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Abstract We consider a stochastic shortest path problem with associative criteria in which for each
node of a graph we choose a probability distribution over the set of successor nodes so as to reach a given
target node optimally. We formulate such a problem as an associative Markov decision processes. We
show that an optimal value function is a unique solution to an optimality equation and find an optimal
stationary policy. Also we give a value iteration method and a policy improvement method.
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1. Introduction.

For a directed graph with nodes 1, 2, . . . , K and with a cost (length or time) assigned to each arc, a
stochastic shortest path problem is to select a probability distribution over all possible successor nodes
at each node i 6= K so as to reach a target node K with minimal associative accumulative cost.

Such a stochastic shortest path problem is analyzed by using the general theory of Markov decision
processes in many references. Eaton and Zadeh[3] formulated such a problem as a pursuit problem and
they showed that the optimal expected total cost is a unique solution to an optimality equation if at
least one proper policy exists, and they gave an optimal value by a value iteration method. Derman in
[4, 5] considered the problem, where a target state (node) is absorbing, and proved that the problem
has an optimal stationary policy and he gave several methods for obtaining optimal solutions. In [16],
Sancho formulated Markov decision processes to analyze the problem and gave a policy iteration method.
Bertsekas and Tsitsiklis[2] investigated the problem without the cost nonnegativity assumption and proved
a natural generalization of the standard result for the deterministic shortest path problem within the
framework of undiscounted finite state Markovian decision processes. In all of these, a criterion function
is the expected total cost, which we call an additive case.

Also, Ohtsubo[12] considered a minimizing risk models in stochastic shortest path problems as undis-
counted finite Markov processes and showed that an optimal value function is a unique solution to an
optimality equation and found an optimal stationary policy by using an invariant imbedding method.
General minimizing risk models in discounted Markov decision processes were investigated in White[18],
Wu and Lin[19], Ohtsubo and Toyonaga[11, 13] and Ohtsubo[14].

On the other hand, Maruyama in [9, 10] investigated deterministic shortest path problems with
associative criteria and show the existence and uniqueness of the optimal value. Especially in [10] he
obtained a parameterized recursive equation for the class of the problem by using an invariant imbedding
technique.

Furthermore the optimization problem for minimum criteria, which is associative, was first introduced
by Bellman and Zadeh[1] as decision-making in fuzzy environment, and Iwamoto et al.[6, 7, 8] and
Ohtsubo[15] formulated their optimization problem as finite horizon Markov decision processes and gave
a optimal policy by using an invariant imbedding approach.

In this paper we concern ourselves with a stochastic shortest path problem with an associative crite-
rion, which is an expected accumulate cost Eπ

i [©τ
n=1Yn] = Eπ

i [Y0 ◦ Y1 ◦ Y2 ◦ · · ·Yτ ] where Yn is a cost at
n th step, ◦ is an operator with an associative property satisfying some conditions, τ is a hitting time to
the target node K and Eπ

i is an expectation operator when the starting node is i and a policy π is used.
In Section 2, we give notations and formulate our model as undiscounted finite Markov decision processes
with infinite horizon. In Section 3, we prove that the optimal value function is a unique solution to an
optimality equation by using an invariant imbedding approach and that it is given by a value iteration
method. We also show that there exists an optimal left continuous stationary policy. In Section 4, we
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give a policy improvement method for obtained a optimal policy.

2. Notations and formulation

In this section we formulate associative models in stochastic shortest path problems as Markov decision
Processes Γ = ((Xn), (An), (Yn), p) with a discrete time space N = {0, 1, 2, . . .}. The state space S is a
finite set {1, 2, . . . , K} where K is a target state, and we denote the state at time n ∈ N by Xn. The
action space A is finite and we denote the action at time n ∈ N by An. The cost space E is a finite
set {y1, y2, . . . , y`}, where E ⊂ B for some subset B of R, and Yn ∈ E is a random cost function at
time n ∈ N with Y0 = e, where e is a unit element defined below. We define conditional probability
distributions by

qa(j|i) = P (Xn+1 = j|Xn = i, An = a),

q̂a
ij(y) = P (Yn+1 = y|Xn = i, Xn+1 = j, An = a)

and set
pa(j, y|i) = qa(j|i)q̂a

ij(y) = P (Xn+1 = j, Yn+1 = y|Xn = i, An = a)

for i, j ∈ S, a ∈ A and y ∈ E. We use SB = S × B as a new state space.
For a binary operator ◦ : R × R → R and a subset B of R, we assume that

(i) B is closed for the operator ◦, that is, x ◦ y ∈ B for any x, y ∈ B,

(ii) the operator ◦ is associative, that is, (x ◦ y) ◦ z = x ◦ (y ◦ z) ( = x ◦ y ◦ z, say) for any x, y, z ∈ B,

(iii) B has a unit element e, that is, e ∈ B and x ◦ e = e ◦ x = x for any x ∈ B,

(iv) (B, ◦) is nondecreasing in the sense that x ≤ x ◦ y and x ≤ y ◦ x for any x, y ∈ B.

