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Abstract.  We formulate and analyze a new method for solving optimal control problems 

for systems governed by Volterra integral equations. Our method utilizes discretization of 

the original Volterra controlled system and a novel type of dynamic programming jn 

which the Hamilton-Jacobi function is parametrized by the control function (rather than 

the state, as in the case of ordinary dynamic programming). We also derive estimates for 

the computational cost of our method.  
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1. Introduction. 

 

The classical theory of optimal control was originally developed to deal with systems of 

controlled ordinary differential equations. It has been understood that many physical, 

technological, biological, and socio-economic problems cannot be adequately described 

by ordinary differential equations, and other mathematical models, including systems 

with memory, distributed systems, and other types of systems, have been added to the 

arsenal of the theory of optimal control. A broad category of systems can be described by 

Volterra integral equations.  

 

The simplest form of a controlled Volterra integral equation is 
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          --- (1.1) 

 

 

In this system, x(t) is the n-dimensional state function, and u(t) is the m-dimensional 

control function. For the purposes of this exposition, we postulate that f be continuous 

with respect to all variables and uniformly Lipschitz with respect to x. For the purposes of 

describing the necessary conditions that are briefly reviewed in this section, the 

admissible control functions are continuous functions with values in a compact set U, 
n

R⊆U  . In certain parts of the overall theory of optimal control for Volterra integral 

equations, the class of admissible control functions can be more general, for example it 

may consist of bounded measurable or p-integrable functions. On the other hand, as it 

will be explained below, for some of the results of the present paper it is necessary to 

further restrict the class of admissible controls and postulate Lipschitz continuity.  

 

Volterra integral equations arise in a wide variety of applications. In fact, it seems that, 

with the exception of the simplest physical problems, practically every situation that can 

be modelled by ordinary diffrential equations can be extended to a model with Volterra 

integral equations. For example, a general ODE system of interacting biological  

populations, of the form  
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can be extended to an integro-differential system 
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Indeed, some related extensions have already been considered in [CU] and in other 

works. In turn, every integrodifferential system of the form 
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can be reduced to a system of Volterra integral equations by setting 

ds)s(x,s,t(f)t(y

t

0

∫= , then the integrodifferential equation becomes 

ds))s(y),s(x,s(gx)t(x

t

0

0 ∫+= , so that we get a system of Volterra integral equations in 

the unknowns (x(t), y(t)).  

 

Problems in mathematical economics also lead to Volterra integral equations. The 

relationships among different quantities, for example between capital and investment, 

include memory effects (e.g. the present stock of capital depends on the history of 

investment strategies over a period of time, cf. [KM]), and the simplest way to describe 

such memory effects is through Volterra integral operators. 

 

Now we return to the general model of state dynamics (1.1). 

 

An optimal control problem for (1.1) concerns the minimization of a cost functional 
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The theory of optimal control of ordinary differential equations has two main methods: 

the extremum (usually called "maximum") principle of Pontryagin and his coworkers, and 

the method of dynamic programming. The metod of dynamic programming is particularly 

useful as it provides sufficient conditions for optimality. However, the nature of 



controlled Volterra equations is not, at first glance, conducive to the application of 

dynamic programming methods. If the state x(t) is known at some particular time t, and a 

control function is specified over an interval ]tt,t( δ+ , these two bits of information are 

not enough for the determination of the solution of (1.1) over the interval ]tt,t( δ+ . By 

contrast, for ordinary differential equations, it is always true that, given x(t) and a control 

function over ]tt,t( δ+ , the trajectory over ]tt,t( δ+  can be determined by solving an 

initial value problem for an ordinary differential equation with initial time t. For these 

reasons, optimal control problems for Volterra integral equations have been traditionally 

treated by extensions of Pontryagin's extremum principle. The related results are found in 

a number of papers, including [M, S, V, NW]; an approach based on direct variational 

methods, but still utilizing necessary conditions for optimality, may be found in [B]. 

