Fredholm equations for non-symmetric kernels, with applications to iterated integral operators.

by
Christopher S. Withers
Applied Mathematics Group
Industrial Research Limited
Lower Hutt, NEW ZEALAND
Saralees Nadarajah
School of Mathematics
University of Manchester
Manchester M60 1QD, UK

Abstract

We give the Jordan form and the Singular Value Decomposition for an integral operator \mathcal{N} with a non-symmetric kernel $N(y, z)$. This is used to give solutions of Fredholm equations for non-symmetric kernels, and to determine the behaviour of \mathcal{N}^{n} and $\left(\mathcal{N} \mathcal{N}^{*}\right)^{n}$ for large n.

1 Introduction and summary

Suppose that $\Omega \subset R^{p}$ and that μ is a σ-finite measure on Ω. Consider a $s_{1} \times s_{2}$ complex matrix function $N(y, z)$ on $\Omega \times \Omega$. Generally we shall assume that $N \in L_{2}(\mu \times \mu)$ and is non-trivial, that is,

$$
0<\|\mathcal{N}\|_{2}^{2}=\iint\|N(y, z)\|^{2} d \mu(y) d \mu(z)<\infty
$$

The integral operator asociated with (N, μ) is \mathcal{N} defined by

$$
\begin{equation*}
\mathcal{N} q(y)=\int N(y, z) q(z) d \mu(z), p(z)^{*} \mathcal{N}=\int p(y)^{*} N(y, z) d \mu(y) \tag{1.1}
\end{equation*}
$$

where $p: \Omega \rightarrow C^{s_{1}}$ and $q: \Omega \rightarrow C^{s_{2}}$ are any functions for which these integrals exist, for example $p, q \in L_{2}(\mu)$, that is $\int|p|^{2} d \mu<\infty$, and similarly for q. (All integrals are over Ω. * denotes the transpose of the complex conjugate.)

Section 2 reviews Fredholm theory for Hermitian kernels, that is, when $N(y, z)^{*}=N(z, y)$, so that $s_{1}=s_{2}$. For this case, $\mathcal{N}^{n}=O\left(r_{1}^{n}\right)$ for large n where r_{1} is the magnitude of the largest eigenvalue.

Section 3 extends this to non-Hermitian kernels for the case of diagonal Jordan form. Again $\mathcal{N}^{n}=O\left(r_{1}^{n}\right)$ for large n for r_{1} as before.

Section 4 deals with the case of non-diagonal Jordan form. In this case $\mathcal{N}^{n}=O\left(r_{1}^{n} n^{M-1}\right)$ for large n for r_{1} as before where M is the largest multiplicity of those eigenvalues with modulus r_{1}.

Section 5 gives the Singular Value Decomposition (SVD) for a non-symmetric kernel $N(y, z)$. In this case one has results such as $\left(\mathcal{N} \mathcal{N}^{*}\right)^{n}=O\left(\theta_{1}^{2 n}\right)$ for large n where θ_{1} is the largest singular value..

2 Hermitian kernels

Matrix theory

First consider a Hermitian matrix $N^{*}=N \in C^{s \times s}$. Its eigenvalues ν_{1}, \cdots, ν_{s} are the roots of $\operatorname{det}(N-\nu I)=0$. They are real. Corresponding to ν_{j} is an eigenvector p_{j} satisfying $N p_{j}=\nu_{j} p_{j}$. These are orthonormal: $p_{j}^{*} p_{k}=\delta_{j k}$ where $\delta_{j j}=1$ and $\delta_{j k}=0$ for $j \neq k$. Set $P=\left(p_{1}, \cdots, p_{s}\right)$. If N and its eigenvalues are real, then P can be taken to be real. The spectral decomposition of N in terms of its eigenvalues and eigenvectors is

$$
\begin{align*}
N & =P \Lambda P^{*}=\sum_{j=1}^{s} \nu_{j} p_{j} p_{j}^{*} \text { where } \Lambda=\operatorname{diag}\left(\nu_{1}, \cdots, \nu_{s}\right), \tag{2.1}\\
\sum_{j=1}^{s} \nu_{j} p_{j} p_{j}^{*} & =P P^{*}=I_{s}=P^{*} P=\left(p_{j}^{*} p_{k}\right) .
\end{align*}
$$

So for $\alpha \in C$

$$
\begin{equation*}
N^{\alpha}=P \Lambda^{\alpha} P^{*}=\sum_{j=1}^{s} \nu_{j}^{\alpha} p_{j} p_{j}^{*} \tag{2.2}
\end{equation*}
$$

provided that if $\operatorname{det}(N)=0$, then α has non-negative real part. So for $\operatorname{det}(N) \neq 0$,

$$
N f=g \Rightarrow f=N^{-1} g=\sum_{j=1}^{s} \nu_{j}^{-1} p_{j}\left(p_{j}^{*} g\right) .
$$

Similarly for ν not an eigenvalue and $f, g \in C^{s}$,

$$
(\nu I-N) f=g \Rightarrow f=(\nu I-N)^{-1} g=\sum_{j=1}^{s}\left(\nu-\nu_{j}\right)^{-1} p_{j}\left(p_{j}^{*} g\right)
$$

For large n, if

$$
\begin{equation*}
r_{1}=\left|\nu_{1}\right|=\cdots=\left|\nu_{M}\right|>r_{0}=\max _{j=M+1}^{S}\left|\nu_{j}\right| \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
N^{n}=r_{1}^{n} C_{n}+O\left(r_{0}^{n}\right) \text { where } C_{n}=\sum_{j=1}^{M}\left[\operatorname{sign}\left(\nu_{j}\right)\right]^{n} p_{j} p_{j}^{*}=O(1) \tag{2.4}
\end{equation*}
$$

assuming that s does not depend on n.

