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Abstract: We give the Jordan form and the Singular Value Decomposition for an integral operator
N with a non-symmetric kernel N(y, z). This is used to give solutions of Fredholm equations for
non-symmetric kernels, and to determine the behaviour of N n and (NN ∗)n for large n.

1 Introduction and summary

Suppose that Ω ⊂ Rp and that µ is a σ-finite measure on Ω. Consider a s1 × s2 complex matrix
function N(y, z) on Ω× Ω. Generally we shall assume that N ∈ L2(µ × µ) and is non-trivial, that
is,

0 < ||N ||22 =

∫ ∫

||N(y, z)||2dµ(y)dµ(z) < ∞.

The integral operator asociated with (N,µ) is N defined by

N q(y) =

∫

N(y, z)q(z)dµ(z), p(z)∗N =

∫

p(y)∗N(y, z)dµ(y) (1.1)

where p : Ω → Cs1 and q : Ω → Cs2 are any functions for which these integrals exist, for example
p, q ∈ L2(µ), that is

∫

|p|2dµ < ∞, and similarly for q. (All integrals are over Ω. * denotes the
transpose of the complex conjugate.)

Section 2 reviews Fredholm theory for Hermitian kernels, that is, when N(y, z)∗ = N(z, y), so
that s1 = s2 . For this case, N n = O(rn1 ) for large n where r1 is the magnitude of the largest
eigenvalue.

Section 3 extends this to non-Hermitian kernels for the case of diagonal Jordan form. Again
N n = O(rn1 ) for large n for r1 as before.

Section 4 deals with the case of non-diagonal Jordan form. In this case N n = O(rn1n
M−1) for

large n for r1 as before where M is the largest multiplicity of those eigenvalues with modulus r1.
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Section 5 gives the Singular Value Decomposition (SVD) for a non-symmetric kernel N(y, z).
In this case one has results such as (NN ∗)n = O(θ2n1 ) for large n where θ1 is the largest singular
value..

2 Hermitian kernels

Matrix theory

First consider a Hermitian matrix N∗ = N ∈ Cs×s. Its eigenvalues ν1, · · · , νs are the roots of
det(N − νI) = 0. They are real. Corresponding to νj is an eigenvector pj satisfying Npj = νjpj .
These are orthonormal: p∗jpk = δjk where δjj = 1 and δjk = 0 for j 6= k. Set P = (p1, · · · , ps). If
N and its eigenvalues are real, then P can be taken to be real. The spectral decomposition of N in
terms of its eigenvalues and eigenvectors is

N = PΛP ∗ =

s
∑

j=1

νjpjp
∗

j where Λ = diag(ν1, · · · , νs), (2.1)

s
∑

j=1

νjpjp
∗

j = PP ∗ = Is = P ∗P = (p∗jpk).

So for α ∈ C

Nα = PΛαP ∗ =

s
∑

j=1

ναj pjp
∗

j , (2.2)

provided that if det(N) = 0, then α has non-negative real part. So for det(N) 6= 0,

Nf = g ⇒ f = N−1g =

s
∑

j=1

ν−1
j pj(p

∗

jg).

Similarly for ν not an eigenvalue and f, g ∈ Cs,

(νI −N)f = g ⇒ f = (νI −N)−1g =

s
∑

j=1

(ν − νj)
−1pj(p

∗

jg).

For large n, if

r1 = |ν1| = · · · = |νM | > r0 =
s

max
j=M+1

|νj | (2.3)

then

Nn = rn1Cn +O(rn0 ) where Cn =

M
∑

j=1

[sign (νj)]
npjp

∗

j = O(1) (2.4)

assuming that s does not depend on n.

Function theory

Now consider a function N(y, z) : Ω2 → Cs×s and a σ-finite measure µ on Ω ⊂ Rp. Its integral
operator with respect to µ is N defined by (1.1). Suppose that the kernel N is Hermitian, that is,

N(y, z)∗ = N(z, y).
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Then the analogues of the matrix results above are as follows. Suppose that ||N ||22 > 0 and

s
∑

j=1

∫

|Njj(x, x)dµ(x) < ∞.

The spectral decomposition of N in terms of its eigenvalues and vector eigenfunctions {pj(y)} : Ω →
Cs, is

N(y, z) = P (y)ΛP (z)∗ =

∞
∑

j=1

νjpj(y)pj(z)
∗ (2.5)

where Λ = diag(ν1, ν2, · · · ), P (y) = (p1(y), p2(y), · · · ).