 

The co-state )t(ψ  for the problem consisting of (1.1) and (1.2) satisfies the following 

adjoint equation, which is the counterpart of Hamiltonian equations (see, e.g., [S, V]): 
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The state x(.) is an n-dimensional column vector; the function f takes values that are n-

dimensional column vectors; the co-state ψ(.) is an n-dimensional row vector. The 

gradient, with respect to x, of a scalar-valued function is an n-dimensional row vector; 

fx∇  is a matrix with elements 
j
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column of fx∇ ). It should be noted that the adjoint equations in [S] and [V] are not 

exactly identical to (1.3), due to the fact that these authors do not use exactly the same 

cost functional as (1.2); however, these differences do not require substantially different 

proofs, and for that reason we present (1.3) without proof. 

 

 

The Hamiltonian is defined by 
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The extremum principle takes the following form [V]: under certain smoothness 

conditions, an optimal control (.)u*  and the corresponding trajectory and co-state, 

(.)and(.)x ** ψ , respectively, satisfy, for almost all t, 
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In this paper, we shall need the concept of what we shall term the relevant values of the 

state x(.). This is not standard terminolgy, but is is useful for our purposes.  

Under certain conditions, it is possible to estimate the range of the solution x(t), without 

relying on actually solving (1.1). For example, if the function f has linear growth rate with 

respect to x, i.e. if  
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At first, we do not specify the set of values of x for which (1.6) should hold; we 

tentatively carry out the calculations as if (1.6) were true for all x in n
R , until we find an 

estimate for the set relX  of relevant values of x(.), then we go back and postulate that 

(1.6) should hold for all x in relX .  

 

Then it follows from (1.1) that every solution x(.) satisfies 
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and therefore, by Gronwall's inequality, 
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In this case, the set relX  of relevant values of x(.) is 
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Thus the conclusion is that, if (1.6) holds for all x in the set relX  given by (1.9), then the 

solution x(t) always lies in that relX . 

 

It should be emphasized that (1.9) is an example of one case of a set of relevant values, 

and not the definition of relX  in general. 

 

Another example of estimating relX  is the case in which f satisfies a Lipschitz condition, 
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and for a particular value of x, which we may take, without loss of generality, to be 0, the 

function f remains bounded: 
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          --- (1.11) 

 

 

As before, we work at first as if (1.10) were true for all 21 x,x  in n
R , then we determine 

a suitable set relX , and then we return and postulate that (1.10) should hold for all 

21 x,x  in relX . 

Now, we have 
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          --- (1.12) 

 

thus 
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and, again by Gronwall's inequality, 
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so that, in this case, we can take 
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Thus, if (1.10) and (1.11) hold for all 21 x,x  in the set relX  given by (1.15), then all 

values of x(t) lie in that set relX . 

 

 

It should be noted that there are many other possibilities of finding examples of relX  

under suitable assumptions, but, in this paper, we are not interested in exhausting this 

topic.  

 

In the rest of this paper, we shall assume the existence of a bounded set n
relX R⊆ , 

without specifying how that set has been determined. 

 

 

 

 

 



2. The discrete Volterra control problem. 

 

Our approach will be to aproximate the original Volterra control problem by a sequence 

of analogous control problems for discrete Volterra equations. For this reason we need to 

have a method for solving optimal control problems for discrete Volterra equations. Thus 

we consider, in this section, the controlled Volterra equation in discrete time: 
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The discrete optimal control problem concerns the minimization of a functional J given 

by 
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In order to apply a suitable variant of the dynamic programing method to the problem 

consisting of (2.1) and (2.2), we need to build a parametrization of this optimal control 

problem. The expression "suitable variant" refers to the fact that, for the problem under 

consideration, the value function needs to be parametrized by current time and history of 

the control up to the current time, whereas in classical dynamic programming the value 

function is parametrized by current time and current value of the state. The memory effect 

of Volterra equations necessitates this seemingly unorthodox parametrization.  