Function theory

Now consider a function $N(y, z): \Omega^{2} \rightarrow C^{s \times s}$ and a σ-finite measure μ on $\Omega \subset R^{p}$. Its integral operator with respect to μ is \mathcal{N} defined by (1.1). Suppose that the kernel N is Hermitian, that is,

$$
N(y, z)^{*}=N(z, y) .
$$

Then the analogues of the matrix results above are as follows. Suppose that $\|\mathcal{N}\|_{2}^{2}>0$ and

$$
\sum_{j=1}^{s} \int \mid N_{j j}(x, x) d \mu(x)<\infty
$$

The spectral decomposition of N in terms of its eigenvalues and vector eigenfunctions $\left\{p_{j}(y)\right\}: \Omega \rightarrow$ C^{s}, is

$$
\begin{equation*}
N(y, z)=P(y) \Lambda P(z)^{*}=\sum_{j=1}^{\infty} \nu_{j} p_{j}(y) p_{j}(z)^{*} \tag{2.5}
\end{equation*}
$$

$$
\text { where } \Lambda=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \cdots\right), P(y)=\left(p_{1}(y), p_{2}(y), \cdots\right) \text {. }
$$

The eigenfunctions are orthonormal with respect to μ :

$$
\int p_{j}^{*} p_{k} d \mu=\delta_{j k}
$$

In Fredholm theory the convention is to call $\left\{\lambda_{j}=\nu_{j}^{-1}\right\}$ the eigenvalues, rather than $\left\{\nu_{j}\right\}$.
$\mathcal{I}_{y z}=P(y) P(z)^{*}$ is generally divergent but can be thought of as a generalized Dirac function: $\int \mathcal{I}_{y z} f(z) d \mu(z)=f(y) . P(z)^{*} P(y)=\left(p_{j}(z)^{*} p_{k}(y)\right)$ satisfies $\int P(z)^{*} P(z) d \mu(z)=I_{\infty}$.

For $n=1,2, \cdots, N_{n}(y, z)=\mathcal{N}^{n-1} N(y, z)$ satisfies

$$
N_{n}(y, z)=P(y) \Lambda^{n} P(z)^{*}=\sum_{j=1}^{s} \nu_{j}^{n} p_{j}(y) p_{j}(z)^{*} .
$$

For large n, if (2.3) holds then

$$
N_{n}(y, z)=r_{1}^{n} C_{n}(y, z)+O\left(r_{0}^{n}\right) \text { where } C_{n}(y, z)=\sum_{j=1}^{M}\left[\operatorname{sign}\left(\nu_{j}\right)\right]^{n} p_{j}(y) p_{j}(z)^{*}=O(1) .
$$

Conditions for (2.5) to hold pointwise and uniformly are given in Withers (1974, 1975, 1978.) It is known as Mercer's Theorem.

The resolvent

Given functions $f, g: \Omega \rightarrow C^{s}$, the Fredholm integral equation of the second kind,

$$
\begin{equation*}
p(y)-\lambda \mathcal{N} p(y)=f(y) \tag{2.6}
\end{equation*}
$$

can be solved for λ not an eigenvalue using

$$
(I-\lambda \mathcal{N})^{-1}=I+\lambda \mathcal{N}_{\lambda}, \text { that is, } \mathcal{N}_{\lambda}=(I-\lambda \mathcal{N})^{-1} \mathcal{N}
$$

where

$$
\mathcal{N}_{\lambda} f(y)=\int N_{\lambda}(y, z) f(z) d \mu(z), g(z) \mathcal{N}_{\lambda}=\int g(y) N_{\lambda}(y, z) d \mu(y)
$$

and the resolvent of \mathcal{N},

$$
N_{\lambda}(y, z)=(I-\lambda \mathcal{N})^{-1} N(y, z): \mathcal{C} \times \Omega^{2} \rightarrow \mathcal{C}^{s \times s}
$$

with operator \mathcal{N}_{λ} is the unique solution of

$$
(I-\lambda \mathcal{N}) \mathcal{N}_{\lambda}=\mathcal{N}=\mathcal{N}_{\lambda}(I-\lambda \mathcal{N}),
$$

that is,

$$
\lambda \mathcal{N} N_{\lambda}(y, z)=N(y, z)-N_{\lambda}(y, z)=\lambda N_{\lambda}(y, z) \mathcal{N} .
$$

If this can be solved analytically or numerically, then one has a solution of (2.6) without the need to compute the eigenvalues and eigenfunctions of \mathcal{N}.