The eigenfunctions are orthonormal with respect to µ:

∫

p∗jpkdµ = δjk.

In Fredholm theory the convention is to call {λj = ν−1
j } the eigenvalues, rather than {νj}.

Iyz = P (y)P (z)∗ is generally divergent but can be thought of as a generalized Dirac function:
∫

Iyzf(z)dµ(z) = f(y). P (z)∗P (y) = (pj(z)
∗pk(y)) satisfies

∫

P (z)∗P (z)dµ(z) = I∞.

For n = 1, 2, · · · , Nn(y, z) = N n−1N(y, z) satisfies

Nn(y, z) = P (y)ΛnP (z)∗ =

s
∑

j=1

νnj pj(y)pj(z)
∗.

For large n, if (2.3) holds then

Nn(y, z) = rn1Cn(y, z) +O(rn0 ) where Cn(y, z) =
M
∑

j=1

[sign (νj)]
npj(y)pj(z)

∗ = O(1).

Conditions for (2.5) to hold pointwise and uniformly are given in Withers (1974, 1975, 1978.) It is
known as Mercer’s Theorem.

The resolvent

Given functions f, g : Ω → Cs, the Fredholm integral equation of the second kind,

p(y)− λNp(y) = f(y), (2.6)

can be solved for λ not an eigenvalue using

(I − λN )−1 = I + λNλ, that is, Nλ = (I − λN )−1N

where

Nλf(y) =

∫

Nλ(y, z)f(z)dµ(z), g(z)Nλ =

∫

g(y)Nλ(y, z)dµ(y),

and the resolvent of N ,

Nλ(y, z) = (I − λN )−1N(y, z) : C × Ω2 → Cs×s

3



with operator Nλ is the unique solution of

(I − λN )Nλ = N = Nλ(I − λN ),

that is,
λNNλ(y, z) = N(y, z)−Nλ(y, z) = λNλ(y, z)N .

If this can be solved analytically or numerically, then one has a solution of (2.6) without the need
to compute the eigenvalues and eigenfunctions of N .

The resolvent satisfies

Nλ(y, z) =

∞
∑

j=1

pj(y)pj(z)
∗/(λj − λ). (2.7)

Conditions for this to hold are given by Corollary 3 of Withers (1975). The Fredholm equation of
the second kind, (2.6), has solution

p(y) = f(y) + λ

∞
∑

j=1

pj(y)

∫

p∗jfdµ/(λj − λ).

The resolvent exists except for λ = λj, an eigenvalue. The eigenvalues of N are the zeros of its
Fredholm determinant

D(λ) = Π∞

j=1(1− λ/λj) = exp{−

∫ λ

0
dλ

∫

trace Nλ(x, x)dµ(x)}. (2.8)

The Fredholm integral equation of the first kind

λNp(x) = p(x)

has a solution provided that λ is an eigenvalue. For ν an eigenvalue, its general solution p(x) is a
linear combination of the eigenfunctions {pj(x)} corresponding to λj = λ.

Example 2.1 Suppose that Y,Z ∈ R and
(Y
Z

)

∼ N2(0, V ) where V =

(

I r
r I

)

. So V is the

correlation matrix for
(Y
Z

)

. For j ∈ N+, x ∈ R set pj(x) = Hj(x)/j!
1/2 where Hj(x) is the

standard univariate Hermite polynomial. Then
∫

pjpkφI = δjk and

∞
∑

j=0

rjpj(y)pj(z) = φC(y, z)/φI(y)φI(z).

This is Mehler’s expansion for the standard bivariate normal distribution. Pearson gave an in-
tegrated version and Kibble extended it to an expansion for φV (x)/φI(x) for x ∈ Rk and V a
correlation matrix. See for example (45.52) p127 and p321-2 of Kotz, Balakrishnan and Johnson
(2000).
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3 Functions of two variables with diagonal Jordan form

Diagonal Jordan form for matrices

Consider N ∈ Cs×s with eigenvalues ν1, · · · , νs, the roots of det(N − νI) = 0. N is said to have
diagonal Jordan form (DJF) if

N = PΛQ∗ where PQ∗ = I and Λ = diag(ν1, · · · , νs).