We set 
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If ik0,)u~,i;k(x )i( ≤≤  the solution of the discrete Volterra equation 
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We define 
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The concatenation of )1ij0:)j(( −≤≤β=β  and )1Nji:)j(( −≤≤γ=γ  is defined as  
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          --- (2.6) 

 

 

The restriction of a control to indices that exceed 1i −  will be denoted by ><iu : 
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The cost functional J is parametrized as 
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where )1ij0:)j(( −≤≤β=β , )1Nji:)j(u(u i −≤≤=>< , and 

1Nki,)u,i;k(x i −≤≤⊗β ><  solves 
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In particular, we note that ),i;i(x)u,i;i(x i β=⊗β >< . 

 

The value function ),i(V β , )1ij0:)j(( −≤≤β=β , is defined in terms of the 

parametrization (2.8): 
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For 0i = , the collection )1ij0:)j(( −≤≤β  is empty; we therefore use a symbolic "empty 

set" ∅  in the function V, and that function becomes, when 0i = , ),0(V ∅ . 

 

 

For U∈ξ , we identify ξ⊗β  with the control )),1i(),...,1(),0((:ˆ ξ−βββ=β  so that 

ξ=β )i(ˆ . With this notational convention, the dynamic programming equations for V are 
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Next, we prove the necessity and sufficiency of (2.10). 

 

We have: 

 

Theorem 2.1. Eq. (2.11) is necessary for optimality, i.e. if ),i(V β  is defined by (2.10), 

then it satisfies (2.11). 

 

Proof: According to (2.10), we have, for every control >+< 1iu , 
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Therefore, for every U∈ξ , we have 
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Since every ><iu  can be represented as >+<⊗ξ 1iu  for some U∈ξ , we have 
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Theorem 2.2. Eq. (2.11) is sufficient for optimality, i.e. the solution of (2.11) satisfies 

(2.10). If a control function (.)u*  satisfies )u(J)u~,i(V *
iu~,i
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}N,...,2,1,0{i∈ , then (.)u*  is an optimal control, i.e. (.))u(J(.))u(J * ≤  for every 

admissible control function u(.).  

 

Proof: The proof that (2.11) implies (2.10) uses backward induction. If the statement is 

true for i+1, we shall show that it must be true for i. By the induction hypothesis, we have 
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As in the proof of theorem 2.1, every ><iu  can be represented as >+<>< ⊗ξ= 1ii uu . Then 

we have 
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thus  
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For i=N, the statement is true since ),N(V)),N;N(x()(J)u(J 0,NN,N β=βΦ=∅≡ β><β . 

Thus the backward induction is complete. 

For the second asertion of this theorem, suppose (.)u*  satisfies  )u(J)u~,i(V *
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simple consequence of our notational convention that, for every admissible control 

function u(.), we have )u(J)u(J 0,0 ≡><∅ . Therefore, (.))u(J),0(V *=∅ . At the same 

time, since V satisfies (2.9), we have (.))u(J)u(J),0(V 0,0 ≡≤∅ ><∅  for every admissible 

control function u(.). Therefore (.))u(J(.))u(J * ≤  for every admissible control function 

u(.).   ///. 

 

 

The next question is how to find a control function (.)u*  that satisfies 
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Theorem 2.3.  If a control function (.)u*  is constructed so as to satisfy 
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then it also satisfies  
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Proof: We denote by (.)x*  the solution of (2.1) that corresponds to the control function 

(.)u* . We use (2.11) and the fact that ∅≡><
*
Nu  to obtain 
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thus the wanted assertion is true for Ni = . We use backward induction: assuming that the 

wanted assertion is true for i+1, we shall show that it must be true for i. By the induction 

hypothesis, we have 
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thus the induction is complete. /// 

 

Remark 2.1. The construction of an optimal control for our variant of dynamic 

programming for discrete Volterra equations differs in a substantial way from the 

"feedback" or "closed loop" controls that are obtained in ordinary dynamic programming 