The resolvent satisfies

$$
\begin{equation*}
N_{\lambda}(y, z)=\sum_{j=1}^{\infty} p_{j}(y) p_{j}(z)^{*} /\left(\lambda_{j}-\lambda\right) . \tag{2.7}
\end{equation*}
$$

Conditions for this to hold are given by Corollary 3 of Withers (1975). The Fredholm equation of the second kind, (2.6), has solution

$$
p(y)=f(y)+\lambda \sum_{j=1}^{\infty} p_{j}(y) \int p_{j}^{*} f d \mu /\left(\lambda_{j}-\lambda\right) .
$$

The resolvent exists except for $\lambda=\lambda_{j}$, an eigenvalue. The eigenvalues of \mathcal{N} are the zeros of its Fredholm determinant

$$
\begin{equation*}
D(\lambda)=\Pi_{j=1}^{\infty}\left(1-\lambda / \lambda_{j}\right)=\exp \left\{-\int_{0}^{\lambda} d \lambda \int \operatorname{trace} N_{\lambda}(x, x) d \mu(x)\right\} \tag{2.8}
\end{equation*}
$$

The Fredholm integral equation of the first kind

$$
\lambda \mathcal{N} p(x)=p(x)
$$

has a solution provided that λ is an eigenvalue. For ν an eigenvalue, its general solution $p(x)$ is a linear combination of the eigenfunctions $\left\{p_{j}(x)\right\}$ corresponding to $\lambda_{j}=\lambda$.

Example 2.1 Suppose that $Y, Z \in R$ and $\binom{Y}{Z} \sim \mathcal{N}_{2}(0, V)$ where $V=\left(\begin{array}{ll}I & r \\ r & I\end{array}\right)$. So V is the correlation matrix for $\binom{Y}{Z}$. For $j \in N_{+}, x \in R$ set $p_{j}(x)=H_{j}(x) / j!^{1 / 2}$ where $H_{j}(x)$ is the standard univariate Hermite polynomial. Then $\int p_{j} p_{k} \phi_{I}=\delta_{j k}$ and

$$
\sum_{j=0}^{\infty} r^{j} p_{j}(y) p_{j}(z)=\phi_{C}(y, z) / \phi_{I}(y) \phi_{I}(z)
$$

This is Mehler's expansion for the standard bivariate normal distribution. Pearson gave an integrated version and Kibble extended it to an expansion for $\phi_{V}(x) / \phi_{I}(x)$ for $x \in R^{k}$ and V a correlation matrix. See for example (45.52) p127 and p321-2 of Kotz, Balakrishnan and Johnson (2000).

3 Functions of two variables with diagonal Jordan form

Diagonal Jordan form for matrices

Consider $N \in C^{s \times s}$ with eigenvalues ν_{1}, \cdots, ν_{s}, the roots of $\operatorname{det}(N-\nu I)=0 . N$ is said to have diagonal Jordan form (DJF) if

$$
N=P \Lambda Q^{*} \text { where } P Q^{*}=I \text { and } \Lambda=\operatorname{diag}\left(\nu_{1}, \cdots, \nu_{s}\right) .
$$

So

$$
\begin{aligned}
N & =\sum_{j=1}^{s} \nu_{j} p_{j} q_{j}^{*}, q_{j}^{*} p_{k}=\delta_{j k} \text { where } P=\left(p_{1}, \cdots, p_{s}\right), Q=\left(q_{1}, \cdots, q_{s}\right), \\
\sum_{j=1}^{s} p_{j} q_{j}^{*} & =P Q^{*}=I_{s}=Q^{*} P=\left(q_{j}^{*} p_{k}\right) .
\end{aligned}
$$

If N, Λ are real then P, Q can be taken as real. Also

$$
\begin{equation*}
N P=P \Lambda, \quad N p_{j}=\nu_{j} p_{j}, \quad N^{*} Q=Q \bar{\Lambda}, \quad N^{*} q_{j}=\bar{\nu}_{j} q_{j}, \tag{3.1}
\end{equation*}
$$

and for any complex α,

$$
N^{\alpha}=P \Lambda^{\alpha} Q^{*}=\sum_{j=1}^{s} \nu_{j}^{\alpha} p_{j} q_{j}^{*}
$$

provided that if $\operatorname{det}(N)=0$, then α has non-negative real part. Suppose that

$$
\begin{equation*}
\nu_{j}=r_{j} e^{i \theta_{j}} \text { and } r_{1}=\cdots=r_{R}>r_{0}=\max _{j=R+1}^{s} r_{j} . \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
N^{n}=r_{1}^{n} C_{n}+O\left(r_{0}^{n}\right) \text { where } C_{n}=\sum_{j=1}^{R} e^{i n \theta_{j}} p_{j} q_{j}^{*}=O(1) \tag{3.3}
\end{equation*}
$$

Taking $\alpha=-1$ gives the inverse of N when this exists.