On the condition (iv), letting x = e, we notice that y ≥ e for any y ∈ B. Also we easily see under
the conditions (i), (ii) and (iii) that if x ≥ e for any x ∈ B and if x ◦ y ≤ x ◦ z and y ◦ x ≤ z ◦ x for any
x, y, z ∈ B satisfying y ≤ z, then the condition (iv) holds. In algebra, (B, ◦) satisfying the conditions (i),
(ii) and (iii) is called a semigroup and it is also analogous to t-conorm (or s-norm) in fuzzy set theory
(cf. Zimmermann[20]).

We give several examples in which (B, ◦) satisfies the above conditions (cf. Maruyama[9] and [20]).
Example 2.1.

(1) (Additive case). When x◦y = min(x+y−L, M) for constants L, M such that −∞ < L < M ≤ ∞,
we have B = [L, M ] and e = L, where B = [L,∞) if M = ∞. If L = 0 and M = ∞, it is a usual additive
case, and if L = 0 and M = 1, it is called a bounded sum in the fuzzy set theory.

(2) (Multiplicative case). When x◦y = Lxy for a constant L > 0, we have B = [1/L,∞) and e = 1/L.
(3) (Maximum case) When x ◦ y = max(x, y) for x, y ∈ [L, M ] where constants L, M satisfy L < M ,

we have B = [L, M ] and e = L.
(4) (Multiplicative-additive case). When x◦y = x+y−Lxy for a constant L > 0, we have B = [0, 1/L]

and e = 0.
(5) (Fractional case). When x ◦ y = (x + y)/(1 + Lxy) for a constant L > 0, we have B = [0, 1/

√
L]

and e = 0. If L = 1, it is an Einstein sum in the fuzzy set theory.

(6) (Drastic maximum case) When x ◦ y =

{

max(x, y) if min(x, y) = L
M otherwise

for x, y ∈ [L, M ] where

L and M are constants so that L < M , we have B = [L, M ] and e = L.

(7) (Hamacher case) When x ◦ y =
x + y − 2xy

1 − xy
for each x, y ∈ [0, 1), we have B = [0, 1) and e = 0.

This is a Hamacher sum in the fuzzy set theory.

Let a stopping time τ be a hitting time to the target state K, that is, τ is the smallest nonnegative
integer n such that Xn = K, where τ = ∞ if there does not exist such an integer n. Then we define the
random reward as a criterion function by

Z =
τ©

n=0
Yn ≡ Y0 ◦ Y1 ◦ · · · ◦ Yτ .

Then our problem is to minimize the expected reward Eπ
i [Z] with respect to all policies π.
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To simplify the optimization problem, we can redefine the equivalent version of the Markov decision
processes as follows. We assume that the target state K is absorbing and cost-free, that is, qa(K|K) = 1
and q̂a

KK(e) = 1 and hence pa(K, e|K) = 1 for all a ∈ A. Under this assumption we have

Z =
∞©

k=0
Yk ≡ lim

n→∞

n©
k=0

Yk,

which exists from the monotonicity of the assumption (iv), where we admit Z = ∞.
In order to analysis our problem we also define the random reward for a subproblem by

Zn =
n©

k=0
Yk ≡ Y0 ◦ Y1 ◦ · · · ◦ Yn, n ≥ 0,

Further we define another random sequence as an imbedded parameter by

Λ0 = λ, Λn+1 = Λn ◦ Yn+1, n ≥ 0,

where λ is a given initial parameter in B.
Let H0 = SB and Hn+1 = Hn × A × SB for each n ∈ N . Then Hn represents the set of all

possible histories of the system when the nth action must be chosen, and we denote by θn the history
at time n ∈ N . A decision rule δn for time n ∈ N is a conditional probability given θn: δn(an|hn) =
P (An = an|θn = hn), where hn = (i0, λ0, a0, i1, λ1, . . . , an−1, in, λn) ∈ Hn which is a realising value of
θn = (X0, Λ0, A0, X1, Λ1, . . . , An−1, Xn, Λn). It is assumed that δn(An ∈ A|hn) = 1 for every history
hn = (i0, λ0, a0, . . . , in, λn) ∈ Hn. We denote by ∆ the set of all decision rules. A policy π is an infinite
sequence of decision rules (δn, n ≥ 0) = (δ0, δ1, δ2, . . . , δn, . . .). We denote by C the set of all such policies.

A policy π = (δn, n ≥ 0) is said to be Markov when the decision rule δn is a function of (Xn, Λn) =
(in, λn) for every n ∈ N . We denote the set of such decision rules by ∆M and the set of all Markov
policies by CM . Also, a policy π is called a deterministic Markov policy if π is Markov and δn(a|i, λ) = 1
for some a ∈ A. We write δn(i, λ) = a for such a decision rule δn and we denote by ∆D the set of such
decision rules. We also denote the set of all deterministic Markov policies by CD. When δn = δ ∈ ∆D for
all n ∈ N , we write π = δ∞, which is called a stationary policy, and we denote the set of all stationary
policies by Cs

D.
We denote by Eπ

i [Z] the conditional expectation of Z given an initial state X0 = i and a policy
π ∈ C. Since the random variable Z depends upon not only i and π but also λ, we may sometimes
use a conditional probability P π

