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Abstract

Using slope enclosures may provide sharper bounds for the range of a function

than using enclosures of the derivative. Hence, slope enclosures may be useful in

verifying the assumptions for existence tests or in algorithms for global optimization.

Previous papers by Kolev and Ratz show how to compute slope enclosures for convex

and concave functions. In this paper, we generalize these formulas and show how to

obtain slope enclosures for a function that has exactly one point of in�ection or whose

derivative has exactly one point of in�ection.

1 Introduction

Many algorithms require an enclosure for the range of a function f : D ⊂ Rn → R on an
interval [x]. For this purpose, the mean value form [9] using an interval enclosure of the
derivative f ′ is a well-known tool. Sharper enclosures of the range of f can be obtained by
using slope enclosures. Slopes and slope enclosures have various applications, for example
in existence tests [3, 4, 10, 14, 15] or in global optimization [5, 6, 12, 13, 16, 17].

Using interval analysis [1, 9], slope enclosures for factorable functions can be computed by
a technique analogous to automatic di�erentiation [11]. This technique is due to Krawczyk
and Neumaier [8], and it was extended to second-order slopes by Shen and Wolfe [18].
These approaches require slope enclosures for elementary functions ϕ : D ⊆ R → R. First-
order slope enclosures for some elementary functions are given by Ratz [12]. Kolev [7]
shows how to compute �rst-order slope enclosures if ϕ is convex or concave, and how to
compute second-order slope enclosures if ϕ′ is convex or concave. For other elementary
functions, however, enclosures of the derivatives are used as slope enclosures.

In this paper, we show how �rst-order slope enclosures can be computed for some ele-
mentary functions that have exactly one point of in�ection, and how second-order slope
enclosures can be computed for some elementary functions ϕ whose derivative has ex-
actly one point of in�ection. The formulas of the present paper provide sharper bounds

∗This paper contains and extends some results from the author's dissertation [17].
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than enclosures of the respective derivatives. Therefore, they improve the enclosures used
in [7, 12, 18]. The slope enclosures given in this paper can be used both for automatic
computation of slope enclosures and for theoretical aspects.

Throughout this paper, [x] ∈ IR denotes a compact interval, IR being the set of all compact
intervals [x] ⊂ R.

2 Slopes and Slope Enclosures

De�nition 2.1 Let ϕ : D ⊆ R → R, ϕ ∈ Cn (D). Furthermore, let p (x) =
n∑

i=0

aix
i be

the Hermitian interpolation polynomial for ϕ with respect to the nodes x0, . . . , xn ∈ D.
Here, exactly k + 1 elements of x0, . . . , xn are equal to xi, if ϕ (xi) , . . . , ϕ(k)(xi) are given
for some node xi. The leading coe�cient an of p is called the slope of n-th order of ϕ with

respect to x0, . . . , xn. Notation:

δnϕ (x0, . . . , xn) := an.

For details, see [2].

Some properties of slopes are given in the following theorem. The statements d) and e) in
Theorem 2.2 are easy consequences of the Hermite-Genocchi Theorem (see, e.g., [2]).

Theorem 2.2 Let ϕ ∈ Cn (D), and let δnϕ (x0, . . . , xn) be the slope of n-th order of ϕ
with respect to x0, . . . , xn. Then, the following holds:

a) δnϕ (x0, . . . , xn) is symmetric with respect to its arguments xi.

b) For xi 6= xj we have the recursion formula

δnϕ (x0, . . . , xn) =
δn−1ϕ (x0, . . . , xi−1, xi+1, . . . , xn)− δn−1ϕ (x0, . . . , xj−1, xj+1, . . . , xn)

xj − xi
.

c) Setting ωk (x) :=
k−1∏
j=0

(x− xj), we have

ϕ (x) =
n−1∑
i=0

δiϕ (x0, . . . , xi) · ωi (x) + δnϕ (x0, . . . , xn−1, x) · ωn (x) , n ≥ 1.

d) The function g : D ⊆ Rn+1 → R de�ned by

g (x0, . . . , xn) := δnϕ (x0, . . . , xn)

is continuous.

e) For the nodes x0 ≤ x1 ≤ . . . ≤ xn there exists a ξ ∈ [x0, xn] such that

δnϕ (x0, . . . , xn) =
ϕ(n)(ξ)

n!
.