Diagonal Jordan form for functions

Now consider a function $N(y, z): \Omega^{2} \rightarrow C^{s \times s}$. When N has diagonal Jordan form (for example when its eigenvalues are all different), then the Fredholm equations of the first kind,

$$
\lambda \mathcal{N} p(y)=p(y), \bar{\lambda} \mathcal{N}^{*} q(z)=q(z)
$$

or equivalently for $\nu=\lambda^{-1}$,

$$
\mathcal{N} p(y)=\nu p(y), \mathcal{N}^{*} q(z)=\bar{\nu} q(z),
$$

also have only a countable number of solutions, say $\left\{\lambda_{j}=\nu_{j}^{-1}, p_{j}(y), q_{j}(z), j \geq 1\right\}$ up to arbitrary constant multipliers for $\left\{p_{j}(y), j \geq 1\right\}$, satisfying the bi-orthogonal conditions

$$
\int q_{j}^{*} p_{k} d \mu=\delta_{j k} .
$$

These are called the eigenvalues and right and left eigenfunctions of (N, μ) or \mathcal{N}. Also

$$
\begin{equation*}
N(y, z)=\sum_{j=1}^{\infty} \nu_{j} p_{j}(y) q_{j}(z)^{*}=P(y) \Lambda Q(z)^{*} \tag{3.4}
\end{equation*}
$$

$$
\text { where } \Lambda=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \cdots\right), P(y)=\left(p_{1}(y), p_{2}(y), \cdots\right), Q(z)=\left(q_{1}(y), q_{2}(y), \cdots\right) \text {. }
$$

with convergence in $L_{2}(\mu \times \mu)$, or pointwise and uniform under stronger conditions. If N is a real function and Λ is real, then P, Q can be taken as real functions

For $n \geq 1$,

$$
\begin{equation*}
N_{n}(y, z)=\mathcal{N}^{n-1} N(y, z) \tag{3.5}
\end{equation*}
$$

satisfies

$$
\begin{align*}
& N_{n}(y, z)=\sum_{j=1}^{\infty} \nu_{j}^{n} p_{j}(y) q_{j}(z)^{*}=P(y) \Lambda^{n} Q(z)^{*} \tag{3.6}\\
& \mathcal{N}^{n} p(y)=\sum_{j=1}^{\infty} \nu_{j}^{n} p_{j}(y) \int q_{j}^{*} p d \mu
\end{align*}
$$

If (3.2) holds then

$$
\begin{align*}
& N_{n}(y, z)=r_{1}^{n} C_{n}+O\left(r_{0}^{n}\right) \text { where } C_{n}=\sum_{j=1}^{R} e^{i n \theta_{j}} p_{j}(y) q_{j}(z)^{*}=O(1) \tag{3.7}\\
& \mathcal{N}^{n} p(y)=r_{1}^{n} c_{n}+O\left(r_{0}^{n}\right) \text { where } c_{n}=\sum_{j=1}^{R} e^{i n \theta_{j}} p_{j}(y) \int q_{j}^{*} p d \mu=O(1)
\end{align*}
$$

The resolvent satisfies the equations of Section 2 except that (2.7) is replaced by

$$
\begin{equation*}
N_{\lambda}(y, z)=\sum_{j=1}^{\infty} p_{j}(y) q_{j}(z)^{*} /\left(\lambda_{j}-\lambda\right) \tag{3.8}
\end{equation*}
$$

The Fredholm determinant is again given by (2.8). If only a finite number of eigenvalues are nonzero, the kernel $N(y, z)$ is said to be degenerate. (For example this holds if μ puts weight only at n points.) If $R=1$, that is,

$$
\begin{equation*}
\left|\lambda_{1}\right|<\left|\lambda_{j}\right| \text { for } j>1 \tag{3.9}
\end{equation*}
$$

then as $n \rightarrow \infty$,

$$
\mathcal{N}^{n+1} f(y) / \mathcal{N}^{n} f(y) \rightarrow \lambda_{1}^{-1}, f(y) \mathcal{N}^{n+1} / f(y) \mathcal{N}^{n} \rightarrow \lambda_{1}^{-1}
$$

This is one way to obtain the first eigenvalue λ_{1} arbitrarily closely. Another is to use

$$
\begin{align*}
& \lambda_{1}^{-1}=\sup \left\{\int g \mathcal{N} h d \mu: \int g h d \mu=1\right\} \text { if } \lambda_{1}>0 \tag{3.10}\\
& \lambda_{1}^{-1}=\inf \left\{\int g \mathcal{N} h d \mu: \int g h d \mu=1\right\} \text { if } \lambda_{1}<0 \tag{3.11}
\end{align*}
$$

The maximising/minimising functions are the first eigenfunctions $g=g_{1}, h=h_{1}$. These are unique up to a constant multiplier if (3.9) holds. If λ_{1} is known, one can use

$$
\left(\lambda_{1} \mathcal{N}\right)^{n} f(y) \rightarrow p_{1}(y) \int q_{1}^{*} f d \mu, f(y)^{*}\left(\lambda_{1} \mathcal{N}\right)^{n} \rightarrow q_{1}(y) \int f^{*} p_{1} d \mu,
$$

for any function $f: \Omega \rightarrow \mathcal{C}^{s}$, to approximate $p_{1}(y), q_{1}(y)$. One may now repeat the procedure on the operator \mathcal{N}_{1} corresponding to

$$
N_{1}(y, z)=N(y, z)-\nu_{1} p_{1}(y) q_{1}(z)^{*}
$$

to approximate $\lambda_{2}, p_{2}(y), q_{2}(z)$ assuming that the next eigenvalue in magnitude, λ_{2}, has multiplicity 1.

