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Abstract

In this paper we treat a resource allocation model defined on an infinite interval.
We show that the solution of the corresponding problem with finite horizon cannot
be extended to a solution of the infinite horizon problem, since the resource alloca-
tion problem in the unmodified setting does not have a solution on an unbounded
interval. To change this situation we bring an additional state constraint into the
model which contains a weight function. The new problem, called now the adapted
resource allocation problem, has an optimal solution which has been identified by
means of the duality concept of Klötzler.
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1 Introduction.

The general interest for infinite horizon optimal control problems has been
growing since the seventies of the last century. Many authors dealt with this
type of problems, see for instance [1], [2], [4], [8], [14], [16], [18] ff. One rea-
son for this is a plenty of economical, biological and mechanical applications,
compare [7], [3], [13], [17] and others. In the present paper we consider the
resource allocation problem, given by communication with H. Maurer, formu-
lated on an unbounded interval. This simple model is very demonstrative as
for the relation between finite and infinite horizon optimal control problems.
The solution of the finite interval problem cannot be extended to a solution

1



of the infinite problem, since the last does not even exist. Secondly, none of
the admissible trajectories of the infinite horizon problem belongs to the usual
Sobolev space what justifies the weighted Sobolev space approach.
Our paper is structured as follows. The second section introduces all neces-
sary notations and definitions. In the section 3 we treat the resource allocation
model on a fixed finite time interval and present its solution provided by Pon-
tryagin’s maximum principle. The infinite horizon resource allocation problem
is considered in the section 4 and it is shown that there is no optimal solution
for the problem in this setting. Here we also discuss possible adjustments in the
modelling. The section 5 demonstrates an adapted resource allocation prob-
lem, where an additional state constraint is introduced. Besides of that this
section is partly devoted to the formulation of a dual problem to some general
infinite horizon control problem with state constraints and to the derivation of
the sufficient optimality conditions based on the duality concept of Klötzler,
see [10]. The obtained sufficient conditions allow us to prove that though the
new setting of the problem admits an unbounded growth of the capital it
possess an optimal solution having a ”bang-singular” structure. Finally, brief
conclusions are drawn.

2 Preliminaries.

Let us introduce B as a measurable set in s-dimensional Euclidean space.
We denote by Mn(B), Ln

p (B) and C0,n(R+) the spaces of all vector functions
x : B → Rn with Lebesgue measurable, in the pth power Lebesgue integrable
or continuous components, respectively ([5], p. 146 and pp. 285 ff.; [6], pp. 228
ff.). For n = 1, we suppress the superscript in the labels of the spaces.
Let us write [ 0 , ∞ ) = R+. A Lebesgue measurable function ν : R+ →
R+\{ 0 } with positive values is called a density function iff it is Lebesgue
integrable over R+:

L -

∞∫
0

ν(t) dt < ∞ . (1)

By means of a density function ν ∈ C0(R+), we define for any 1 ≤ p < ∞ the
weighted Lebesgue space

Ln
p (B, ν) =

x ∈Mn(B) | (L -
∫
B

|x(t) |p ν(t) dt)1/p < ∞

 (2)

as well as
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Ln
∞(B, ν) =

{
x ∈Mn(B) | ess sup

t∈B
| x(t) ν(t) | < ∞

}
(3)

and the weighted Sobolev space

W 1,n
p (R+, ν) = {x ∈ Mn(R+ ) | x ∈ Ln

p (R+, ν) , ẋ ∈ Ln
p (R+, ν) } (4)

(see [12], p. 11 f.). Equipped with the norm

‖x‖W 1,n
p (R+,ν) = ‖x‖Ln

p (R+,ν) + ‖ẋ‖Ln
p (R+,ν) , (5)

W 1,n
p (R+, ν) becomes a Banach space (this can be confirmed analogously to

[12], p. 19, Theorem 3.6.).
The notation ”L-” before an integral here and throughout the paper empha-
sizes that the improper integral has to be understood as Lebesgue integral.
Let us remark that the corresponding Riemann integral does not necessarily
coincide with the Lebesgue integral, see for example [6], [16].