(i,λ)(·) and an expectation Eπ
(i,λ)(·). Through this paper we assume that

P π
(i,λ)(Xn = K for some n ≥ 0) = P π

(i,λ)(τ < ∞) = 1 for every stationary policy π ∈ Cs
D and each

(i, λ) ∈ SB , that is, the states 1, 2, . . . , K − 1 are transient when we use any policy π ∈ Cs
D. Thus we

easily see that P π
(i,λ)(Z < ∞) = 1 for all π ∈ Cs

D and each (i, λ) ∈ SB . This is analogous to a condition

given in Ohtsubo[16].
A decision rule δ ∈ ∆D is said to be left continuous (on B) if for each (i, λ) ∈ SB there is a positive

real number µ such that δ(i, λ) = δ(i, λ − u) for all u such that 0 ≤ u < µ and λ − u ∈ B. A policy
π = δ∞ ∈ Cs

D is said to be left continuous if the decision rule δ is left continuous.
In order to analysis our model, we denote criterion functions for finite and infinite horizon cases by

F π
n (i, λ) = Eπ

i [λ ◦ Zn], F π(i, λ) = Eπ
i [λ ◦ Z],

respectively, for each (i, λ) ∈ SB and π ∈ C. When n = 3, the explicit form of the expectation F π
3 (i1, λ)

is

Eπ
i1

[λ ◦ Z3] =
∑

a1∈A

∑

y1∈E

∑

i2∈S

∑

a2∈A

∑

y2∈E

∑

i3∈S

∑

a3∈A

∑

y3∈E

∑

i4∈S

(λ ◦ y1 ◦ y2 ◦ y3)

× pa3(i4 , y3|i3)δ2(a3|i1, λ, a1, i2, λ ◦ y1, a2, i3, λ ◦ y1 ◦ y2)

× pa2(i3 , y2|i2)δ1(a2|i1, λ, a1, i2, λ ◦ y1)

× pa1(i2 , y1|i1)δ0(a1|i1, λ)

for (i1, λ) ∈ SB and π = (δ0, δ1, δ2, · · ·) ∈ C. We also define optimal value functions F ∗
n and F ∗ for finite

and infinite horizon cases by, respectively,

F ∗
n(i, λ) = inf

π∈C
F π

n (i, λ), F ∗(i, λ) = inf
π∈C

F π(i, λ).
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Then we notice that optimal value in the original problem is

F ∗(i, e) = sup
π∈C

F π(i, e) = sup
π∈C

Eπ
i [Z],

since e is the unit element. A policy π is said to be optimal if F ∗(i, λ) = F π(i, λ) for every (i, λ) ∈ SB .
We define the following sets of functions: let F be the set of functions F from SB into B such that

F (i, ·) is measurable on B for each i ∈ S, F (·, λ) is bounded for each λ ∈ B and F (i, λ) ≥ λ for each
(i, λ) ∈ SB , and let F` be the set of functions F ∈ F such that F (i, ·) is nondecreasing and left continuous
on B for each i ∈ S. In Theorem 3.1 it is shown that F ∗ ∈ F`. However, it is not necessarily true that
F π ∈ F` for each π ∈ C.

We finally define operators T a, T δ and T from F into itself as follows. For F ∈ F , (i, λ) ∈ SB , a ∈ A
and δ ∈ ∆M ,

T aF (i, λ) =
∑

j∈S

∑

y∈E

F (j, λ ◦ y)pa(j, y|i),

T δF (i, λ) =
∑

a∈A

T aF (i, λ)δ(a|i, λ),

TF (i, λ) = inf
δ∈∆

T δF (i, λ) = min
a∈A

T aF (i, λ).

We also define operators Tn by T 1 = T and Tn+1 = T (Tn), n ≥ 1. Similarly, (T δ)n is defined for δ ∈ ∆M .
In all argument, for F, G ∈ F , F ≥ G means that F (i, λ) ≥ G(i, λ) for all (i, λ) ∈ SB .

3. Optimal value and optimal policy

In this section we prove that the optimal value function is a unique solution to an optimality equation
and we give a value iteration method. These results are an associative extension of Eaton and Zadeh[3],
Derman[4, 5], and Bellman and Zadeh[1], and a stochastic one of Maruyama[?]. We also show that there
exists an optimal left continuous policy.

We first give fundamental lemmas below.

Lemma 3.1.

(i) For F, G ∈ F and δ ∈ ∆, T δF − T δG = T δ(F − G).

(ii) If F, G ∈ F and F ≥ G, then T aF ≥ T aG for each a ∈ A, T δF ≥ T δG for each δ ∈ ∆ and
TF ≥ TG.

(iii) If G ∈ F`, then T aG ∈ F` for any a ∈ A. Also, T is an operator from F (or F`) into itself.

(iv) If Gn ∈ F` and Gn ≤ Gn+1 for each n ≥ 0, then limn→∞ Gn ∈ F`.