So

N =
s

∑

j=1

νjpjq
∗

j , q∗jpk = δjk where P = (p1, · · · , ps), Q = (q1, · · · , qs),

s
∑

j=1

pjq
∗

j = PQ∗ = Is = Q∗P = (q∗j pk).

If N,Λ are real then P,Q can be taken as real. Also

NP = PΛ, Npj = νjpj, N∗Q = QΛ, N∗qj = νjqj, (3.1)

and for any complex α,

Nα = PΛαQ∗ =
s

∑

j=1

ναj pjq
∗

j

provided that if det(N) = 0, then α has non-negative real part. Suppose that

νj = rje
iθj and r1 = · · · = rR > r0 =

s
max
j=R+1

rj. (3.2)

Then

Nn = rn1Cn +O(rn0 ) where Cn =
R
∑

j=1

einθjpjq
∗

j = O(1) (3.3)

Taking α = −1 gives the inverse of N when this exists.

Diagonal Jordan form for functions

Now consider a function N(y, z) : Ω2 → Cs×s. When N has diagonal Jordan form (for example
when its eigenvalues are all different), then the Fredholm equations of the first kind,

λNp(y) = p(y), λ̄N ∗q(z) = q(z),

or equivalently for ν = λ−1,
Np(y) = νp(y), N ∗q(z) = ν̄q(z),

also have only a countable number of solutions, say {λj = ν−1
j , pj(y), qj(z), j ≥ 1} up to arbitrary

constant multipliers for {pj(y), j ≥ 1}, satisfying the bi-orthogonal conditions

∫

q∗jpkdµ = δjk.
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These are called the eigenvalues and right and left eigenfunctions of (N,µ) or N . Also

N(y, z) =

∞
∑

j=1

νjpj(y)qj(z)
∗ = P (y)ΛQ(z)∗ (3.4)

where Λ = diag(ν1, ν2, · · · ), P (y) = (p1(y), p2(y), · · · ), Q(z) = (q1(y), q2(y), · · · ).

with convergence in L2(µ× µ), or pointwise and uniform under stronger conditions. If N is a real
function and Λ is real, then P,Q can be taken as real functions

For n ≥ 1,

Nn(y, z) = N n−1N(y, z) (3.5)

satisfies

Nn(y, z) =

∞
∑

j=1

νnj pj(y)qj(z)
∗ = P (y)ΛnQ(z)∗, (3.6)

N np(y) =
∞
∑

j=1

νnj pj(y)

∫

q∗jpdµ.

If (3.2) holds then

Nn(y, z) = rn1Cn +O(rn0 ) where Cn =

R
∑

j=1

einθjpj(y)qj(z)
∗ = O(1) (3.7)

N np(y) = rn1 cn +O(rn0 ) where cn =

R
∑

j=1

einθjpj(y)

∫

q∗jpdµ = O(1).

The resolvent satisfies the equations of Section 2 except that (2.7) is replaced by

Nλ(y, z) =

∞
∑

j=1

pj(y)qj(z)
∗/(λj − λ). (3.8)

The Fredholm determinant is again given by (2.8). If only a finite number of eigenvalues are non-
zero, the kernel N(y, z) is said to be degenerate. (For example this holds if µ puts weight only at
n points.) If R = 1, that is,

|λ1| < |λj | for j > 1, (3.9)

then as n → ∞,
N n+1f(y)/N nf(y) → λ−1

1 , f(y)N n+1/f(y)N n → λ−1
1 .

This is one way to obtain the first eigenvalue λ1 arbitrarily closely. Another is to use

λ−1
1 = sup{

∫

gNhdµ :

∫

ghdµ = 1} if λ1 > 0, (3.10)

λ−1
1 = inf{

∫

gNhdµ :

∫

ghdµ = 1} if λ1 < 0. (3.11)
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The maximising/minimising functions are the first eigenfunctions g = g1, h = h1. These are unique
up to a constant multiplier if (3.9) holds. If λ1 is known, one can use

(λ1N )nf(y) → p1(y)

∫

q∗1fdµ, f(y)∗(λ1N )n → q1(y)

∫

f∗p1dµ,

for any function f : Ω → Cs, to approximate p1(y), q1(y). One may now repeat the procedure on
the operator N1 corresponding to

N1(y, z) = N(y, z)− ν1p1(y)q1(z)
∗

to approximate λ2, p2(y), q2(z) assuming that the next eigenvalue in magnitude, λ2, has multiplicity
1.