For further details see Withers $(1974,1975,1978)$ and references.

4 Fredholm theory for non-diagonal Jordan form

Non-diagonal Jordan form for matrices

For $N \neq N^{*}$ a matrix in $C^{s \times s}$, its general Jordan form is

$$
\begin{align*}
N & =P J P^{-1} \text { where } J=\operatorname{diag}\left(J_{1}, \cdots, J_{r}\right), J_{j}=J_{m_{j}}\left(\lambda_{j}\right), \sum_{j=1}^{r} m_{j}=s, \\
J_{m}(\lambda) & =\lambda I_{m}+U_{m}=\left(\begin{array}{lllll}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right), \tag{4.1}
\end{align*}
$$

for some matrix P, and U_{m} is the $m \times m$ matrix with 1 s on the superdiagonal and 0 s elsewhere:

$$
\left(U_{m}\right)_{j k}=\delta_{j, k-1} .
$$

(See [1] for example. If N and its eigenvalues are real, then P can be taken as real.) So for $n \geq 1$,

$$
N^{n}=P J^{n} P^{-1} \text { where } J^{n}=\operatorname{diag}\left(J_{1}^{n}, \cdots, J_{r}^{n}\right)
$$

By the Binomial Theorem,

$$
J_{m}(\lambda)^{n}=\sum_{a=0}^{n}\binom{n}{a} \lambda^{n-a} U_{m}^{a} \text { and }\left(U_{m}^{a}\right)_{j k}=\delta_{j, k-a}
$$

So $U_{m}^{m}=0$. For example

$$
J_{2}(\lambda)^{n}=\lambda^{n} I_{2}+n \lambda^{n-1} U_{2}=\left(\begin{array}{cc}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right)
$$

So N^{n} can be expanded in block matrix form

$$
\left(N^{n}\right)_{j k}=\sum_{c=1}^{r} P_{j c} J_{c}^{n} P^{c k}
$$

where we partition P and its inverse as

$$
P=\left(P_{j k}: j, k=1, \cdots, r\right), P^{-1}=\left(P^{j k}: j, k=1, \cdots, r\right)
$$

with elements $P_{j k}$ and $P^{j k}$ matrices in $C^{m_{j} \times m_{k}}$.
Alternatively setting

$$
Q^{*}=P^{-1},\left(P_{1}, \cdots, P_{r}\right)=P,\left(Q_{1}, \cdots, Q_{r}\right)=Q
$$

with $P_{j}, Q_{j} \in C^{s \times m_{j}}$, we have

$$
\begin{align*}
N^{n} & =P J^{n} Q^{*}=\sum_{j=1}^{r} P_{j} J_{j}^{n} Q_{j}^{*}, \tag{4.2}\\
\sum_{j=1}^{r} P_{j} Q_{j}^{*} & =P Q^{*}=I_{s}=Q^{*} P=\left(Q_{j}^{*} P_{k}\right)
\end{align*}
$$

so that

$$
Q_{j}^{*} P_{j}=I_{m_{j}}, Q_{j}^{*} P_{k}=0 \in C^{m_{j} \times m_{k}} \text { if } j \neq k .
$$

P can be obtained as follows. Let $p_{j k}$ be the k th column of P_{j} for $k=1, \cdots, m_{j}$. Then

$$
\begin{equation*}
N P=P J \Rightarrow N P_{j}=P_{j} J_{j} \Rightarrow N p_{j k}=\lambda_{j} p_{j k}+p_{j, k-1} \text { where } p_{j 0}=0 . \tag{4.3}
\end{equation*}
$$

So one first obtains $p_{j 1}$, the right eigenvector of N, then $p_{j 2}, \cdots, p_{j m_{j}}$. This is called the Jordan chain. Q can either be obtained by inverting P or using

$$
\begin{equation*}
N^{*} Q=Q J^{*} \Rightarrow N^{*} Q_{j}=Q_{j} J_{j}^{*} \Rightarrow N^{*} q_{j k}=\bar{\lambda}_{j} q_{j k}+q_{j, k+1} \text { where } q_{j, m_{j}+1}=0 . \tag{4.4}
\end{equation*}
$$

So one first computes $q_{j, m_{j}}$, the right eigenvector of N^{*} then $q_{j, m_{j}-1}, \cdots, q_{j 1}$. For large n and $\lambda \neq 0$,

$$
J_{n}(\lambda)^{n}=\binom{n}{m-1} \lambda^{n-m+1}\left[U_{m}^{m-1}+O(1)\right]
$$

and U_{m}^{m-1} is a matrix of 0 's except for a 1 in its upper right corner. So if (3.2) holds and

$$
m_{1}=\cdots=m_{M}>\max _{j=M+1}^{R} m_{j}
$$

then

$$
\begin{aligned}
\left(N^{n}\right)_{j k} & =\binom{n}{M-1} r_{1}^{n-M+1}\left[D_{n}+O\left(n^{-1}\right)\right] \\
\text { where } D_{n} & =\sum_{c=1}^{M} P_{j c} e^{i(n-M+1) \theta_{c}} U_{M}^{M-1} P^{c k}=\sum_{c=1}^{M} P_{j c} e^{i(n-M+1) \theta_{c}} U_{M}^{M-1} P^{c k}=O(1) .
\end{aligned}
$$