Proof. The statements (i) and (ii) are immediate results of definitions.
(iii) Let G ∈ F . Since G(i, ·) is measurable on B, T aG(i, ·) is also measurable for each a ∈ A and so

is TG(i, ·). Also, it is obvious that TG(i, ·) is bounded for each λ ∈ B. Thus TG ∈ F .
Next, let G ∈ F` and let i ∈ S be arbitrary. Then it easily follows from the definition that T aG(i, λ) ≥

λ for each a ∈ A and hence TG(i, λ) ≥ λ for every (i, λ) ∈ SB , since G(i, λ) ≥ λ for every (i, λ) ∈ SB .
Also, it follows that T aG(i, ·) is nondecreasing on B for a ∈ A and hence so is TG(i, ·), since G(i, ·) is
nondecreasing on B. Also, we see by the dominated convergence theorem that T aG(i, ·) is left continuous
on B for each a ∈ A, since G(i, ·) is left continuous. Thus since A is finite, TG(i, ·) is also left continuous
on B. Therefore, we have T aG ∈ F` for each a ∈ A and TG ∈ F`.

(iv) It is clear that limn Gn(i, λ), say G(i, λ), is nondecreasing in λ for each i ∈ S and G(i, λ) ≥ λ for
every (i, λ) ∈ SB . Hence we need to establish that G(i, ·) is left continuous for each i ∈ S. Let (i, λ) ∈ SB

be arbitrarily fixed and let ε > 0 be arbitrary. Since G(i, ·) = limn Gn(i, ·), there is an integer N̂ such
that G(i, λ) − Gn(i, λ) < ε/2 for every n ≥ N̂ . Also, since Gn(i, ·) is left continuous, we see, for each

n ≥ N̂ , that there is δ̂ > 0 such that Gn(i, λ) − Gn(i, λ′) < ε/2 when 0 < λ − λ′ < δ̂ and λ′ ∈ B. Thus
we have

0 ≤ G(i, λ) − G(s, λ′)

= G(i, λ) − Gn(i, λ) + Gn(i, λ) − Gn(i, λ′) + Gn(i, λ′) − G(i, λ′)

< ε
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since Gn(i, λ′) ≤ G(i, λ′). Hence G(i, ·) is left continuous. 2

Remark. From the proof of Lemma 3.1 (iv) we notice that Lemma 3.1 (d) in [12] mistakes. Thus in the
lemma, limn Gn ∈ Fr should be limn Gn ∈ F`. Furthermore, through the paper [12], Fr should be F`

and “right continuous” should be “left continuous”.

We easily see that for each F ∈ F , there is a measurable decision rule δ ∈ ∆D satisfying TF = T δF ,
since TF is measurable and A is finite.

Furthermore, the following lemma is important for main theorems.
Lemma 3.2. For each F ∈ F`, there exists a left continuous decision rule δ ∈ ∆D satisfying TF = T δF .
Proof. Let F ∈ F` and (i, λ) ∈ SB be arbitrarily fixed. From Lemma 3.1, T aF (i, ·) is left continuous on
B for each a ∈ A. Since A is finite, we see that there exist µ > 0 and a ∈ A such that TF (i, u) = T aF (i, u)
for all u satisfying λ− µ < u ≤ λ and u ∈ B. For such an action a, if we define δ ∈ ∆D by δ(i, u) = a for
every u so that λ − µ < u ≤ λ and u ∈ B, then δ is left continuous and TF (i, λ) = T δF (i, λ). 2

For any π = (δn, n ≥ 0) ∈ C and a given history (i, λ, a) ∈ SB ×A, the cut-head policy of π to (i, λ, a)

is defined by 1π(i,λ,a) = (δ
(i,λ,a)
n , n ≥ 0) where δ

(i,λ,a)
n (·|hn) = δn+1(·|(i, λ, a), hn) for every hn ∈ Hn and

each n ≥ 0. Then we see that 1π(i,λ,a) ∈ C for a fixed (i, λ, a). For the sake of simplicity we use a
notation:

T δ0F
1π(i, λ) =

∑

a∈A

δ0(a|i, λ)
∑

j,,y

F
1π(i,λ,a)

(j, λ ◦ y)pa(j, y|i)

for each π = (δn , n ≥ 0) ∈ C and (i, λ) ∈ SB .

Lemma 3.3. Let π = (δn, n ≥ 0) ∈ C be arbitrary. For each n ≥ 0, F π
n+1 = T δ0F

1π
n and F π = T δ0F

1π.
Especially, F π = T δF π when π = δ∞ ∈ Cs

D.
Proof. It follows by Markov property that for any π = (δn, n ≥ 0) ∈ C,

T δ0F
1π
n (i, λ) =

∑

a∈A

δ0(a|i, λ)
∑

j,y

F
1π(i,λ,a)

n (j, λ ◦ y)pa(j, y|i)

=
∑

a∈A

δ0(a|i, λ)
∑

j,y

E
1π(i,λ,a)

(j,λ◦y) [λ ◦ y ◦ Zn]pa(j, y|i)

= Eπ
i [λ ◦ Zn+1] = F π

n+1(i, λ).

Similarly, it is easy to see that F π = T δ0F
1π . 2

We next give fundamental properties for optimal value functions of finite and infinite horizon cases.