3 A Resource Allocation Problem with Finite Horizon

3.1 The problem (PT ) and its solution by the Maximum Principle.

We consider the resource allocation problem with a fixed finite horizon T < ∞,
which is stated as follows

JT (x, u) =

T∫
0

e−ρtx(t)(1− u(t)) → max! (6)

with respect to all pairs

(x, u) ∈ W 1,n
2 (R+)× Lr

2(R+) , (7)

satisfying

ẋ(t) = x(t) · u(t), (8)

x(0) = x0 > 0, (9)

0 ≤ u(t) ≤ 1. (10)

In this setting the change rate of the capital stock x(t) is proportional to the
investment rate u(t) at time t which is to consider as the control variable.
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We now evaluate the necessary conditions given by Pontryagin’s maximum
principle on the interval [0, T ] and then decide if the candidate for an optimal
solution computed by this way can be extended to a solution of the infinite
horizon optimal control problem (6)–(10). In the normal case Pontryagin func-
tion is defined as follows

H(t, ξ, v, η) = ξ(1− v)e−ρt + ηξv

= ξe−ρt + vξ(η − e−ρt) (11)

Maximizing Pontryagin function with respect to the variable v we obtain the
Hamiltonian

H(t, ξ, η) = max
v∈U

H(t, ξ, v, η) =


ηξ , ξ(η − e−ρt) > 0,

ξe−ρt , ξ(η − e−ρt) = 0,

ξ−ρt , ξ(η − e−ρt) < 0,

(12)

with the corresponding optimal control u∗(t):

u∗(t) =


1 , ξ(η − e−ρt) > 0,

α ∈ [0, 1] , ξ(η − e−ρt) = 0,

0 , ξ(η − e−ρt) < 0,

(13)

where α is an arbitrary element of [0, 1]. Due to concavity of H(t, ·, y(t)) for
all t ∈ [0, T ] the necessary conditions provided by the Maximum principle
are sufficient as well, compare e.g. [7], theorem 2.2., p. 36. Therefore verifying
conditions of the Pontryagin’s maximum principle, theorem 1, [9], p. 127 ff.,
we find out that the process (x∗, u∗, y), defined as

u∗(t) =

 1 , t ∈ (0, τ),

0 , t ∈ [τ, T ];
(14)

x∗(t) =

 x0e
t , t ∈ (0, τ),

x0e
τ , t ∈ [τ, T ];

(15)

y(t) =

De−t , t ∈ (0, τ),

1
ρ
(e−ρt − e−ρT ) , t ∈ [τ, T ],

(16)

where D = e(1−ρ)τ due to the switching condition x∗(t)(y(t) − e−ρt) = 0, is
optimal for a sufficiently large T . The point τ should be chosen such that the
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function y remains continuous in this point. This gives us the condition

e(1−ρ)τe−τ =
1

ρ
(e−ρτ − e−ρT ), (17)

which yields the switching point

τ = T +
ln(1− ρ)

ρ
> 0. (18)

Thus, if the interval [0, T ] is large enough then there exists a switching point
τ .

4 The Resource Allocation Model on an Unbounded Time Interval.

The extension of the problem (PT) onto an infinite horizon provides the op-
timal control problem

J∞(x, u) =L -

∞∫
0

e−ρtx(t)(1− u(t))dt → max! (19)

with respect to all pairs

(x, u) ∈ W 1,1
2 (R+)× L1

2(R+) (20)

fulfilling the restrictions

ẋ(t) = x(t) · u(t), (21)

x(0) = x0 > 0, (22)

0 ≤ u(t) ≤ 1, (23)

where the discount rate ρ satisfies 0 < ρ < 1. The problem (19)–(23) will be
denoted as (P∞).

4.1 The problem (P∞): Discussion.

We now want to investigate what happens if we let the horizon T tend to
infinity.
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The first question which arises is about a suitable state space. Since for any
admissible trajectory x(t) it holds x(t) > x0 > 0 for all t ∈ [0,∞) we observe
that x 6∈ W 1,1

p (R+) for any p 6= ∞. This means that the feasible set of the
problem (P)∞ is empty. However, considering the density function ν(t) = e−ρt

we extend the state space W 1,1
2 (R+) to W 1,1

2 (R+, e−ρt) and the control space
L1

2(R+) to L1
2(R+, e−ρt).

We now want to discuss the question of the existence of optimal solution for
the infinite horizon control problem (19), (21)–(23) together with the condition

(x, u) ∈ W 1,1
2 (R+, e−ρt)× L1

2(R+, e−ρt) . (24)

For this aim we consider

uα(t) = α = const ∈ (0, ρ), t ∈ R+. (25)

The corresponding state trajectory is

xα(t) = x0e
αt, t ∈ R+, (26)

and the functional value given at the pair (xα, uα) is

J∞(xα, uα) =L -

∞∫
0

x0e
αt(1− α)e−ρtdt

= lim
T→∞

(1− α)x0

α− ρ
e(α−ρ)t

∣∣∣T
0

=
1− α

ρ− α
. (27)

It is easy to see that the sequence of functional values J∞(xα, uα) tends to
infinity as α → ρ. This fact indicates that there is no maximizer for the
problem (19), (21)–(24) as well.