De�nition 2.3 Let ϕ : D ⊆ R → R, ϕ ∈ C1 (D), and let x0 ∈ D be �xed. A function
δϕ : D → R satisfying

ϕ (x) = ϕ (x0) + δϕ(x;x0) · (x− x0) , x ∈ D, (1)
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is called a �rst-order slope function of ϕ with respect to x0. We set δϕ(x0;x0) := ϕ
′
(x0).

An interval δϕ([x] ; x0) ∈ IR that encloses the range of δϕ(x;x0) on the interval [x] ⊆ D,
i.e.

δϕ([x] ; x0) ⊇ {δϕ(x;x0) |x ∈ [x]} ,

is called a (�rst-order) slope enclosure of ϕ on [x] with respect to x0.

Remark 2.4 Let δϕ([x] ; x0) ∈ IR be a �rst-order slope enclosure of ϕ on [x]. Then, the
range of ϕ on [x] is enclosed by

ϕ (x) ∈ ϕ (x0) + δϕ([x] ; x0) · ([x]− x0) , x ∈ [x] .

De�nition 2.5 Let ϕ : D ⊆ R → R, ϕ ∈ C2 (D), and let x0, x1 ∈ D �xed. A function
δ2ϕ : D → R satisfying

ϕ (x) = ϕ (x0) + δϕ(x1, x0) · (x− x0) + δ2ϕ(x;x1, x0) · (x− x0) · (x− x1) , x ∈ D,

is called a second-order slope function of ϕ with respect to x0 and x1. As in [7] and
[18], we only consider the case x1 = x0 in this paper, and as an abbreviation we set
δ2ϕ(x;x0) = δ2ϕ(x;x0, x0). Furthermore, we set δ2ϕ(x0;x0) := 1

2 ϕ
′′
(x0).

An interval δ2ϕ([x] ; x0) ∈ IR satisfying

δ2ϕ([x] ; x0) ⊇ {δ2ϕ(x;x0) |x ∈ [x]}

is called a second-order slope enclosure of ϕ on [x] with respect to x0.

Remark 2.6 Let δ2ϕ([x] ; x0) ∈ IR be a second-order slope enclosure of ϕ on [x]. Then,
the range of ϕ on [x] is enclosed by

ϕ (x) ∈ ϕ (x0) + ϕ
′
(x0) · ([x]− x0) + δϕ([x] ; x0) · ([x]− x0)

2 , x ∈ [x] .

Let ϕ : D ⊆ R → R be a twice continuously di�erentiable elementary function, and let
[x0] ⊆ [x] ⊆ D. Furthermore, let f : Rn → R be a function given by a function expression
containing ϕ. In order to perform automatic computation of a slope enclosure of f on a
�oating-point computer using interval arithmetic (cf. [12]) we need enclosures of{

δϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]
}

(2)

and {
δ2ϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
. (3)

Obviously, we have{
δϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
⊆

{
ϕ

′
(x) |x ∈ [x]

}
and {

δ2ϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]
}
⊆

{
1
2

ϕ
′′
(x) |x ∈ [x]

}
.

Hence, (2) and (3) can be enclosed by using enclosures of the �rst and second derivative,
respectively. However, often sharper enclosures of (2) and (3) can be found, see [7] and
[12]. Kolev [7] shows how enclosures of (2) and (3) can be computed by using convexity
or concavity of ϕ and ϕ′, respectively. In the next section, we restate these theorems.
Theorem 3.2 is a slight generalization of [7] because we include the case x0 6= x1 and we
allow intervals [x0] and [x1] instead of real values x0 and x1. In section 4, we show how slope
enclosures can be computed by exploiting a unique point of in�ection. The formulas of
section 4 provide sharper bounds for (2) and (3) than using the �rst and second derivative,
respectively. Some examples in section 5 illustrate this.
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3 Computing Slope Enclosures by Exploiting Convexity and

Concavity

In this section, we show how slope enclosures can be computed by exploiting convexity or
concavity of ϕ and ϕ′, respectively.

Theorem 3.1 Let ϕ : D ⊆ R → R be twice continuously di�erentiable on the interval
[x] = [ x, x ] ⊆ D and let [x0] =

[
x0, x0

]
⊆ [x].