For further details see Withers (1974, 1975, 1978) and references.

4 Fredholm theory for non-diagonal Jordan form

Non-diagonal Jordan form for matrices

For N 6= N∗ a matrix in Cs×s, its general Jordan form is

N = PJP−1 where J = diag(J1, · · · , Jr), Jj = Jmj
(λj),

r
∑

j=1

mj = s,

Jm(λ) = λIm + Um =









λ 1 0 · · · 0
0 λ 1 · · · 0

· · ·
0 0 0 · · · λ









, (4.1)

for some matrix P , and Um is the m×m matrix with 1s on the superdiagonal and 0s elsewhere:

(Um)jk = δj,k−1.

(See [1] for example. If N and its eigenvalues are real, then P can be taken as real.) So for n ≥ 1,

Nn = PJnP−1 where Jn = diag(Jn
1 , · · · , J

n
r ).

By the Binomial Theorem,

Jm(λ)n =
n
∑

a=0

(

n

a

)

λn−aUa
m and (Ua

m)jk = δj,k−a.

So Um
m = 0. For example

J2(λ)
n = λnI2 + nλn−1U2 =

(

λn nλn−1

0 λn

)

.

So Nn can be expanded in block matrix form

(Nn)jk =
r

∑

c=1

Pjc J
n
c P ck
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where we partition P and its inverse as

P = (Pjk : j, k = 1, · · · , r), P−1 = (P jk : j, k = 1, · · · , r)

with elements Pjk and P jk matrices in Cmj×mk .

Alternatively setting

Q∗ = P−1, (P1, · · · , Pr) = P, (Q1, · · · , Qr) = Q,

with Pj , Qj ∈ Cs×mj , we have

Nn = PJnQ∗ =

r
∑

j=1

PjJ
n
j Q

∗

j , (4.2)

r
∑

j=1

PjQ
∗

j = PQ∗ = Is = Q∗P = (Q∗

jPk)

so that
Q∗

jPj = Imj
, Q∗

jPk = 0 ∈ Cmj×mk if j 6= k.

P can be obtained as follows. Let pjk be the kth column of Pj for k = 1, · · · ,mj . Then

NP = PJ ⇒ NPj = PjJj ⇒ Npjk = λjpjk + pj,k−1 where pj0 = 0. (4.3)

So one first obtains pj1, the right eigenvector of N , then pj2, · · · , pjmj
. This is called the Jordan

chain. Q can either be obtained by inverting P or using

N∗Q = QJ∗ ⇒ N∗Qj = QjJ
∗

j ⇒ N∗qjk = λ̄jqjk + qj,k+1 where qj,mj+1 = 0. (4.4)

So one first computes qj,mj
, the right eigenvector of N∗ then qj,mj−1, · · · , qj1. For large n and

λ 6= 0,

Jn(λ)
n =

(

n

m− 1

)

λn−m+1[Um−1
m +O(1)]

and Um−1
m is a matrix of 0’s except for a 1 in its upper right corner. So if (3.2) holds and

m1 = · · · = mM >
R

max
j=M+1

mj,

then

(Nn)jk =

(

n

M − 1

)

rn−M+1
1 [Dn +O(n−1)]

where Dn =
M
∑

c=1

Pjc e
i(n−M+1)θcUM−1

M P ck =
M
∑

c=1

Pjc e
i(n−M+1)θcUM−1

M P ck = O(1).

See Withers and Nadarajah (2008) for more details.

Non-diagonal Jordan form for functions

Now consider N : Ω2 → Cs×s. Suppose that µ is a σ-finite measure on Ω and that N is not
Hermitian, that is N(y, z)∗ 6= N(z, y). Its Jordan form is

N(y, z) = P (y)JP (z)−1 = where J = diag(J1, J2, · · · ), Jj = Jmj
(λj) (4.5)
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for P (y) : Ω → Cs×∞ and Jm(λ) of (4.1) above. So partitioning

P (y) = (Pjk(y) : j, k = 1, 2, · · · ), P (z)−1 = (P jk(z) : j, k = 1, 2, · · · ),

with elements Pjk(y) and P jk(z) matrix functions in Ω → Cmj×mk , we can partition the nth
iterated kernel, Nn(y, z) = N n−1N(y, z) as

[Nn(y, z)]jk =

∞
∑

c=1

Pjc(y) J
n
c P ck(z).