(i.e. in dynamic programming for ordinary differential equations or finite-difference 

equations). In our case, each optimal value )i(u*  depends on, among other things, the 

future optimal control policy *
iu >< . This additional complication further contributes to 

Bellman's "curse of dimensionality". It is, of course, natural that, due to the memory 

effect of Volterra equations, the construction of optimal controls will be more 

complicated than in the case of ordinary differential equations or finite-difference 

equations. /// 

 

Remark 2.2. The method of dynamic programming developed above can be modified to 

include the possibility of constraints of the type 
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where each set )x~,u~,i( ]i[)i(Ξ  is a closed subset of U. In that case, the dynamic 

programming equations take the form 
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The proof that these dynamic programming equations are necessary and sufficient for 

optimality under the constraints )x~,u~,i()i(u ]i[)i(Ξ∈  can be carried out as in the 

unconstrained case, and therefore we omit the details. ///



3. Results on discretization of controlled Volterra equations and cost functionals. 

 

We consider an Euler discretization of the original Volterra controlled system. If h
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T
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the step size of the Euler discretization, we set ih:ti = , i=0, 1, 2, ..., N, 
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Volterra equation is 
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The cost functional J is discretized as 
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We also consider the functional 
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In (3.2), x(.) is the solution of the continuous Volterra integral equation (1.1), whereas in 

(3.3) (.)xh  is the solution of the discretized Volterra equation (3.1). We have chosen the 

simplest numerical integration schemes in order to minimize the regularity assumptions 

that we need for the error estimates. 

 

The existing literature on numerical solution of Volterra integral equations deals with 

simple (i.e. non-controlled) Volterra equations. The approximation of controlled Volterra 

equations involves additional ingredients, and for this reason we cannot simply invoke 

existing results, but instead we must prove all the results we need.  

 

For the purpose of obtaining error estimates, it becomes necessary to restrict the class of 

admissible control functions to functions that satisfy a Lipschitz condition. 

 



Definition 3.1. The set of admisible control functions )L(Lip,adU  is defined as the set of 

all functions u(.) from [0, T] into U that satisfy a Lipschitz condition with fixed Lipschitz 

constant L:  |tt|L|)t(u)t(u| 2121 −≤−  for all 21 t,t  in [0, T].  /// 

 

We postulate: 

 

(i). There is a compact subset relX  of n
R  such that all values x(t) of solutions of the 

continuous problem (1.1) and also all values )t(x i
h  of solutions of the discrete Volterra 

equation fall into the set relX . (In other words, relX  is a common set of relevant values 

for both the continuous and the discretized problem. 

 

 

Also, we postulate the following properties for the functions f, F, and 0F ,  in addition to 

the previous conditions: 

 

(ii). The function f is jointly Lipschitz in x and u, with Lipschitz constant fL , uniformly 

in s and t: 

 

|}uu||xx{|L|)u,x,s,t(f)u,x,s,t(f| 2121f2211 −+−≤−  for all Rinx,x 21  and all 

21 u,u  in U,  for all (s, t) that satisfy Tts0 ≤≤≤ .  

 

(iii). The functions f, st f,f  are bounded: 

0st C|})u,x,s,t(f||,)u,x,s,t(f||,)u,x,s,t(fmax{| ≤ , for all ,u,x U∈∈R and (s, t) that 

satisfy Tts0 ≤≤≤ . 

 

(iv). The function F is jointly Lipschitz in x and u, and has bounded derivative with 

respect to t: 

 

.u,Xx,M|)u,x,t(F|

;inu,u,Xinx,x|},uu||xx{|L|)u,x,t(F)u,x,t(F|

relFt

21rel212121F2211

U

U

∈∀∈∀≤

∀∀−+−≤−
 

 

(v). The function 0F  is Lipschitz: rel2121F2010 Xinx,x|xx|L|)x(F)x(F|
0

∀−≤− . 

 

 

Some explanations are in order about condition (i). When the set relX  is found either 

from (1.9) or from (1.15), under the appropriate conditions in each case, then the same set 

relX  contains also all values )t(x i
h  of all solutions of the discretized Volterra equation. 