If ϕ
′′
(x) ≥ 0, x ∈ [x], i.e. if ϕ is convex on [x], then

δϕ
(
x;x0

)
≤ δϕ (x;x0) ≤ δϕ (x;x0) (4)

holds for all x ∈ [x], x0 ∈ [x0].

If ϕ
′′
(x) ≤ 0, x ∈ [x], i.e. if ϕ is concave on [x], then

δϕ
(
x;x0

)
≥ δϕ (x;x0) ≥ δϕ (x;x0) (5)

holds for all x ∈ [x], x0 ∈ [x0].

Proof: See [7, 12]. �

The following theorem is an easy generalization of a theorem of Kolev [7], which treats the
case x1 = x0.

Theorem 3.2 Let ϕ : D ⊆ R → R be three times continuously di�erentiable and let
[x0] =

[
x0, x0

]
⊆ [x] and [x1] =

[
x1, x1

]
⊆ [x].

If ϕ
′′′

(x) ≥ 0, x ∈ [x], i.e. if ϕ
′
is convex on [x], then

δ2ϕ
(
x;x1, x0

)
≤ δ2ϕ (x;x1, x0) ≤ δ2ϕ (x;x1, x0) (6)

holds for all x ∈ [x], x1 ∈ [x1] and x0 ∈ [x0].

If ϕ
′′′

(x) ≤ 0, x ∈ [x], i.e. if ϕ
′
is concave on [x], then

δ2ϕ
(
x;x1, x0

)
≥ δ2ϕ (x;x1, x0) ≥ δ2ϕ (x;x1, x0) (7)

holds for all x ∈ [x], x1 ∈ [x1] and x0 ∈ [x0].

Proof: We prove (6). Consider g : [x]× [x1]× [x0] → R de�ned by

g (x, x1, x0) := δ2ϕ (x;x1, x0) .

By Theorem 2.2, we have

∂g (x, x1, x0)
∂x

= lim
x̃→x

δ2ϕ (x̃;x1, x0)− δ2ϕ (x;x1, x0)
x̃− x

= lim
x̃→x

δ3ϕ (x; x̃, x1, x0)

= δ3ϕ (x;x, x1, x0).
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Because of

δ3ϕ (x;x, x1, x0) =
1
6

ϕ
′′′

(ξ) ≥ 0, ξ ∈ [x] ,

g (x, x1, x0) increases monotonically with respect to x.

By Theorem 2.2 a), g (x, x1, x0) increases monotonically with respect to x1, if x and x0 are
�xed, and g (x, x1, x0) increases monotonically with respect to x0, if x and x1 are �xed.
Hence, we obtain (6).

The proof of (7) is analogous. �

As a corollary we obtain the theorem from Kolev [7]:

Theorem 3.3 Let ϕ : D ⊆ R → R be three times continuously di�erentiable on [x] ⊆ D
and let [x0] =

[
x0, x0

]
⊆ [x].

If ϕ
′′′

(x) ≥ 0, x ∈ [x], i.e. if ϕ
′
is convex on [x], then we have

δ2ϕ
(
x;x0

)
≤ δ2ϕ (x;x0) ≤ δ2ϕ (x;x0) (8)

for all x ∈ [x], x0 ∈ [x0].

If ϕ
′′′

(x) ≤ 0, x ∈ [x], i.e. if ϕ
′
is concave on [x], then we have

δ2ϕ
(
x;x0

)
≥ δ2ϕ (x;x0) ≥ δ2ϕ (x;x0) (9)

for all x ∈ [x], x0 ∈ [x0].

Proof: The claim follows directly from Theorem 3.2, because

g : [x]× [x1]× [x0] → R, g (x, x1, x0) := δ2ϕ (x;x1, x0) ,

is continuous by Theorem 2.2. �

4 Computing Slope Enclosures by Exploiting a Unique Point

of In�ection

In this section, we set

m1 := min
{
δϕ

(
x;x0

)
, δϕ (x;x0)

}
,

M1 := max
{
δϕ

(
x;x0

)
, δϕ (x;x0)

}
,

m2 := min
{
δ2ϕ

(
x;x0

)
, δ2ϕ (x;x0)

}
,

M2 := max
{
δ2ϕ

(
x;x0

)
, δ2ϕ (x;x0)

}
.