Alternatively setting

Q(z)∗ = P (z)−1, (P1(y), P2(y), · · · ) = P (y), (Q1(z), Q2(z), · · · ) = Q(z),

with Pj(y), Qj(z) : Ω → Cs×mj , we have

Nn(y, z) = P (y)JnQ(z)∗ =

∞
∑

j=1

Pj(y)J
n
j Qj(z)

∗. (4.6)

P (y) can be obtained as follows. Let pjk(y) be the kth column of Pj(y) for k = 1, · · · ,mj . Then

NP (y) = P (y)J ⇒ NPj(y) = Pj(y)Jj ⇒ Npjk(y) = λjpjk(y) + pj,k−1(y) (4.7)

where pj0(y) = 0. So one first obtains pj1(y), the right eigenfunction of N , then pj2(y), · · · , pjmj
(y).

Q(z) can either be obtained by inverting P (z) or using

N ∗Q(z) = Q(z)J∗ ⇒ N ∗Qj(z) = Qj(z)J
∗

j ⇒ N ∗qjk(z) = λ̄jqjk(z) + qj,k+1(z) (4.8)

where qj,mj+1(z) = 0. So one first computes qj,mj
(z), the right eigenfunction ofN∗ then qj,mj−1(z), · · · , qj1(z).

So if (3.2) holds and

m1 = · · · = mM >
R

max
j=M+1

mj,

then

(Nn(y, z))jk =

(

n

M − 1

)

rn−M+1
1 (Djkn(y, z) +O(n−1))

where Djkn(y, z) =
M
∑

c=1

ei(n−M+1)θcPjc(y)U
M−1
M P ck(z) = O(1)

has (a, b) element
∑M

c=1 ei(n−M+1)θc [Pjc(y)]a1[P
ck(z)]Mb.

Example 4.1

5 The SVD for functions of two variables

The SVD for matrices

Suppose that N ∈ Cs1×s2 . That is, N is a s1 × s2 complex matrix. Denote its complex conjugate
transpose by N∗. Its SVD is

N = PDQ∗ =

r
∑

j=1

θjpjq
∗

j where PP ∗ = I, QQ∗ = I, r = min(s1, s2), (5.1)

P = (p1, · · · , ps1) ∈ Cs1×s1 , Q = (q1, · · · , qs2) ∈ Cs2×s2 , θ1 ≥ · · · ≥ θr > 0

9



and for s1 = s2, s1 > s2, s1 < s2

D = Λ,

(

Λ

0

)

, (Λ, 0) respectively where Λ = diag(θ1, · · · , θr).

If N is real, then so are P and Q.

So for s1 > s2,

DD∗ =

(

Λ2 0

0 0

)

, D∗D = Λ2

and for s1 < s2,

DD∗ = Λ2, D∗D =

(

Λ2 0

0 0

)

.

Compare this with (3.1). Also for 1 ≤ j ≤ r,

Nqj = θjpj, N∗pj = θjqj,

for r < j ≤ s1, Nqj = 0, and for r < j ≤ s2, N∗pj = 0. Also since

NN∗P = PDD∗, N∗NQ = QD∗D,

the pj is a right eigenvector of NN∗ with eigenvalue θ2j (or 0 if r < j ≤ s1) and the qj is a right

eigenvector of N∗N with eigenvalue θ2j (or 0 if r < j ≤ s2). So (or by Section 2),

(NN∗)n =

r
∑

j=1

θ2nj pjp
∗

j , (N∗N)n =

r
∑

j=1

θ2nj qjq
∗

j for n ≥ 1,

(NN∗)nN =
r

∑

j=1

θ2n+1
j pjq

∗

j , (N∗N)nN∗ =
r

∑

j=1

θ2n+1
j qjp

∗

j for n ≥ 0. (5.2)

These do not depend on the vectors {pj , qj , j ≥ r}.