In the case of (1.9), under condition (1.6), we have, for the discretized problem, 
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from which, by the discrete Gronwall inequality, 
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h )hG1)(TG||x(||)hG1)(TG||x(|||)i(x| ++≤++≤ ∞∞  . 

 

Since +→↓+ 0has)TGexp()hG1( 1
h

T

1 , we conclude that every )i(xh  is in the set relX  

given by (1.9). 

In the case of (1.15) under conditions (1.10) and (1.11), it can be proved, in a similar way, 

that every )i(xh  is in the set relX  given by (1.15). 

Consequently, condition (i), in its general form, is a reasonable condition that can be 

satisfied in specific cases. 

 

 

We have: 

 

Theorem 3.1. Under the conditions of section 2 and the conditions (i) and (ii) above, for 

every )L((.)u Lip,adU∈  , with 
N

T
h = , the solution of (3.1) satisfies 

 

hC|)i(x)ih(x| 1
h ≤−  for all N,...,2,1i = , uniformly in N and )L((.)u Lip,adU∈  

          --- (3.4) 

 

 

where 1C  is a constant that can be expressed in terms of L, fL , and 0C . 

 

Proof: We set 
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          --- (3.5) 

 

The conditions we have postulated lead to, among other things, a uniform bound on the 

time-derivative of x(.). We use a dot to denote the time-derivative of x. We have: 
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thus 
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          --- (3.6) 

 

 

We note the following fact from analysis: if ϕ is a differentiable function from [0, T] into 
d

R , with components d,...,2,1i,i =ϕ , with derivative that satisfies 

]T,0[tM|)t(| ∈∀≤ϕ ϕ& , where || ⋅  denotes one of the p
l  norms on d

R , ∞≤≤ p1 , then 

for every two points 21 t,t  in d
R  we have |tt|M|)t()t(| 21d21 −λ≤ϕ−ϕ ϕ , where the 

coefficient dλ  depends on the dimension d and the norm that we use. For the norm 

∞<≤
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1

dd =λ , and for the norm |v|max:|v| i
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∞ =  

we have 1d =λ . 

 

 

Next, we estimate the error of approximation |)i(x)ih(x| h−  as follows: 
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          --- (3.7) 

 

 

The various terms on the right-hand side of the last inequality in (3.7) are estimated as 

follows: 
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          --- (3.8) 

 

 

We set 

 

]MLMLM[T:M m2fxnfn1 λ+λ+λ=  

          --- (3.9) 

 

Then (3.7) and (3.9) give 
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          --- (3.10) 

 

from which we obtain, via the discrete Gronwall inequality, 
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          --- (3.11) 

 

which proves the assertion of the theorem, with )TLexp(MC f1 = .  /// 

 

 

 

 

 



Theorem 3.2.  Under the above conditions, we have 

 

hC|(.))u(.),x(J(.))u(.),x(J| 2
hh ≤−  uniformly for )L((.)u Lip,adU∈  

          --- (3.12) 

 

 

for a constant 2C  to be calculated in the proof of this theorem. 

 

Proof: We have 
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          --- (3.13) 
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Thus 
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          --- (3.15) 

 

This proves the assertion of this theorem.  /// 

 

 



If (.)uh  is a discrete-time control that satisfies 

1N,...,1,0iLh|)ih(u)h)1i((u| hh −=∀≤−+  

we can construct a continuous-time control, which we shall denote by (.)u~h  by using 

linear interpolation, as follows: 

 

1Ni0,10,)ih(u~)1()h)1i((u~:)h)i((u~ hhh −≤≤≤ϑ≤ϑ−++ϑ=ϑ+  

          --- (3.16) 

 

 

We shall need the following: 

 

Lemma 3.1. The function (.)u~h , costructed as in (3.16), is a member of )L(Lip,adU . 