Ratz [12] gives a formula that provides a �rst-order slope enclosure for ϕ (x) = xn, n ∈ N
odd. The following theorem generalizes this by exploiting a unique point of in�ection of
ϕ. It also applies, e.g., to ϕ (x) = sinhx.
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Theorem 4.1 Let ϕ : D ⊆ R → R be twice continuously di�erentiable on [x] ⊆ D and let
[x0] =

[
x0, x0

]
⊆ [x]. Furthermore, let ϕ

′
(x) ≥ 0 on [x], ϕ

′′
(x) ≤ 0 on {x ∈ [x] |x ≤ 0},

and ϕ
′′
(x) ≥ 0 on {x ∈ [x] |x ≥ 0}. Set

δϕ ([x] ; [x0]) =



[
δϕ

(
x;x0

)
, δϕ (x;x0)

]
if x ≥ 0,[

δϕ (x;x0) , δϕ
(
x;x0

)]
if x ≤ 0,[

max
{

ϕ (0)− ϕ (x0)
x− x0

, ϕ
′
(0)

}
, M1

]
if x ≤ x0 < 0 < x,

[
max

{
ϕ (0)− ϕ

(
x0

)
x− x0

, ϕ
′
(0)

}
, M1

]
if x < 0 < x0 ≤ x,

[
ϕ

′
(0) , M1

]
if 0 ∈ [x] ∧ 0 ∈ [x0] .

Then, we have the enclosure

δϕ ([x] ; [x0]) ⊇
{
δϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
. (10)

Proof. Let x ∈ [x] and x0 ∈ [x0].

If x ≥ 0, then ϕ is convex on [x]. Therefore, we can apply Theorem 3.1 and obtain (10).
If x ≤ 0, then ϕ is concave on [x], and by Theorem 3.1 we have (10).

Next, we prove the enclosure (10) for the remaining three cases. We begin by proving
δϕ (x;x0) ≤ M1 in three steps:

i) Suppose x ≤ 0 and x0 ≤ 0. By Theorem 3.1 we have δϕ (x;x0) ≤ δϕ
(
x;x0

)
, because

ϕ is concave on {x ∈ [x] |x ≤ 0}. Analogously, δϕ (x;x0) ≤ δϕ (x;x0) holds for all x ≥ 0,
x0 ≥ 0.

ii) Suppose x0 < 0. We prove that δϕ (x;x0) ≤ M1 holds for all x ≥ 0, x0 ≤ 0.

First, for all x0 ≤ 0 and all x ∈ [x] with ϕ
′
(x) ≤ ϕ

′(
x0

)
we have

δϕ (x;x0) = ϕ
′
(ξ) , ξ between x0 and x,

≤ ϕ
′(

x0

)
= δϕ

(
x0;x0

) (11)

by Theorem 2.2. Hence, by i) we obtain

δϕ (x;x0) ≤ δϕ
(
x;x0

)
(12)

for all x0 ≤ 0 and all x ∈ [x] with ϕ
′
(x) ≤ ϕ

′(
x0

)
.

Now, we consider an arbitrary x̃0 ≤ 0, x̃0 ∈ [x0], and an arbitrary x̃ > 0, x̃ ∈ [x], with
ϕ

′
(x̃) > ϕ

′(
x0

)
. By (11) and by ϕ

′′
(x) ≥ 0 on {x ∈ [x] |x ≥ 0}, we get ϕ

′
(x) ≥ ϕ

′
(ξ) for

all x ≥ x̃ and all ξ ∈ [x̃0, x]. Hence, we obtain

∂ (δϕ (x; x̃0))
∂x

=
ϕ

′
(x)− ϕ (x)− ϕ (x̃0)

x− x̃0

x− x̃0
≥ 0
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for all x ≥ x̃. Therefore, δϕ (x; x̃0) increases monotonically for x ≥ x̃ with respect to x.
Thus, we have

δϕ (x̃; x̃0) ≤ δϕ (x; x̃0) . (13)

On the one hand, if δϕ (x; x̃0) ≤ ϕ
′
(x̃0), then by (i) we get

δϕ (x̃; x̃0) ≤ ϕ
′
(x̃0) ≤ δϕ

(
x;x0

)
.