See Withers and Nadarajah (2008) for more details.
Non-diagonal Jordan form for functions
Now consider $N: \Omega^{2} \rightarrow C^{s \times s}$. Suppose that μ is a σ-finite measure on Ω and that N is not Hermitian, that is $N(y, z)^{*} \neq N(z, y)$. Its Jordan form is

$$
\begin{equation*}
N(y, z)=P(y) J P(z)^{-1}=\text { where } J=\operatorname{diag}\left(J_{1}, J_{2}, \cdots\right), J_{j}=J_{m_{j}}\left(\lambda_{j}\right) \tag{4.5}
\end{equation*}
$$

for $P(y): \Omega \rightarrow C^{s \times \infty}$ and $J_{m}(\lambda)$ of (4.1) above. So partitioning

$$
P(y)=\left(P_{j k}(y): j, k=1,2, \cdots\right), P(z)^{-1}=\left(P^{j k}(z): j, k=1,2, \cdots\right),
$$

with elements $P_{j k}(y)$ and $P^{j k}(z)$ matrix functions in $\Omega \rightarrow C^{m_{j} \times m_{k}}$, we can partition the nth iterated kernel, $N_{n}(y, z)=\mathcal{N}^{n-1} N(y, z)$ as

$$
\left[N_{n}(y, z)\right]_{j k}=\sum_{c=1}^{\infty} P_{j c}(y) J_{c}^{n} P^{c k}(z)
$$

Alternatively setting

$$
Q(z)^{*}=P(z)^{-1},\left(P_{1}(y), P_{2}(y), \cdots\right)=P(y),\left(Q_{1}(z), Q_{2}(z), \cdots\right)=Q(z)
$$

with $P_{j}(y), Q_{j}(z): \Omega \rightarrow C^{s \times m_{j}}$, we have

$$
\begin{equation*}
N_{n}(y, z)=P(y) J^{n} Q(z)^{*}=\sum_{j=1}^{\infty} P_{j}(y) J_{j}^{n} Q_{j}(z)^{*} \tag{4.6}
\end{equation*}
$$

$P(y)$ can be obtained as follows. Let $p_{j k}(y)$ be the k th column of $P_{j}(y)$ for $k=1, \cdots, m_{j}$. Then

$$
\begin{equation*}
\mathcal{N} P(y)=P(y) J \Rightarrow \mathcal{N} P_{j}(y)=P_{j}(y) J_{j} \Rightarrow \mathcal{N} p_{j k}(y)=\lambda_{j} p_{j k}(y)+p_{j, k-1}(y) \tag{4.7}
\end{equation*}
$$

where $p_{j 0}(y)=0$. So one first obtains $p_{j 1}(y)$, the right eigenfunction of N, then $p_{j 2}(y), \cdots, p_{j m_{j}}(y)$. $Q(z)$ can either be obtained by inverting $P(z)$ or using

$$
\begin{equation*}
\mathcal{N}^{*} Q(z)=Q(z) J^{*} \Rightarrow \mathcal{N}^{*} Q_{j}(z)=Q_{j}(z) J_{j}^{*} \Rightarrow \mathcal{N}^{*} q_{j k}(z)=\bar{\lambda}_{j} q_{j k}(z)+q_{j, k+1}(z) \tag{4.8}
\end{equation*}
$$

where $q_{j, m_{j}+1}(z)=0$. So one first computes $q_{j, m_{j}}(z)$, the right eigenfunction of N^{*} then $q_{j, m_{j}-1}(z), \cdots, q_{j 1}(z)$.
So if (3.2) holds and

$$
m_{1}=\cdots=m_{M}>\max _{j=M+1}^{R} m_{j}
$$

then

$$
\begin{aligned}
\quad\left(N_{n}(y, z)\right)_{j k} & =\binom{n}{M-1} r_{1}^{n-M+1}\left(D_{j k n}(y, z)+O\left(n^{-1}\right)\right) \\
\text { where } D_{j k n}(y, z) & =\sum_{c=1}^{M} e^{i(n-M+1) \theta_{c}} P_{j c}(y) U_{M}^{M-1} P^{c k}(z)=O(1)
\end{aligned}
$$

has (a, b) element $\sum_{c=1}^{M} e^{i(n-M+1) \theta_{c}}\left[P_{j c}(y)\right]_{a 1}\left[P^{c k}(z)\right]_{M b}$.