 

Proof: We start with the following proposition: if 321 ttt <<  and 321 u,u,u  are such 
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. This is proved by direct calculation: 
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(the last equality is due to the fact that )tt()tt)(1(ss 122312 −ϑ+−µ−=−  implies that 

0ss 12 ≥− ).  

This proposition can be extended, by induction, as follows: 

If 1kk21 tt...tt +<<<<  and 1kk21 u,u,...,u,u +  are such that 
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. The inductive step is this: if the wanted conclusion is true for 

mk = , we shall show that it must be true for k=m+1; to that effect, we apply the 



proposition proved above, with the points 1mm1 t,s,s +  in lieu of 321 t,t,t  , and the 

values 1mm1 u,u~,u~ +  instead of 321 u,u,u , and we conclude that  

L
st

u~u

11m

11m ≤
−
−

+

+  ; using this last inequality, we apply again the same proposition to 

points 2m1m1 t,t,s ++  in lieu of 321 t,t,t , and values 2m1m1 u,u,u~ ++  instead of 

321 u,u,u , and we obtain L
ss

u~u~

11m

11m ≤
−
−

+

+ .    

 

The assertion of the theorem is a particular case, with uniformly spaced points jt ,  of the 

proposition that we just proved by induction for arbitrarily spaced points.  /// 

 



4. Approximate solution of the Volterra control problem with Lipschitz controls. 

 

We consider the problem of minimizing the functional J given by (1.2) subject to the 

Volterra integral equation (1.1) and the constraint )L((.)u Lip,adU∈ . We also consider the 

approximate problem of minimizing the fumctional hJ  given by (3.2) subject to the 

discretized Volterra equation (3.1) and the constraint 

2N,...,1,0iLh|)ih(u)h)1i((u| hh −=∀≤−+ . A solution of the discretized optimal control 

problem can be found by using the discrete dynamic programming equations of section 2.  

 

 

We denote by (.)u ,*h  a solution of the discretized optimal control problem of this 

section. Our goal is to prove that (.)u ,*h  is close to an optimal control for the continuous 

optimal control problem of this section, in the following sense: if we construct a 

continuous-time control function by linear interpolation from the values of (.)u ,*h  and 

then use that continuous-time control function in the continous-time Volterra equation 

and the continuous-time functional J, then the value of J will be close to the infimum of J 

under the constraints stated above. Now, we make all this precise. 

 

We denote by (.)u~ ,*h  the continuous-time control obtained through linear interpolation 

from (.)u ,*h  : 
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          --- (4.1) 

 

 

 

 

According to the results of section 3, (.)u~ ,*h  is in )L(Lip,adU . We denote by (.)x ,*h   the 

solution of the discrete Volterra equation obtained by using control function (.)u ,*h , and 

by (.)x*  the solution of the controlled Volterra integral equation (1.1) obtained by using 

the control function (.)u~ ,*h . We shall prove: 

 

Theorem 4.1. We have 
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with linear rate of convergence, i.e. 
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Proof: We have, by the optimality of (.)u ,*h , 
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          --- (4.3) 

 

 

By combining (4.3) with theorem 3.2, we obtain 
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and 
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thus, if we set (.))u(.),x(Jinf:J
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Lip,adU∈
=  ,  we have 
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          --- (4.4) 

 

 

which proves the assertion of the theorem. /// 

 



5. Estimation of the computational cost of our version of dynamic programming, and 

design of parallel implementation. 

 

The question of computational cost is important for every numerical algorithm; 

comparisons among different algorithms are generally based on their computational costs, 

although other aspects may also become relevant in specific cases.  

 

We now present the calculation of the (approximate) computational cost of the variant of 

dynamic programming decribed in section 2. 

 

First, at each step of numerically evaluating ),i(V β  by using (2.11), the variable β has to 
be quantized. If M is the number of quantized values of each )j(β , then the number of 

quantized values of β  at the i-th stage of our dynamic programming is iM . The number 

M depends on the dimension m of the range of the control and on the nature of the set U. 