On the other hand, if δϕ (x; x̃0) > ϕ
′
(x̃0), then for the function g : [x̃0, 0] → R, g (t) =

δϕ (x; t) we have

g
′
(t) =

∂ (δϕ (x; t))
∂t

=
−ϕ

′
(t) + δϕ (x; t)

x− t

≥ −ϕ
′
(x̃0) + g (t)
x− t

and
g

′
(x̃0) > 0.

Thus, g increases monotonically on [x̃0, 0], and we obtain

δϕ (x; x̃0) ≤

{
δϕ (x;x0) , if x0 ≤ 0,

δϕ (x; 0) , if x0 > 0.

Using (13) and i), we get

δϕ (x̃; x̃0) ≤ δϕ (x;x0) (14)

for all x̃0 ≤ 0, x̃0 ∈ [x0], and all x̃ > 0, x̃ ∈ [x], with ϕ
′
(x̃) > ϕ

′(
x0

)
. Hence, by (12) and

(14) we have δϕ (x;x0) ≤ M1 for all x ≥ 0 and all x0 ≤ 0.

iii) The proof for the case x0 > 0 is analogous to ii), and we obtain that δϕ (x;x0) ≤ M1

holds for all x ≤ 0, x0 ≥ 0.

By i)-iii) we have shown that

δϕ (x;x0) ≤ max
{
δϕ

(
x;x0

)
, δϕ (x;x0)

}
= M1

holds for all x ∈ [x] and all x0 ∈ [x0].

Finally, we complete the proof by showing that the lower bounds for (10) given in the
theorem hold for the remaining three cases:

• First, we have
δϕ (x;x0) = ϕ

′
(ξ) ≥ ϕ

′
(0) . (15)

If 0 ∈ [x0], then the lower bound of
{
δϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
is ϕ

′
(0) because

of δϕ (0; 0) = ϕ
′
(0).

• Suppose x0 < 0. By (5) we get

δϕ (x;x0) ≥ δϕ (0;x0) ≥
ϕ (0)− ϕ (x0)

x− x0
(16)

for all x ≤ 0 and all x0 ∈ [x0]. For all x ≥ 0 we have ϕ (x) ≥ ϕ (0), and therefore,
we obtain

δϕ (x;x0) =
ϕ (x)− ϕ (x0)

x− x0
≥ ϕ (0)− ϕ (x0)

x− x0
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for all x ≥ 0, x0 ∈ [x0]. The function h (x, x0) :=
ϕ (0)− ϕ (x0)

x− x0
, x ≥ 0, x0 ∈ [x0],

decreases monotonically with respect to both x and x0 because of

∂ (h (x, x0))
∂x

=
ϕ (x0)− ϕ (0)

(x− x0)
2 ≤ 0

and

∂ (h (x, x0))
∂x0

=
−ϕ

′
(x0) +

ϕ (0)− ϕ (x0)
x− x0

x− x0

≤
−ϕ

′
(x0) +

ϕ (0)− ϕ (x0)
0− x0

x− x0

=
−ϕ

′
(x0) + ϕ

′
(ξ)

x− x0
, ξ ∈ [x0, 0] ,

≤ 0.

Hence, for all x ≥ 0 and all x0 ∈ [x0] we have

δϕ (x;x0) ≥
ϕ (0)− ϕ (x0)

x− x0
≥ ϕ (0)− ϕ (x0)

x− x0
. (17)

Therefore, by (15), (16), and (17) we obtain

δϕ (x;x0) ≥ max
{

ϕ (0)− ϕ (x0)
x− x0

, ϕ
′
(0)

}
for all x ∈ [x] and all x0 ∈ [x0].

• The proof for x0 > 0 is analogous to the case of x0 < 0.
�

Theorem 4.2 Let ϕ : D ⊆ R → R be twice continuously di�erentiable on [x] ⊆ D and let
[x0] =

[
x0, x0

]
⊆ [x]. Furthermore, let ϕ

′
(x) ≥ 0 on [x], ϕ

′′
(x) ≥ 0 on {x ∈ [x] |x ≤ 0},

and ϕ
′′
(x) ≤ 0 on {x ∈ [x] |x ≥ 0}. Set

δϕ ([x] ; [x0]) =



[
δϕ (x;x0) , δϕ

(
x;x0

)]
if x ≥ 0,[

δϕ
(
x;x0

)
, δϕ (x;x0)

]
if x ≤ 0,[

m1, min
{

ϕ (x)− ϕ (x0)
−x0

, ϕ
′
(0)

}]
if x ≤ x0 < 0 < x,

[
m1, min

{
ϕ (x)− ϕ

(
x0

)
−x0

, ϕ
′
(0)

}]
if x < 0 < x0 ≤ x,

[
m1, ϕ

′
(0)

]
if 0 ∈ [x] ∧ 0 ∈ [x0] .