Theorem 3.1. We have the following:

(i) For each n ≥ 0, F ∗
n ∈ F` and {F ∗

n , n ≥ 0} satisfies equations :

F ∗
0 (i, λ) = λ, (i, λ) ∈ SB , F ∗

n = TF ∗
n−1, n ≥ 1.

(ii) For each n ≥ 0, there exists a left continuous policy π ∈ CD such that F ∗
n = F π

n .

(iii) For each n ≥ 0, F ∗
n ≤ F ∗

n+1 ≤ limn→∞ F ∗
n ≤ F ∗ and limn→∞ F ∗

n ∈ F`.

Remark. On the statement (iii) we have limn→∞ F ∗
n = F ∗ under some conditions, which we will prove

in Theorem 3.2.
Proof. We prove the statements (i) and (ii) of this lemma by induction. When n = 0, from the fact that
Z0 = Y0 = e we see that F ∗

0 (i, λ) = inf
π∈C

Eπ
i [λ ◦ e] = λ = F π

0 (i, λ) for any left continuous policy π ∈ CD

and every (i, λ) ∈ SB and hence F ∗
0 ∈ F`, which implies that (i) and (ii) hold for n = 0. Assume that

these statements are true for n = k. Thus, F ∗
k ∈ F` and there exists a left continuous policy σ ∈ CD such

that F ∗
k = F σ

k . It follows from Lemma 3.2 that there exists a left continuous decision rule δ ∈ ∆D such
that TF ∗

k = T δF ∗
k , which implies that π = (δ, σ) is a left continuous policy in CD. It also follows from

Lemma 3.3 that for each (i, λ),

F ∗
k+1(i, λ) ≤ F π

k+1(i, λ) = T δF σ
k (i, λ) = T δF ∗

k (i, λ) = TF ∗
k (i, λ).
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Conversely, we see from Lemma 3.3 again that for any policy τ = (δn, n ≥ 0) ∈ C,

F σ
k+1(i, λ) = T δ0F

1τ
k (i, λ) ≥ T δ0F ∗

k (i, λ) ≥ TF ∗
k (i, λ).

Taking infimum over σ ∈ C, we obtain F ∗
k+1(i, λ) ≥ TF ∗

k (s, λ). Thus, combining with the previous
inequality, we have TF ∗

k = F ∗
k+1 = F π

k+1. Hence, π satisfies F ∗
k+1 = F π

k+1, and from Lemma 3.1(iii), we
have F ∗

k+1 ∈ F`. By induction, the proof of the statements (i) and (ii) is complete.
(iii) Since (B, ◦) is nondecreasing, we have Zn ≤ Zn+1 ≤ Z. Thus we obtain that F π

n ≤ F π
n+1 ≤ F π,

which implies that F ∗
n ≤ F ∗

n+1 ≤ limn→∞ F ∗
n ≤ F ∗. Also, since F ∗

n ∈ F` by (i), and F ∗
n ≤ F ∗

n+1 for each
n ≥ 0, it follows from Lemma 3.1(iv) that limn→∞ F ∗

n ∈ F`. 2

From Theorem 3.1, we have F ∗
n = TnF ∗

0 for each n ≥ 0. In order to prove that F ∗ = limn→∞ F ∗
n , we

need the following important lemma.

Lemma 3.4. Let π = δ∞ ∈ Cs
D be a policy satisfying condition that for each (i, λ) ∈ SB there is a

constant M > 0 such that P π
(i,λ)(λ ◦ Z ≤ M) = 1.

(i) Let F, G ∈ F . If F − G ≤ T δ(F − G) on {K}c × B and F = G on {K} × B, then F ≤ G on SB .

(ii) F π is the unique solution in F to equation F = T δF with F (K, λ) = λ for every λ ∈ B.

Proof. (i) Since F = G on {K} × B and the state K is absorbing and cost-free, it follows that

T δ(F − G)(K, λ) = (F − G)(K, λ) = 0

for every λ ∈ B. By the fact we also see that if (i, λ) ∈ {K}c × B, then

T δ(F − G)(i, λ) =
∑

(j,y)∈{K}c×E

(F − G)(j, λ ◦ y)pδ(i,λ)(j, y|i)

By a similar argument and induction, it easily follows that (T δ)n(F − G)(K, λ) = 0 for any λ ∈ B and

(T δ)n(F − G)(i, λ) =
∑

(i1,y1)∈{K}c×E

∑

(i2,y2)∈{K}c×E

· · ·
∑

(in,yn)∈{K}c×E

(F − G)(in, λ ◦ y1 ◦ y2 · · · ◦ yn)

×pδ(i,λ)(i1, y1|i)pδ(i1,λ◦y1)(i2, y2|i1) · · ·pδ(in−1,λ◦y1···◦yn−1)(in, yn|in−1)

for any (i, λ) ∈ {K}c × B. From the condition, it may be follows that λ ◦ y1 · · · ◦ yn ≤ M , P π
(i,λ)-a.s. for

all n ≥ 1, since λ ◦ Zn = λ ◦ Y1 · · · ◦ Yn ≤ λ ◦ Z ≤ M , P π
(i,λ)-a.s.. Thus we see from the boundedness of

F − G that for λ ∈ B there is L = L(λ) > 0 such that (F − G)(in, λ ◦ y1 ◦ y2 · · · ◦ yn) ≤ L for all in ∈ S,
all yj ∈ E, j = 1, 2, . . . and all n ≥ 1, P π

(i,λ)-a.s.. Then it follows that when (i, λ) ∈ {K}c × B

(T δ)n(F − G)(i, λ) ≤ L
∑

(i1,y1)∈{K}c×E

· · ·
∑

(in,yn)∈{K}c×E

pδ(i,λ)(i1 , y1|i) · · ·

· · · pδ(in−1,λ◦y1···◦yn−1)(in, yn|in−1)

By the way, it follows that

∑

(i1,y1)∈{K}c×E

pδ(i,λ)(j, y|i) = P π
(i,λ)(X1 ∈ {K}c).