If U is a cube, i.e. m]b,a[=U , and if Q is the quantized points in the interval ]b,a[  in 

each coordinate of m
R , then mQM = .  

At the i-th stage of (2.11), and for each quantized value of β, the solution ),i;i(x β ; we 

denote the cost of evaluating ),i;i(x β  by )i(solϕ . In turn, 

1)n;x()n;f(i)i( 0evalevalsol +ϕ+ϕ=ϕ  ,  where )n;f(evalϕ  is the cost of evaluating the 

values of the n
R -valued function f ,  and likewise )n;x( 0evalϕ  is the cost of evaluating 

)i(x0 ; in order to evaluate ),i;i(x β  by using (2.1), i evaluations of f, one evaluation of 

0x , and one multiplication by h, are required. The form of )i(solϕ  reflects the fact that  

the total number of evaluations of 0x , over the range Ni0 ≤≤ , is N+1.  (As usual for 

work of this type, we do not include the operations of addition and subtraction in the 

estimation of the computational cost.) The optimization shown on the right-hand side of 

(2.11) has a computational cost which we denote by )i(optϕ . In order to produce a result 

that can be useful for actual calculations, a minimizer )i(*ξ  of the expression on the 

right-hand side of (2.11) would have to be approximately expressed, for instance via 

linear interpolation, as a function of quantized values of the control; we denote this cost 

of interpolation by ))i(( *
int ξϕ . Thus far we have expressed these costs in connection with 

the evaluation of ),i(V β . We denote by )i;V(evalϕ  the cost of evaluating ),i(V β  over all 

quantized values of β, and by )),i(;( soleval ξϕΦϕ  the cost of evaluating Φ for each β and 

ξ, then 
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          --- (5.1) 

 



Eq. (5.1) is supplemented by the final-time condition 
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1N
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          --- (5.2) 

 

In order to arrive at closed-form estimates, we make certain simplifying assumptions. 

First, we assume that ))i((and)i( *
intopt ξϕϕ  are constants, and we set 

))i(()i(:A *
intopt ξϕ+ϕ= ; second, we assume that the cost of evaluating Φ is proportional 

to the cost of evaluating x(i;i,β), thus we assume that 

0,1,0evalevalevalsoleval CiC]1)n;x()n;f(i[C)),i(;( ΦΦ +≡+ϕ+ϕ=ξϕΦϕ . 

 

Then the system consisting of (5.1) and (5.2) becomes 
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          --- (5.3) 

 

 

The total cost of evaluating V is 
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          --- (5.4) 

 

 

The summations indicated in (5.3) and (5.4) can be carried out by elementary methods, 

and the answer is 
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          --- (5.5) 

 

 



The important conclusion follows from the highest-degree term in (5.5): under the stated 

assumptions, the computational cost of our dynamic programming algorithm is of the 

order of N2MN ; for a rectangular set U, the cost is of the order of mN2QN .  

 

Next, we examine the possibilities of parallel implementation of the discrete dynamic 

programming equations for Volterra control problems. At each stage (discrete time) i, the 

evaluation of ),i;i(x β  and the evaluation of the right-hand side of the discrete dynamic 

programming equation (2.25)  can be carried out in parallel for each of the quantized 

values of β. Thus, this type of calculation is suited to SIMD (single instruction, multiple 

data) parallel processors. At each stage, and for each quantized value of β, all values of 
),1i(V ξ⊗β+  over all quantized values of ξ, are needed. These values, over all quantized 

values of β and ξ, have to be stored in a shared memory unit with which all processors 

can communicate and select those values of β that correspond to the appropriate 
processor. The number of processors that are needed at each stage i is a function of i, 

since the dimensionality of β depends on i. This leads to an adaptive requirement: the 

number of active processors is time-varying, it depends on the discrete time i at which the 

set of parallel computations needs to be performed. This adaptivity is a normal feature of 

parallel compuing, cf. [A]. The cost, in terms of computing time rather than number of 

operations, at each stage i, is )i()i()i;V( selcommeval ϕ+ϕ+ϕ , where )i(commϕ  is the cost 

of the processors' communicating with the memory unit at stage i, and )i(selϕ  the cost 

associated with selecting the values of β, out of all ),1i(V ξ⊗β+ , that correspond to each 

processor. In general, the number of processors will be smaller that the number of 

quantized values of the control function, thus a set of values of the control would need to 

be assigned to each processor.