The last point of discussion is devoted to the question: how can we improve
the given model so that the new one possess an optimal solution. Possible
adjustments in the modelling are:

– Introducing an additional state constraint restricting the growth of the cap-
ital by some weight function. The obtained model makes sense in the eco-
nomic context as well.

– Considering a nonlinear utility function such as suggested in [11], p. 238 ff.
– Is the state space to large? A more restrictive choice of the state space can

resolve this problem.
– Logistic correction in the state equation

ẋ(t) = x(t)u(t)− βx2(t). (28)
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– Making the discount rate ρ dependent on t.

5 An Adapted Resource Allocation Model.

We trace the first mentioned adjustment and modify the problem (P∞) by
adding a state constraint and choosing weighted Sobolev- and weighted Lebesgue
spaces as the state- and control spaces respectively:

L -

∞∫
0

e−ρtx(t)(u(t)− 1)dt → min! (29)

with respect to all pairs

(x, u) ∈ W 1
2 (R+, e−α∗t)× L2(R+, e−α∗t) (30)

satisfying the conditions

ẋ(t) = x(t) · u(t), (31)

x(t) ≤ Ceα̂t, ∀ t > 0, C ≥ x0, 0 < α̂ < α∗ < ρ, (32)

x(0) = x0 > 0, (33)

0 ≤ u(t) ≤ 1. (34)

The problem (29)–(34) will be denoted by (PA
∞).

5.1 Sufficient optimality conditions through duality concept of Klötzler.

The control problem which is the generalization of the (PA
∞) can be formulated

as follows: minimize the functional

JG
∞(x, u) = L -

∞∫
0

r(t, x(t), u(t)) ν̃(t) dt (35)

with respect to all pairs

(x, u) ∈ W 1,n
2 (R+, ν)× Lr

2(R+, ν) , (36)

satisfying
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ẋ(t) = f(t, x(t), u(t)) a.e. on R+ ; (37)

x(t) ∈ Z(t) on R+, (38)

x(0) = x0 ; (39)

u(t) ∈ U ⊂ Compact(Rr) a. e. on R+ (40)

Hereby the functions ν and ν̃ are density functions described in the section 2.
The problem (35)–(40) will be denoted by (PG

∞).

Definition 1:
We call a pair (x, u) admissible for (PG

∞), if it satisfies the conditions (36)–(40)
and the integral in (35) exists and has a finite value.

Definition 2:
The pair (x∗, u∗) is called optimal for (PG

∞), if for any pair (x, u) admissible
for (PG

∞) the inequality JG
∞(x∗, u∗) ≤ JG

∞(x, u) holds.

Lemma 1:
Let (x∗, u∗) be an admissible pair of (PG

∞) and S : R+×Rn → R be a function
of the form

S(t, ξ) = a(t) + y(t)T (ξ − x∗(t)), (41)

with a ∈ W 1
1 (R+); y ∈ W 1

2 (R+, ν−1) and satisfying y ∈ C1[0, τ ], y ∈ C1[τ,∞).
Then, for any x ∈ W 1

2 (R+, ν) with x(0) = x0, we have:

lim
T→∞

S(T, x(T )) = 0, (42)

∞∫
0

d

dt
S(t, x(t))dt = −S(0, x0) + S(τ − 0, x(τ))− S(τ + 0, x(τ)). (43)

Proof: The proof is completely analogous to that of Lemma 1 in [15].

We introduce the Hamiltonian

H(t, ξ, η) = sup
v∈U

H(t, ξ, v, η) (44)

using the Pontryagin function

H(t, ξ, v, η) = −r(t, ξ, v) +
1

ν̃(t)
〈η, f(t, ξ, v)〉. (45)

Furthermore, we define the set
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Y =


S : R+ × Rn → R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S(t, ξ) = a(t) + y(t)T (ξ − x∗(t)),

a ∈ W 1
1 (R+), y ∈ W 1,n

2 (R+, ν−1),

y ∈ C1[0, τ ], y ∈ C1[τ,∞),

1
ν̃(t)

∂tS(t, ξ) +H(t, ξ, ∂ξS(t, ξ)) ≤ 0

∀(t, ξ) ∈ X,


, (46)

where

X =
{
(t, ξ) ∈ R+ × Rn | t ∈ (R+\τ), ξ ∈ Z(t)