For n ≥ 1, assume that

∑

(i1,y1)∈{K}c×E

· · ·
∑

(in,yn)∈{K}c×E

pδ(i,λ)(i1, y1|i) · · · pδ(in−1,λ◦y1···◦yn−1)(in, yn|in−1)

= P π
(i,λ)(

n
⋂

k=1

{Xk ∈ {K}c})
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for any (i, λ) ∈ {K}c × B. Then, it follows from Markov property that when (i, λ) ∈ {K}c × B

∑

(i1,y1)∈{K}c×E

· · ·
∑

(in+1,yn+1)∈{K}c×E

pδ(i,λ)(i1, y1|i) · · ·pδ(in,λ◦y1···◦yn)(in+1, yn+1|in)

=
∑

(i1,y1∈{K}c×E

P π
(i1,λ◦y1)

(
n
⋂

k=1

{Xk ∈ {K}c})pδ(i,λ)(i1, y1|i)

= P π
(i,λ)(

n+1
⋂

k=1

{Xk ∈ {K}c})

Thus, by induction, we have

(F − G)(i, λ) ≤ (T δ)n(F − G)(i, λ) ≤ LP π
(i,λ)(

n
⋂

k=1

{Xk ∈ {K}c}),

for every (i, λ) ∈ {K}c ×B and all n ≥ 1. Since P π
(i,λ)(Xn = K for some n ≥ 1) = 1 from the assumption

so that 1, 2, · · · , K − 1 are transient and K is absorbing, we obtain

lim
n→∞

P π
(i,λ)(

n
⋂

k=1

{Xk ∈ {K}c}) = 1 − P π
(i,λ)(

∞
⋃

k=1

{Xk = K}) = 0.

Letting n → ∞ on the above inequality, we have (F − G)(i, λ) ≤ 0 for every (i, λ) ∈ {K}c × B, which
completes the proof of the statement (i).

(ii) From the condition it follows that λ ≤ F π(i, λ) ≤ M for each (i, λ) ∈ SB and hence F π ∈ F . Let
F ∈ F be a solution to F = T δF with F = λ on {K}×B. Since F π satisfies F π = T δF π and F π = λ on
{K} × B, we have F − F π = T δ(F − F π) on {K}c × B and F = F π on {K} × B. Thus the statement
(i) implies that F = F π. 2

Now we are in a position to give a main theorem.

Theorem 3.2. Suppose that there exists at least one policy σ ∈ C such that for each (i, λ) ∈ SB there is
a constant M > 0 such that P σ

(i,λ)(λ ◦ Z ≤ M) = 1.

(i) F ∗ = limn→∞ F ∗
n .

(ii) F ∗ is the unique solution in F to F = TF with F (K, λ) = λ for every λ ∈ B.

(iii) There exists a left continuous policy π = δ∞ ∈ Cs
D satisfying F ∗ = T δF ∗ on {K}c × B and π is

optimal.

Proof. Let G∗ = limn→∞ F ∗
n , which is in F` from Theorem 3.1. Also, we see from the condition that

F σ(i, λ) ≤ M and hence λ ≤ G∗(i, λ) ≤ F ∗(i, λ) ≤ F σ(i, λ) ≤ M for each (i, λ) ∈ SB . Thus we
have G∗, F ∗ ∈ F . We first prove that G∗ is the unique solution to F = TF with F (K, λ) = λ for
every λ ∈ B. Since F ∗

n(K, λ) = λ for each n ≥ 0 and all λ ∈ B, we have G∗(K, λ) = λ. Also, since
F ∗

n+1 = TF ∗
n ≤ TG∗ from Theorem 3.1, letting n → ∞ we obtain G∗ ≤ TG∗. To show the reverse

inequality, we fix (i, λ) ∈ SB . Since S and E are finite sets, it follows that for each ε > 0 there is an
integer L such that F ∗

n(j, λ ◦ y) > G∗(j, λ ◦ y) − ε for all n ≥ L and every (j, y) ∈ S × E. Also, for such
n we see that there exist â = â(i, λ) ∈ A such that TF ∗

n(i, λ) = T âF ∗
n(i, λ). Thus we have

G∗(i, λ) ≥ F ∗
n+1(i, λ) = TF ∗

n(i, λ) = T âF ∗
n(i, λ)

=
∑

j,y

F ∗
n(j, λ ◦ y)pâ(j, y|i)