6. Remarks on continuous-time dynamic programming for Volterra control. 

 

This section concerns a conceptual question that arises naturally from the results of the 

previous section, namely: what, if any, would be the form of continuous-time dynamic 

programming equations for optimal control of systems governed by Volterra integral 

equations? This question is, as far as we can judge, of only conceptual value: any actual 

computational solution of Volterra control problems will require some sort of 

approximation, such as the method we have developed above. It is nevertheless a 

question that a reader might reasonably ask. 

 

It is expressly stated that this section does not contain rigorous results; in our assessment, 

a rigorous development would be useless for actually solving the related optimal control 

problems. Our purpose here is to formally discern the possible nature of continuous-time 

dynamic programming equations for systems governed by Volterra integral equations, not 

to prove theorems about such equations. 

 

The continuous-time analogue of (2.11) is not a straightforward matter. In the continuous 

case, if we use, as a variable in the Hamilton-Jacobi function, the restriction ]t,0[|(.)u   of 

a control function to the interval [0, t], then the pairs )|(.)u,t( ]t,0[  form a vector bundle, 

each ]t,0[|(.)u  being an element of the space )]t,0([C Ra , the space of continuous 

functions from [0, t] into the real numbers. Because the spaces )]t,0([C Ra  depend on 

t, differentiation with respect to the variables t and ]t,0[|(.)u , in the Hamilton-Jacobi 

function, cannot be carried separately with respect to each variable, and thus there is no 

straightforward way to obtain, even formally, a continuous-time dynamic programming 

equation. 

 

 

We have devised a roundabout way to obtain a framework that allows differentiation, by 

using a transformation that changes the variable vector spaces into a fixed vector space, 

and we carry out the calculations in these transformed spaces.   

For each function v(.) in )]t,0([C Ra , we define the corresponding function (.)v#t  in 

)]1,0([C Ra  by 10,)t(v)(v#t ≤τ≤τ=τ . Similarly, for each continuous function of two 

variables, say )s,t(w 11 , defined for tts0 11 ≤≤≤ , we define the corresponding function 

(.,.)w#
t  in }10:),{(:])1,0([where,)])1,0([(C ≤τ≤σ≤στ=∆∆ Ra , by 

)t,t(w:),(w#
t στ=στ . 

Now, the integral equation 
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can be written in the form 
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which is the same as 
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#
t
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t
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#
t,0

#
t ≤τ≤σσσστ+τ=τ ∫

τ

 

          --- (6.2) 

 

 

The cost functional 

 

))T(x(Fdt))t(u),t(x,t(FJ 0

T

0

+= ∫  

 

can also be written as 

 

))1(x(FdT))(u),(x,T(F:)u,x(J #
T0

#
T

#
T

1

0

#
T

#
T +ττττ=Ψ= ∫  

          --- (6.3) 

 

We denote by R the solution operator associated with (6.2), i.e. 

 

)u,t(x #
t

#
t R=  

          --- (6.4) 

 

 

We define the Hamilton-Jacobi function ),t(V #α  by 

 

}u:)u,x(inf{:),t(V ##
t

#
T

#
T

# α=Ψ=α  

          --- (7.5) 

 

 



We consider controls #
tu  that satisfy #

t

#
t w
t

u
=

∂
∂

 for some continuous function #
tw , and 

we interpret #
tw  as a new control taking values in a set W of continuous functions. Then 

the dynamic programming equation is, formally, 
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t
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∂
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          --- (6.6) 

 

 

The brackets ⋅⋅,  are used to signify the action of the linear functional 
#

#

u

)u,t(V

∂

∂
 on 

.w#  
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