}
. (47)

Using the construction scheme for the dual problem described in [10] we obtain
a problem (DG

∞) and prove

Theorem 1:
Let a problem (PG

∞) be given. Then for the problem (DG
∞) of maximizing the

function

g∞(S) : =−S(0, x0) + inf
β∈Q

{S(τ − 0, β)− S(τ + 0, β)} , (48)

Q = {β ∈ Rn|β ∈ Z(τ)} (49)

with respect to S ∈ Y , the weak duality relation

inf (PG
∞) ≥ sup (DG

∞) (50)

holds.
Proof:
Let (x, u) be admissible for (PG

∞) and S be admissible for (DG
∞), i.e. S ∈ Y .

Then we have

J(x, u) =

∞∫
0

r(t, x(t), u(t))ν̃(t)dt

=

∞∫
0

(−H(t, x(t), u(t), ∂ξS(t, x(t)))) ν̃(t)dt

+

∞∫
0

(
∂ξS(t, x(t))

ν̃(t)
f(t, x(t), u(t))

)
ν̃(t)dt

=

∞∫
0

(
−H(t, x(t), u(t), ∂ξS(t, x(t)))− ∂tS(t, x(t))

ν̃(t)

)
ν̃(t)dt
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+

∞∫
0

(
∂tS(t, x(t))

ν̃(t)
+

∂ξS(t, x(t))

ν̃(t)
ẋ(t)

)
ν̃(t)dt

≥−
∞∫
0

(
H(t, x(t), ∂ξS(t, x(t))) +

∂tS(t, x(t))

ν̃(t)

)
ν̃(t)dt (51)

+

∞∫
0

(∂tS(t, x(t)) + ∂ξS(t, x(t))ẋ(t)) dt

≥−
∞∫
0

sup
ξ∈Rn

{(
H(t, ξ, ∂ξS(t, ξ)) +

∂tS(t, ξ)

ν̃(t)

)}
ν̃(t)dt

+

∞∫
0

(∂tS(t, x(t)) + ∂ξS(t, x(t))ẋ(t)) dt

≥
∞∫
0

d

dt
S(t, x(t))dt = lim

T→∞

T∫
0

d

dt
S(t, x(t))dt

= lim
T→∞

S(T, x(T ))− S(0, x(0)) + S(τ − 0, x(τ))− S(τ + 0, x(τ))

≥−S(0, x0) + inf
β∈Q

{S(τ − 0, β)− S(τ + 0, β)} .

2

The next corollary provides sufficient conditions for the global optimality.

Corollary 1:
An admissible pair (x∗, u∗) is a global minimizer of (PG

∞), if there exists an
admissible S∗ for (DG

∞), such that the following conditions are fulfilled for
almost all t > 0:

(M) H(t, x∗(t), ∂ξS
∗(t, x∗(t)), 1)

= H(t, x∗(t), u∗(t), ∂ξS
∗(t, x∗(t)), 1), (52)

(HJE)
1

ν̃(t)
∂tS

∗(t, x∗(t)) +H(t, x∗(t), ∂ξS(t, x∗(t))) = 0, (53)

(B) inf
β∈Q

{S∗(τ − 0, β)− S∗(τ + 0, β)} (54)

= S∗(τ − 0, x∗(τ))− S∗(τ + 0, x∗(τ)).

Proof: This follows immediately from Theorem 1 and Lemma 1. 2

5.2 Optimal solution of (PA
∞) by sufficiency conditions.

We consider again the problem (PA
∞) and show that the control
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u∗(t) =

 1 , t ≤ τ,

α̂ , t > τ
(55)

is optimal for some switching point τ . The corresponding state trajectory is

x∗(t) =

 x0e
t , t ≤ τ,

x0e
(1−α̂)τeα̂t , t > τ.

(56)

This solution satisfies the state constraint (32) if x0e
τ = Ceα̂τ , which means

that τ = 1
1−α̂

ln( C
x0

) ≥ 0. We now want to find an S∗, admissible in (DA
∞), such

that the conditions (52), (53) and (54) are fulfilled for the pair (x∗, u∗). This
ensures the global optimality of the process (x∗, u∗).
The Hamiltonian for the problem (PA

∞) is defined by

H(t, ξ, η) = max
v∈U

H(t, ξ, v, η) =


ηξeρt , ξ(ηeρt − 1) > 0,

ξ , ξ(ηeρt − 1) = 0,

ξ , ξ(ηeρt − 1) < 0,

(57)

We consider the parametric optimization problem of maximizing the defect
within the Hamilton-Jacobi equation (53):

Λ(t, ξ) :=
1

ν̃(t)
∂tS(t, ξ) +H(t, ξ, ∂ξS(t, ξ)) → max! (58)

with respect to ξ ∈
{
ξ ∈ R |x0 ≤ ξ ≤ Ceα̂t

}
.