Then, we have the enclosure

δϕ ([x] ; [x0]) ⊇
{
δϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
. (18)
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Proof: The proof is analogous to Theorem 4.1. �

Similarly, we get the following theorems for δ2ϕ (x;x0) by exploiting a unique point of
in�ection of ϕ

′
.

Theorem 4.3 Let ϕ : D ⊆ R → R be three times continuously di�erentiable on [x] ⊆ D
and let [x0] =

[
x0, x0

]
⊆ [x]. Furthermore, let ϕ

′
(x) = −ϕ

′
(−x) on {x ∈ [x] | − x ∈ [x]},

ϕ
′′
(x) ≥ 0 on [x], ϕ

′′′
(x) ≤ 0 on {x ∈ [x] |x ≤ 0}, and ϕ

′′′
(x) ≥ 0 on {x ∈ [x] |x ≥ 0}.

Set

δ2ϕ ([x] ; [x0]) =



[
δ2ϕ

(
x;x0

)
, δ2ϕ (x;x0)

]
if x ≥ 0,[

δ2ϕ (x;x0) , δ2ϕ
(
x;x0

)]
if x ≤ 0,[

max

{
ϕ (0)− ϕ (x0)− ϕ

′
(x0) · (0− x0)

(x− x0)
2 , 1

2 ϕ
′′
(0)

}
, M2

]
if x ≤ x0 < 0 < x,[
max

{
ϕ (0)− ϕ

(
x0

)
− ϕ

′(
x0

)
·
(
0− x0

)(
x− x0

)2 , 1
2 ϕ

′′
(0)

}
, M2

]
if x < 0 < x0 ≤ x,[

1
2 ϕ

′′
(0) , M2

]
if 0 ∈ [x] ∧ 0 ∈ [x0] .

Then, we get the enclosure

δ2ϕ ([x] ; [x0]) ⊇
{
δ2ϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
.

Proof: The proof is similar to the proof of Theorem 4.1. For details see [17]. �

Theorem 4.4 Let ϕ : D ⊆ R → R be three times continuously di�erentiable on [x] ⊆ D
and let [x0] =

[
x0, x0

]
⊆ [x]. Furthermore, let ϕ

′
(x) = −ϕ

′
(−x) on {x ∈ [x] | − x ∈ [x]},

ϕ
′′
(x) ≥ 0 on [x], ϕ

′′′
(x) ≥ 0 on {x ∈ [x] |x ≤ 0}, and ϕ

′′′
(x) ≤ 0 on {x ∈ [x] |x ≥ 0}.

Set

δ2ϕ ([x] ; [x0]) =



[
δ2ϕ (x;x0) , δ2ϕ

(
x;x0

)]
if x ≥ 0,[

δ2ϕ
(
x;x0

)
, δ2ϕ (x;x0)

]
if x ≤ 0,[

m2, max

{
ϕ (x)− ϕ (x0)− ϕ

′
(x0) · (x− x0)

x0
2 , 1

2 ϕ
′′
(0)

}]
if x ≤ x0 < 0 < x,[
m2, max

{
ϕ (x)− ϕ

(
x0

)
− ϕ

′(
x0

)
·
(
x− x0

)
x0

2
, 1

2 ϕ
′′
(0)

}]
if x < 0 < x0 ≤ x,[
m2,

1
2 ϕ

′′
(0)

]
if 0 ∈ [x] ∧ 0 ∈ [x0] .
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Then, we get the enclosure

δ2ϕ ([x] ; [x0]) ⊇
{
δ2ϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
.

Proof: The proof is similar to the proof of Theorem 4.3. �

5 Examples

Theorems 3.1-4.4 apply to some elementary functions such as expx, lnx, xn, sinhx, coshx,
tanx or arctanx. Next, we consider some examples.

Example 5.1 ϕ (x) = sinhx, [x] = [−5, 1], x0 = [−2,−2].