>
∑

j,y

(G∗(j, λ ◦ y) − ε)pâ(j, y|i)

= T âG∗(i, λ) − ε

≥ TG∗(i, λ) − ε.
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Letting ε → 0, we have G∗ ≥ TG∗, which implies that G∗ is a solution to F = TF with F (K, λ) = λ
for every λ ∈ B. Next we prove the uniqueness for G∗. From Lemma 3.2, we see that there is a decision
rule δ ∈ ∆D such that G∗ = TG∗ = T δG∗, since G∗ ∈ F`. Let F ∈ F` be another solution to equation
F = TF with F (K, λ) = λ for every λ ∈ B. It follows from Lemma 3.2 again that there is a decision rule
δ′ ∈ ∆D such that F = T δ′

F . Thus we have G∗ = T δG∗ ≤ T δ′

G∗ and F = T δ′

F ≤ T δF on {K}c × B.
Hence we see that F −G∗ ≤ T δ(F −G∗), G∗ −F ≤ T δ′

(G∗ −F ) on {K}c ×B and F = G∗ on {K}×R.
From Lemma 3.4(i), we thus obtain F = G∗ on SB . Hence G∗ is the unique solution in F to F = TF
with F (K, λ) = λ for every λ ∈ B.

Now we show the statements (i), (ii) and (iii). From Lemma 3.2, there is a left continuous decision
rule δ ∈ ∆D such that G∗ = TG∗ = T δG∗. Also, it follows from Lemma 3.4(ii) that F π is a unique
solution to F = T δF with F (K, λ) = λ for every λ ∈ B, where π = δ∞. Thus the uniqueness of G∗

implies that G∗ = F π. However, G∗ ≤ F ∗ ≤ F π from Theorem 3.1. Hence we obtain G∗ = F ∗ = F π,
which implies that F ∗ is the unique solution in F to F = TF with F (K, λ) = λ for every λ ∈ B and that
π is optimal. 2

From Theorems 3.1 and 3.2 we see that a value iteration is given by F ∗ = limn→∞ TnF ∗
0 where

F ∗
0 (i, λ) = λ for each (i, λ) ∈ SB . We give another value iteration in the following theorem.

Theorem 3.3. Suppose that there is at least one policy σ ∈ C such that for each (i, λ) ∈ SB there is a
constant M > 0 such that P σ

(i,λ)(λ ◦ Z ≤ M) = 1. Let G ∈ F be a function satisfying G ≤ F ∗. Then

{T nG} converges and limn→∞ TnG = F ∗.
Proof. Since G ∈ F , we have F ∗

0 (i, λ) = λ ≤ G(i, λ) for every (i, λ) ∈ SB . Hence TnF ∗
0 ≤ TnG, which

leads the inequality F ∗ = limn TnF ∗
0 ≤ lim infn TnG. Conversely, since G ≤ F ∗ and F ∗ = TF ∗, we have

TnG ≤ TnF ∗ = F ∗ and hence lim supn TnG ≤ F ∗. Therefore, combining with the previous inequality,
we have limn TnG = F ∗. 2

4. Policy iteration method

In this section we consider a policy space iteration procedure in our model as follows:

(i) Select an initial policy π0 = (δ0)
∞ ∈ Cs

D.

(ii) At step n, assume that we have a policy πn = (δn)∞ ∈ Cs
D and solve the equation F = T δnF with

F (K, λ) = λ for every λ ∈ B to give a function F πn ∈ F .

(iii) If T δnF πn = TF πn , stop the procedure. If T δnF πn 6= TF πn , go the next step.

(iv) Find a new policy πn+1 = (δn+1)
∞ ∈ Cs

D by T δn+1F πn = TF πn .

(v) Return to step (ii) replacing n by n + 1.

From Lemma 3.4(ii) we can uniquely solve the equations in F at step (ii) under some conditions. We
have the following convergence theorem.

Theorem 4.1. Suppose that there exists at least one policy σ ∈ C such that for each (i, λ) ∈ SB there
is a constant M > 0 such that P σ

(i,λ)(λ ◦ Z ≤ M) = 1.

(i) The sequence {F πn} is nonincreasing and converges to F ∗.

(ii) If T δnF πn = TF πn , then F πn is the optimal value and πn = (δn)∞ ∈ Cs
D is an optimal policy.

Proof. (i) Since F πn = T δnF πn for each n ≥ 0 by Lemma 3.3, we have

F πn − F πn+1 = T δnF πn − T δn+1F πn+1

≥ T δn+1F πn − T δn+1F πn+1

= T δn+1(F πn − F πn+1)

and F πn = F πn+1 = λ on {K}×B. From Lemma 3.4(i) we see that F πn ≥ F πn+1 and hence the sequence
{F πn} is nonincreasing. Thus {F πn} tends to a function F̃ ∈ F . We now show that F ∗ = F̃ . Since
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F πn = T δnF πn ≥ TF πn , by letting n → ∞, we obtain the inequality F̃ ≥ T F̃ . Conversely, it follows by
the policy procedure that

TF πn = T δn+1F πn ≥ T δn+1F πn+1 = F πn+1 ,

which yields that T F̃ ≤ F̃ , by letting n → ∞. Hence F̃ = T F̃ . Therefore the uniqueness of F ∗ leads
F̃ = F ∗.