So if θ1 = · · · = θM > θM+1, then we have the approximations for n ≥ 0,

(NN∗)n = θ2n1

M
∑

j=1

pjp
∗

j +O(θ2nM+1), (N∗N)n = θ2n1

M
∑

j=1

qjq
∗

j +O(θ2nM+1) for n ≥ 1,

(NN∗)nN = θ2n+1
1

r
∑

j=1

pjq
∗

j +O(θ2n+1
M+1), (N∗N)nN∗ = θ2n+1

1

r
∑

j=1

qjp
∗

j +O(θ2n+1
M+1). (5.3)

But

Is1 = (NN∗)0 =

s1
∑

j=1

pjp
∗

j , Is1 = (N∗N)0 =

s2
∑

j=1

qjq
∗

j .

If s1 = s2 and N is non-singular, its inverse is

N−1 = QΛ−1P ∗.

However unlike Jordan form, the SVD does not give a nice form for powers of N .

Now suppose Ω ⊂ Rp and that µ is a σ-finite measure on Ω. Consider a function N(y, z) : Ω2 →
Cs1×s2 .
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The equations
N q(y) = θp(y), N ∗p(z) = θq(z),

have a countable number of solutions, say {θj, pj(y), qj(z), j ≥ 1} satisfying
∫

p∗jpkdµ =

∫

q∗j qkdµ = δjk.

The singular values {θj} may be taken as real, non-negative and non-increasing. (For convenience
we have included θj = 0.) {pj(y)} and {qj(y)} are the right eigenfunctions of NN ∗ and N ∗N
respectively, with eigenvalues {θ2j}. Also in L2(µ × µ)

N(y, z) =
∞
∑

j=1

θjpj(y)qj(z)
∗. (5.4)

If N is real, then so are {pj , qj}. By (5.4 ), for n ≥ 0,

(NN ∗)nN(y, z) =

∞
∑

j=1

θ2n+1
j pj(y)qj(z)

∗,

(N ∗N )nN(y, z)∗ =

∞
∑

j=1

θ2n+1
j qj(z)pj(y)

∗,

N ∗(NN ∗)nN(y, z) =
∞
∑

j=1

θ2n+2
j qj(y)qj(z)

∗,

N (N ∗N )nN(y, z)∗ =

∞
∑

j=1

θ2n+2
j pj(z)pj(y)

∗,

(NN ∗)np(y) =
∞
∑

j=1

θ2nj pj(y)

∫

p∗jpdµ,

(N ∗N )nq(z) =

∞
∑

j=1

θ2nj qj(z)

∫

q∗j qdµ,

(NN ∗)nN q(y) =

∞
∑

j=1

θ2n+1
j pj(y)

∫

q∗j qdµ,

(N ∗N )nN ∗p(y) =
∞
∑

j=1

θ2n+1
j qj(y)

∫

p∗jpdµ,

∫

trace N ∗(NN ∗)nN(y, z)|z=ydµ(y) =

∫

trace N (N ∗N )nN(y, z)|z=ydµ(y) =

∞
∑

j=1

θ2n+2
j .

So if θ1 = · · · = θM > θM+1, then we have approximations such as

(NN ∗)np(y) = θ2n1

∞
∑

j=1

pj(y)

∫

p∗jpdµ+O(θ2nM+1)

if pj(y)
∫

p∗jpdµ = O(1) for j > M . So for iterations of N ∗N or NN ∗ the most important parameter
is the largest singular value.

11



References

[1] Kotz,S., Balakrishnan, N. and Johnson, N.L. (2000) Continuous multivariate distributions,
1, 2nd edition, Wiley, New York.

[2] Withers, C. S. (1974) Mercer’s Theorem and Fredholm resolvents. Bull. Austral. Math. Soc.,
11, 373-380.

[3] Withers, C. S. (1975) Fredholm theory for arbitrary measure spaces. Bull. Austral. Math.
Soc., 12, 283-292.

[4] Withers, C. S. (1978) Fredholm equations have uniformly convergent solutions. Jnl. of . Math.
Anal. and Applic., 64, 602-609.

[5] Withers, C. S. (2000) A simple expression for the multivariate Hermite polynomials. Statistics
and Probability Letters, 47, 165-169.

[6] Withers, C. S. and Nadarajah, S. (2008) The nth power of a matrix and approximations for
large n. Preprint http://arxiv.org/abs/0802.0502

12

http://arxiv.org/abs/0802.0502

	Introduction and summary
	Hermitian kernels
	Functions of two variables with diagonal Jordan form
	Fredholm theory for non-diagonal Jordan form
	The SVD for functions of two variables