Example 4.1

5 The SVD for functions of two variables

The SVD for matrices

Suppose that $N \in C^{s_{1} \times s_{2}}$. That is, N is a $s_{1} \times s_{2}$ complex matrix. Denote its complex conjugate transpose by N^{*}. Its SVD is

$$
\begin{align*}
N & =P D Q^{*}=\sum_{j=1}^{r} \theta_{j} p_{j} q_{j}^{*} \text { where } P P^{*}=I, Q Q^{*}=I, r=\min \left(s_{1}, s_{2}\right), \tag{5.1}\\
P & =\left(p_{1}, \cdots, p_{s_{1}}\right) \in C^{s_{1} \times s_{1}}, Q=\left(q_{1}, \cdots, q_{s_{2}}\right) \in C^{s_{2} \times s_{2}}, \theta_{1} \geq \cdots \geq \theta_{r}>0
\end{align*}
$$

and for $s_{1}=s_{2}, s_{1}>s_{2}, s_{1}<s_{2}$

$$
D=\Lambda,\binom{\Lambda}{0},(\Lambda, 0) \text { respectively where } \Lambda=\operatorname{diag}\left(\theta_{1}, \cdots, \theta_{r}\right)
$$

If N is real, then so are P and Q.
So for $s_{1}>s_{2}$,

$$
D D^{*}=\left(\begin{array}{cc}
\Lambda^{2} & 0 \\
0 & 0
\end{array}\right), D^{*} D=\Lambda^{2}
$$

and for $s_{1}<s_{2}$,

$$
D D^{*}=\Lambda^{2}, D^{*} D=\left(\begin{array}{cc}
\Lambda^{2} & 0 \\
0 & 0
\end{array}\right)
$$

Compare this with (3.1). Also for $1 \leq j \leq r$,

$$
N q_{j}=\theta_{j} p_{j}, \quad N^{*} p_{j}=\theta_{j} q_{j}
$$

for $r<j \leq s_{1}, N q_{j}=0$, and for $r<j \leq s_{2}, N^{*} p_{j}=0$. Also since

$$
N N^{*} P=P D D^{*}, N^{*} N Q=Q D^{*} D,
$$

the p_{j} is a right eigenvector of $N N^{*}$ with eigenvalue θ_{j}^{2} (or 0 if $r<j \leq s_{1}$) and the q_{j} is a right eigenvector of $N^{*} N$ with eigenvalue θ_{j}^{2} (or 0 if $r<j \leq s_{2}$). So (or by Section 2),

$$
\begin{align*}
\left(N N^{*}\right)^{n} & =\sum_{j=1}^{r} \theta_{j}^{2 n} p_{j} p_{j}^{*},\left(N^{*} N\right)^{n}=\sum_{j=1}^{r} \theta_{j}^{2 n} q_{j} q_{j}^{*} \text { for } n \geq 1, \\
\left(N N^{*}\right)^{n} N & =\sum_{j=1}^{r} \theta_{j}^{2 n+1} p_{j} q_{j}^{*},\left(N^{*} N\right)^{n} N^{*}=\sum_{j=1}^{r} \theta_{j}^{2 n+1} q_{j} p_{j}^{*} \text { for } n \geq 0 . \tag{5.2}
\end{align*}
$$

These do not depend on the vectors $\left\{p_{j}, q_{j}, j \geq r\right\}$.
So if $\theta_{1}=\cdots=\theta_{M}>\theta_{M+1}$, then we have the approximations for $n \geq 0$,

$$
\begin{align*}
\left(N N^{*}\right)^{n} & =\theta_{1}^{2 n} \sum_{j=1}^{M} p_{j} p_{j}^{*}+O\left(\theta_{M+1}^{2 n}\right),\left(N^{*} N\right)^{n}=\theta_{1}^{2 n} \sum_{j=1}^{M} q_{j} q_{j}^{*}+O\left(\theta_{M+1}^{2 n}\right) \text { for } n \geq 1, \\
\left(N N^{*}\right)^{n} N & =\theta_{1}^{2 n+1} \sum_{j=1}^{r} p_{j} q_{j}^{*}+O\left(\theta_{M+1}^{2 n+1}\right),\left(N^{*} N\right)^{n} N^{*}=\theta_{1}^{2 n+1} \sum_{j=1}^{r} q_{j} p_{j}^{*}+O\left(\theta_{M+1}^{2 n+1}\right), \tag{5.3}
\end{align*}
$$

But

$$
I_{s_{1}}=\left(N N^{*}\right)^{0}=\sum_{j=1}^{s_{1}} p_{j} p_{j}^{*}, I_{s_{1}}=\left(N^{*} N\right)^{0}=\sum_{j=1}^{s_{2}} q_{j} q_{j}^{*}
$$

If $s_{1}=s_{2}$ and N is non-singular, its inverse is

$$
N^{-1}=Q \Lambda^{-1} P^{*}
$$

However unlike Jordan form, the SVD does not give a nice form for powers of N.
Now suppose $\Omega \subset R^{p}$ and that μ is a σ-finite measure on Ω. Consider a function $N(y, z): \Omega^{2} \rightarrow$ $C^{s_{1} \times s_{2}}$.