(ii) When T δnF πn = TF πn , we see by the procedure that πn = πk for every k ≥ n. Thus it follows
from (i) that F ∗ = F̃ = F πn and hence πn is optimal. 2

5. Numerical examples

We first consider an example for a maximum case and get optimal value and optimal policy by the
policy iteration method.

Example 5.1. Let x ◦ y = max(x, y). Let S = {1, 2, 3} be a state space and 3 be a target node. Assume
that the state 3 is absorbing and cost-free. Also let A = {a1, a2} be an action space. We give the
probability distributions by

pa1 (2, 2|1) =
2

3
, pa1(3, 2|1) =

1

3
,

pa1 (3, 6|2) = pa2 (2, 4|1) = 1,

pa2 (2, 8|2) = pa2 (3, 3|2) =
1

2
.

Then we have B = [2, 8] and e = 2. We consider a policy space procedure to give an optimal policy.
Let π0 = (δ0)

∞ ∈ Cs
D be an initial policy such that δ0(i, λ) = a1 for every (i, λ) ∈ SB . Solving the

equation F = T δ0F with F (3, λ) = λ for every λ ∈ B, we have

F π0(2, λ) =

{

6 (2 ≤ λ ≤ 6)
λ (6 < λ ≤ 8)

, F π0(1, λ) =

{

1
3
λ + 4 (2 ≤ λ ≤ 6)

λ (6 <≤ λ ≤ 8)

We now see that T δ0F π0 6= TF π0 = min(T a1F π0 , T a2F π0), since

T a1F π0(2, λ) = F π0(2, λ), T a2F π0 (2, λ) =

{

11
2 (2 ≤ λ ≤ 3)
λ
2

+ 4 (3 < λ ≤ 8)
.

Next, using T δ1F π0 = TF π0 , we give a policy π1 = (δ1)
∞ ∈ Cs

D by

δ1(3, λ) = a1

δ1(2, λ) =

{

a2 (2 ≤ λ ≤ 4)
a1 (4 < λ ≤ 8)

,

δ1(1, λ) = a1.

By solving F = T δ1F with F (3, λ) = λ, F π1 is given by

F π1(2, λ) =















11
2 (2 ≤ λ ≤ 3)
λ
2 + 4 (3 < λ ≤ 4)
6 (4 < λ ≤ 6)
λ (6 < λ ≤ 8)

, F π1(1, λ) =















1
3λ + 11

3 (2 ≤ λ ≤ 3)
2
3λ + 8

3 (3 < λ ≤ 4)
1
3λ + 4 (4 < λ ≤ 6)
λ (6 < λ ≤ 8)

We can easily check that T δ1F π1(i, λ) = TF π1(i, λ) for every (i, λ) ∈ SB . Thus we stop the procedure.
From Theorem 4.1 we obtain the optimal value F ∗ = F π1 and an optimal policy π1 = (δ1)

∞. Therefore,
since e = 2, we have optimal value in the original problem as follows:

F ∗(1, 2) =
13

3
, F ∗(2, 2) =

11

2
, F ∗(3, 2) = 2.

We next consider an example for a multiplicative case.

Example 5.2. Let x ◦ y = xy. Let S = {1, 2, 3} be a state space and 3 be a target node. Assume that
the state 3 is absorbing and cost-free. Also let A = {a1, a2} be an action space. We give the probability
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distributions by

pa1(2, 2|1) =
2

3
, pa1(3, 2|1) =

1

3
,

pa1(3, 6|2) = pa2(2, 4|1) = 1,

pa2(2, 5|2) =
1

16
, pa2(3, 3|2) =

15

16
.

Then we have B = [1,∞) and e = 1. We consider a policy space procedure to give an optimal value
and an optimal policy. Let π0 = (δ0)

∞ ∈ Cs
D be an initial policy such that δ0(i, λ) = a1 for every

(i, λ) ∈ SB . Solving the equation F = T δ0F with F (3, λ) = λ for every λ ∈ B, we have

F π0 (2, λ) = 6λ, F π0 (1, λ) =
26

3
λ

We now see that T δ0F π0 6= TF π0 , since

T a1F π0(2, λ) = F π0(2, λ) = 6λ, T a2F π0 (2, λ) =
75

16
λ

Next, using T δ1F π0 = TF π0 , we give a policy π1 = (δ1)
∞ ∈ Cs

D by

δ1(3, λ) = a1, δ1(2, λ) = a2, δ1(1, λ) = a1.

By solving F = T δ1F with F (3, λ) = λ, F π1 is given by

F π1(2, λ) =
45

11
λ, F π1(1, λ) =

112

33
λ.

We can easily check that T δ1F π1(i, λ) = TF π1(i, λ) for every (i, λ) ∈ SB . Thus we stop the procedure.
We obtain the optimal value F ∗ = F π1 and an optimal policy π1 = (δ1)

∞. Therefore, since e = 1, we
have optimal value in the original problem as follows:

F ∗(1, 1) =
112

33
, F ∗(2, 1) =

45

11
, F ∗(3, 1) = 1.
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