The defect Λ(t, ξ) from the last formula can be rewritten as

Λ(t, ξ) =
1

ν̃(t)

(
ȧ(t) + ẏ(t)T (ξ − x∗(t))− y(t)T ẋ∗(t)

)
+H(t, ξ, ∂ξS(t, ξ)). (59)

The component a(t) of the dual variable S(t, ξ) will be chosen from the
Hamilton-Jacobi equation Λ(t, x∗(t)) = 0 and we obtain

ȧ(t) = (y(t)T ẋ∗(t)−H(t, x∗(t), y(t)))ν̃(t). (60)

With the Lagrangian

L(t, ξ) = −Λ(t, ξ) + λ(t)(x0 − ξ) + µ(t)(ξ − Ceαt) (61)
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the Karush-Kuhn-Tucker conditions for the problem (58) are

∂ξL(t, x∗(t)) =−eρtẏ(t)− ∂ξH(t, x∗(t), y(t), 1)− λ(t) + µ(t) = 0, (62)

λ(t)(x0 − x∗(t)) = 0, λ(t) ≥ 0, (63)

µ(t)(x∗(t)− Ceαt) = 0, µ(t) ≥ 0. (64)

Since u∗(t) = 1 for all t ∈ (0, τ), the strict inequalities x0 < x∗(t) < Ceα̂t hold
for all t in this interval, which means together with complementary conditions
(63), (64) that λ(t) = µ(t) = 0 on (0, τ). In this case the condition (62) turns
into

ẏ(t) = −y(t), t ∈ (0, τ) (65)

and, consequently, y(t) = De−t, D ∈ R. From the condition De−t > e−ρt ∀t ∈
(0, τ) we choose the constant D := e(1−ρ)τ .
The fact that u∗(t) = α̂ ∈ (0, 1) for all t ∈ (τ,∞) implies H(t, ξ, η) = ξ and
λ(t) = 0, t ∈ (τ,∞). For all t ∈ (τ,∞) we rewrite the condition (62) into the
form

ẏ(t) = −e−ρt + µ(t)e−ρt. (66)

Together with the switching condition y(t) = e−ρt for all (τ,∞) we obtain the
equation with respect to the multiplier µ(t):

−ρe−ρt = −e−ρt + µ(t)e−ρt, (67)

whose solution µ(t) = (1− ρ)e−ρt is strictly positive.
The continuity of the adjoint function y(t) at the point τ indicates that the
boundary condition (54) of the generalized maximum principle is satisfied by
the triple (x∗(t), u∗(t), S∗(t, x∗(t))), since in this case the both sides of (54)
are zero.
Finally, we prove that the adjoint function y(t) belongs to the space W 1

2 (R+, eα∗t):

‖y‖L2(R+,eα∗t) =

∞∫
0

|y(t)|2eα∗tdt

= e2(1−ρ)τ

τ∫
0

e−(2−α∗)tdt +

∞∫
τ

e−(2ρ−α∗)tdt < ∞. (68)

We analogously show that ‖ẏ‖L2(R+,eα∗t) < ∞ holds. It remains to verify,
whether a(t) from (60) belongs to the space W 1

1 (R+). Indeed, the function
a(t), given by
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a(t) =

 x0
α̂−1
α̂−ρ

e(1−ρ)τ + K , t < τ,

x0
α̂−1
α̂−ρ

e(1−α̂)τe(α̂−ρ)t + K , t > τ,
(69)

where K ∈ R, is obviously an element of the W 1
1 (R+).

Thus, all the conditions of the corollary 1 are fulfilled and we conclude that
the pair (x∗, u∗) is the global minimizer of the problem (PA

∞) and the proof is
complete.

6 Conclusions.

To summarize, we want to remark that using the weight functions approach
we have succeeded in changing the model statement in so far that the problem
(PA

∞) became solvable. Further, the duality concept of Klötzler allowed us to
formulate the sufficient optimality conditions and to prove the global opti-
mality of the control (55). However, an equivalent of Pontryagin’s maximum
principle for the problem (PG

∞) with adjoint variables belonging to dual spaces
of the state spaces, including correct transversality conditions is still missing
and represents a future challenge.
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