (5.7) starts from , while in (4.9) it starts from

.

Proof. Using (5.4) we find:

, (5.8)
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and correspondingly,

. (5.9)

Proceeding as in the proof of Theorem 1 we come to the analog of  (4.11) with the only

difference that the denominator in the integrals is  instead of . Using (5.5) to

substitute  for the first integral and (5.6) for the other two, we can write the hand right

side of  (5.9) as

.

Moving the first term here to the sum on the left side in (5,9) we arrive at (5.7).

When  we have from (5.8)

,

or , (5.10)

which is the Maclaurin series expansion of  in the variable .

6. Evaluating  and  in terms of more simple functions.

Let  throughout this section. First we shall evaluate   in

terms of the geometric polynomials  defined by

(6.1)

where   are the Stirling numbers of second kind. The geometric polynomials were introduced
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in [5] and used there for series summation and asymptotic expansions. In particular, the following

summation formula holds for every 

 . (6.2)

Proposition 1. For one has:

(6.3)

Proof.  When   the function

 

is defined for all . In particular, when one has:

= ,

and according to (6.2) we arrive at (6.3).

Next we consider  . We shall express these values in terms of the function

, i.e.,

, (6.4)

and its derivatives for .

Proposition 2. For   :

(6.5)
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Proof. One has

,

and therefore,

. (6.6)

Clearly,

. (6.7)

At the same time, for any  q-times differentiable function :

, (6.8)

(see [5]). Substituting  (6.7) in (6.6) we find the representation  (6.5)  of   in terms

of  . .

Lemma 5. The function   in (6.4) has the integral representation:

. (6.9)

Proof. By integrating for  the representation

,
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we find that 

. (6.10)

To obtain  (6.9) we multiply  (6.10)  by   and sum from  to . 

The function    has also a representation involving the geometric polynomials

in the spirit of  (6.3).

Proposition 3. For :

.

This follows from (6.6) where the last sum is replaced by  , (see  (6.7))

and then  (6.2) and (6.9) are used. At that, (6.2) is used in the form

,

true for any  independent of  (as follows from (6.2) by the substitution ).

7. Evaluation of integrals.

The family of polygamma functions    is defined by:  and

.

Polygamma functions of negative order, i.e for negative integers , have been defined by several

authors, as discussed in [1] and [7]. Adamchik [1], for example, considered the family of

functions
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, (7.1)

and evaluated this integral in a closed form.

At the same time, it is clear from equation (4.3), i.e.

,

that evaluating the series (1.3) is equivalent to evaluating the integral:

, (7.2)

similar to the one in (7.1). For details, comments and other evaluations see [1], [7], [10], [11].

It is convenient to have at hand general method for evaluation of such integrals. The

proofs of Theorems 1, 2, 3 show that when a function  has a representation by a Hankel

integral as in (2.8), we can evaluate integrals of the form 

 as combinations of the functions  and polynomials. For example, we shall evaluate the

integral (1.10). We need a slight modification of the integration rule (4.8). Namely:

, (7.3)

for every  .

Theorem 4. For ,  and :

(7.4)
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.

The proof follows from Lemma 3, formula (7.3), and (2.8).

In particular, we have:

. (7.5)

Using  (2.8) we write

.

Next, we shall simplify the expression 

. 

The second Bernoulli polynomial is

 ,

and according to (1.9):

.

Also, by (1.8)

 ,

 and we obtain from (7.5) 

 . (7.6)

The integral in (7.6) was first evaluated by Barnes [4] in terms of the -function which he

studied. The -function, called now the Barnes function is defined by the difference equation

.

In terms of  the evaluation is:
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(7.7)

,

([4], [19], p.207). The connection with (7.6) is easily found by using the equation ([19], p. 94):

, (7.8)

where  is the Glaisher-Kinkelin constant ([1], [6], [19]). 