The equations

$$
\mathcal{N} q(y)=\theta p(y), \mathcal{N}^{*} p(z)=\theta q(z)
$$

have a countable number of solutions, say $\left\{\theta_{j}, p_{j}(y), q_{j}(z), j \geq 1\right\}$ satisfying

$$
\int p_{j}^{*} p_{k} d \mu=\int q_{j}^{*} q_{k} d \mu=\delta_{j k} .
$$

The singular values $\left\{\theta_{j}\right\}$ may be taken as real, non-negative and non-increasing. (For convenience we have included $\theta_{j}=0$.) $\left\{p_{j}(y)\right\}$ and $\left\{q_{j}(y)\right\}$ are the right eigenfunctions of $\mathcal{N} \mathcal{N}^{*}$ and $\mathcal{N}^{*} \mathcal{N}$ respectively, with eigenvalues $\left\{\theta_{j}^{2}\right\}$. Also in $L_{2}(\mu \times \mu)$

$$
\begin{equation*}
N(y, z)=\sum_{j=1}^{\infty} \theta_{j} p_{j}(y) q_{j}(z)^{*} . \tag{5.4}
\end{equation*}
$$

If N is real, then so are $\left\{p_{j}, q_{j}\right\}$. By (5.4), for $n \geq 0$,

$$
\begin{aligned}
\left(\mathcal{N} \mathcal{N}^{*}\right)^{n} N(y, z) & =\sum_{j=1}^{\infty} \theta_{j}^{2 n+1} p_{j}(y) q_{j}(z)^{*}, \\
\left(\mathcal{N}^{*} \mathcal{N}\right)^{n} N(y, z)^{*} & =\sum_{j=1}^{\infty} \theta_{j}^{2 n+1} q_{j}(z) p_{j}(y)^{*}, \\
\mathcal{N}^{*}\left(\mathcal{N} \mathcal{N}^{*}\right)^{n} N(y, z) & =\sum_{j=1}^{\infty} \theta_{j}^{2 n+2} q_{j}(y) q_{j}(z)^{*}, \\
\mathcal{N}\left(\mathcal{N}^{*} \mathcal{N}\right)^{n} N(y, z)^{*} & =\sum_{j=1}^{\infty} \theta_{j}^{2 n+2} p_{j}(z) p_{j}(y)^{*}, \\
\left(\mathcal{N} \mathcal{N}^{*}\right)^{n} p(y) & =\sum_{j=1}^{\infty} \theta_{j}^{2 n} p_{j}(y) \int p_{j}^{*} p d \mu, \\
\left(\mathcal{N}^{*} \mathcal{N}\right)^{n} q(z) & =\sum_{j=1}^{\infty} \theta_{j}^{2 n} q_{j}(z) \int q_{j}^{*} q d \mu, \\
\left(\mathcal{N} \mathcal{N}^{*}\right)^{n} \mathcal{N} q(y) & =\sum_{j=1}^{\infty} \theta_{j}^{2 n+1} p_{j}(y) \int q_{j}^{*} q d \mu, \\
\left(\mathcal{N}^{*} \mathcal{N}\right)^{n} \mathcal{N}^{*} p(y) & =\sum_{j=1}^{\infty} \theta_{j}^{2 n+1} q_{j}(y) \int p_{j}^{*} p d \mu, \\
\left.\int \operatorname{trace} \mathcal{N}^{*}\left(\mathcal{N} \mathcal{N}^{*}\right)^{n} N(y, z)\right|_{z=y} d \mu(y) & =\left.\int \operatorname{trace} \mathcal{N}\left(\mathcal{N}^{*} \mathcal{N}\right)^{n} N(y, z)\right|_{z=y} d \mu(y)=\sum_{j=1}^{\infty} \theta_{j}^{2 n+2} .
\end{aligned}
$$

So if $\theta_{1}=\cdots=\theta_{M}>\theta_{M+1}$, then we have approximations such as

$$
\left(\mathcal{N N}^{*}\right)^{n} p(y)=\theta_{1}^{2 n} \sum_{j=1}^{\infty} p_{j}(y) \int p_{j}^{*} p d \mu+O\left(\theta_{M+1}^{2 n}\right)
$$

if $p_{j}(y) \int p_{j}^{*} p d \mu=O(1)$ for $j>M$. So for iterations of $\mathcal{N}^{*} \mathcal{N}$ or $\mathcal{N} \mathcal{N}^{*}$ the most important parameter is the largest singular value.

References

[1] Kotz,S., Balakrishnan, N. and Johnson, N.L. (2000) Continuous multivariate distributions, 1, 2nd edition, Wiley, New York.
[2] Withers, C. S. (1974) Mercer's Theorem and Fredholm resolvents. Bull. Austral. Math. Soc., 11, 373-380.
[3] Withers, C. S. (1975) Fredholm theory for arbitrary measure spaces. Bull. Austral. Math. Soc., 12, 283-292.
[4] Withers, C. S. (1978) Fredholm equations have uniformly convergent solutions. Jnl. of . Math. Anal. and Applic., 64, 602-609.
[5] Withers, C. S. (2000) A simple expression for the multivariate Hermite polynomials. Statistics and Probability Letters, 47, 165-169.
[6] Withers, C. S. and Nadarajah, S. (2008) The nth power of a matrix and approximations for large n. Preprint http://arxiv.org/abs/0802.0502