By Theorem 4.1 we get

δϕ ([x] ; [x0]) =
[
max

{
− sinh (−2)

3
, 1

}
,max

{
δϕ

(
x;x0

)
, δϕ (x;x0)

}]
⊆ [1.208, 23.526] ,

whereas

ϕ
′
([x]) = [cosh (0) , cosh (−5)] ⊆ [1, 74.21] .

Furthermore, by (8) we obtain

δ2ϕ ([x] ; [x0]) ⊆ [−6.588, −0.7205] ,

whereas
1
2

ϕ
′′
([x]) =

1
2

[sinh (−5) , sinh (1)] ⊆ [−37.102, 0.588] .

Example 5.2 ϕ (x) = sinhx, [x] = [−6, 2], x0 = [−2,−2].

By Theorem 4.1 we get

δϕ ([x] ; [x0]) =
[
max

{
− sinh (−2)

4
, 1

}
,max

{
δϕ

(
x;x0

)
, δϕ (x;x0)

}]
⊆ [1, 49.522] ,

whereas

ϕ
′
([x]) = [cosh (0) , cosh (−6)] ⊆ [1, 201.716] .

Furthermore, by (8) we obtain

δ2ϕ ([x] ; [x0]) ⊆ [−11.44, −0.487] ,

whereas
1
2

ϕ
′′
([x]) =

1
2

[sinh (−6) , sinh (2)] ⊆ [−100.857, 1.814] .
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Example 5.3 ϕ (x) = coshx, [x] = [−4, 1], x0 = [−2,−1.5].

By (4) we get

δϕ ([x] ; [x0]) ⊆ [−11.774, −0.323] ,

whereas

ϕ
′
([x]) = [sinh (−4) , sinh (1)] ⊆ [−27.29, 1.176] .

Furthermore, by Theorem 4.3 we obtain

δ2ϕ ([x] ; [x0]) ⊆ [0.5, 4.074] ,

whereas
1
2

ϕ
′′
([x]) =

1
2

[cosh (0) , cosh (−4)] ⊆ [0.5, 13.655] .

Example 5.4 ϕ (x) = x4, [x] = [−3, 1], x0 = [−1,−0.9].

By (4) we get

δϕ ([x] ; [x0]) ⊆ [−40, 0.181] ,

whereas

ϕ
′
([x]) = [−108, 4] .

Furthermore, by Theorem 4.3 we obtain

δ2ϕ ([x] ; [x0]) ⊆ [0.545, 18] ,

whereas
1
2

ϕ
′′
([x]) = [0, 54] .

Example 5.5 ϕ (x) = arctanx, [x] = [−3, 1], x0 = [−2,−2].

By ϕ
′
(x) =

1
1 + x2

and ϕ
′′
(x) =

−2x

(1 + x2)2
we can apply Theorem 4.2. We get

δϕ ([x] ; [x0]) ⊆ [0.141, 0.947] ,

whereas

ϕ
′
([x]) = [0.1, 1] .

Because ϕ
′′′

(x) =
−2 + 6x2

(1 + x2)3
, we can not apply the theorems of this paper. Therefore, we

have to use the enclosure

{
δ2ϕ (x;x0) |x ∈ [x] , x0 ∈ [x0]

}
⊆ 1

2
ϕ

′′
([x]) =

[
−3

√
3

16
,

3
√

3
16

]
.
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6 Conclusion

Using slope enclosures may provide sharper bounds of the function range than using enclo-
sures of the derivative. Automatic compuatation of slope enclosures, which can be applied
to global optimization [5, 6, 12, 13, 16, 17], requires �rst-order and second-order slope
enclosures for elementary functions ϕ. This may be obtained by using enclosures of ϕ′ or
ϕ′′. Sharper enclosures can be computed by using the convexity or concavity of ϕ or ϕ′

(see [7] and section 3).

In this paper, we have computed �rst-order and second-order slope enclosures by exploiting
a unique point of in�ection of ϕ or ϕ′. The formulas given in this paper apply to functions
such as expx, lnx, xn, sinhx, coshx, tanx or arctanx. They provide sharper bounds than
enclosures using derivatives. Some examples in section 5 illustrate this. The enclosures
given in this paper can be used both for automatic computation of slope enclosures and
for theoretical aspects.
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