The function  a has a Hankel integral representation. From (1.8) and (1.9):

,

and by (2.8):

. (7.9)

We can use equation (7.8) now to represent  by a Hankel integral, as  and

 already have such representations. Substituting (7.9) and (3.11) in  (7.8) one arrives at:

, (7.10) 

or

, (7.11)

where  is the second degree polynomial:

. (7.12)

Therefore, one can evaluate integrals of the form
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,

either by the method used in Theorems 1- 4 or, alternatively, by repeated integration of  (7.11),

using the rule (2.10) for integrating . 

Appendix

This is a list of some Hankel integral representations obtained in the paper. They are given

with their original numbers. The contour  is described at the beginning of Section 2.

; (2.4)

; (2.5)

; (2.6)

(2.8)

( );

; (3.7)

; (3.11)

; (5.2)



22

References.

1. V. Adamchik, PolyGamma functions of negative order, J. Computational 

Applied Math., 100 (1998),191-199. 

2. G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 

1999.

3. Tom. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York,

1986.

4. E. W. Barnes, The theory of the G-function, Quart.J. Math., 31 (1899/1990), 264-314.

(Originally Quarterly Journal of Pure Mathematics.)

5. Khristo N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. 

Math. Math. Sci., 2005:23 (2005) 3849-3866.

6. J. Choi, H. M. Srivastava, Certain classes of series associated with the Zeta function and

multiple Gamma functions, J. Comput. Appl. Math., 118 (2000), 87-109.

7.  J. Choi, H. M. Srivastava and V. S. Adamchik, Multiple Gamma and related 

functions, Appl. Math.Comput., 134 (2003), 515-533. 

8. A. Erdélyi (editor), Higher Transcendental Functions, vol. 1, New York: McGrow-Hill,  

1955

9. O. Espinosa and V. Moll, A generalized polygamma function, Integral Transforms and 

Special Functions, v. 15, no. 2, (2004), 101-115.

10. O. Espinosa and V. Moll, On some integrals involving the Hurwitz zeta function: Part 2,

The Ramanujan J., 6, no. 4 (2002) 449-468.

11. R. Wm. Gosper, Jr., , Fields Ins. Communications, 14 (1997), 71-76.

12. M. Hashimoto, S. Kanemitsu, Y. Tanigawa, M. Yoshimoto, W.-P. Zhang, On some 

slowly convergent series involving the Hurwitz zeta-function, J. Computational Applied. 



23

Math. 160 (2003), 113-123.

13. S. Kanemitsu, M. Katsurada, M. Yoshimoto, On the Hurwitz-Lerch zeta function,  

Aequationes Math. 59 (2000), 1-19.

14. S. Kanemitsu, H. Kumagai, H. M. Srivastava, M. Yoshimoto, Some integral and 

asymptotic formulas associated with the Hurwitz Zeta function, Appl. Math. Comput., 

154 (2004), 641-664.

15 S. Kanemitsu, H. Kumagai, M. Yoshimoto, Sums involving the Hurwitz zeta function, 

The Ramanujan J., 5 (2001), 5-19.

16. S. Kanemitsu, H. Kumagai, M. Yoshimoto, On rapidly convergent series expressions 

for Zeta and L-values, and Log Sine integrals, The Ramanujan J., 5 (2001), 91-104.

17. H.M. Srivastava, Sums of certain series of the Riemann Zeta function, J. Math. Anal. 

Appl., 134 (1988), 129-140.

18. H.M. Srivastava, A unified presentation of certain classes of series of the Riemann Zeta 

function, Riv. Mat. Univ. Parma, (Ser 4) 14 (1988), 1-23.

19. H. M. Srivastava, J. Choi, Series Associated with Zeta and Related Functions, Kluwer 

Academic Publishers, Dordrecht /Boston /London, 2001.

20. Nico M. Temme, Special Functions, An Introduction to the Classical Functions of 

Mathematical Physics, John Wiley&Sons, New York, 1996.

21. E.T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University 

Press, 1992

k-boyadzhiev@onu.edu

Ohio Northern University

Department of Mathematics

Ada, OH 45810, USA


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

