
HAL Id: hal-01580904
https://inria.hal.science/hal-01580904

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An autoadaptative limited memory Broyden’s method
to solve systems of nonlinear equations

Mohammed Ziani, Frédéric Guyomarc’H

To cite this version:
Mohammed Ziani, Frédéric Guyomarc’H. An autoadaptative limited memory Broyden’s method
to solve systems of nonlinear equations. Applied Mathematics and Computation, 2008, 205 (1),
�10.1016/j.amc.2008.06.047�. �hal-01580904�

https://inria.hal.science/hal-01580904
https://hal.archives-ouvertes.fr

An autoadaptative limited memory Broyden’s

method to solve systems of nonlinear

equations

M. Ziani 1,2 F. Guyomarc’h 2

Abstract

We propose a new Broyden-like method that we call autoadaptative limited memory
method. Unlike classical limited memory method, we do not need to set any pa-
rameters such as the maximal size, that solver can use. In fact, the autoadaptative
algorithm automatically increases the approximate subspace when the convergence
rate decreases. The convergence of this algorithm is superlinear under classical hy-
pothesis. A few numerical results with well-known benchmarks functions are also
provided and show the efficiency of the method.

Key words: Limited memory Broyden method; rank reduction; superlinear
convergence; autoadaptativity.

1 Introduction

Consider the problem of finding a solution of the system of nonlinear equations

F (x) = 0, F : Rn → Rn. (1)

The mapping F is assumed to have the following classical assumptions:

- the mapping F is continuously differentiable in an open convex set D;

Email addresses: Mohammed.Ziani@irisa.fr (M. Ziani),
Frederic.Guyomarch@irisa.fr (F. Guyomarc’h).
1 LERMA, Mohammadia School Engineering, BP 765, Rabat-Agdal, Morocco
2 IRISA, INRIA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Preprint submitted to Elsevier 5 September 2017

- there is an x∗ in D such that F (x∗) = 0 and F ′(x∗) is nonsingular;
(CA)

- the Jacobian F ′ is Lipschitz continuous at x∗.

The well known method for solving this problem is Newton’s method. For an initial
guess x0 near x∗, this method converges quadratically. However, an iteration of the
algorithm turns out to be expensive, because it requires one F -evaluation, one F ′-
evaluation and solving a linear system implying the Jacobian matrix. For more
details see [10, 16, 12].

A direct solution of the above linear system is often expensive. Inexact Newton
methods [4, 5] allow to find approximately its solution using an iterative solver
like Newton-Krylov. The convergence of the linear solver is stopped as soon as
its residual is lower than the current Newton iteration’s residual. Quasi-Newton
methods are used to reduce the evaluation cost of the Jacobian matrix. They use
only approximations of this matrix [7, 13]. Also, if the function evaluations are
very expensive, the cost of a solution by quasi-Newton methods could be much
smaller than with inexact Newton methods. In particular, Broyden’s method [2]
that uses successive approximations by carrying out rank-one updates, requires
only one F -evaluation per iteration. Given an initial guess x0 and an initial Jaco-
bian approximation B0, and denoting sk = xk+1 − xk and yk = F (xk+1)− F (xk),
the Broyden algorithm can be written as follows.

Broyden’s algorithm

For k = 0, 1, 2, ... until convergence,
Solve Bksk = −F (xk) for sk,
xk+1 = xk + sk,
yk = F (xk+1)− F (xk),

Bk+1 = Bk + (yk −Bksk)
sTk
sTk sk

, (2)

Under the classical hypothesis (CA), this algorithm converges locally and super-
linearly (Broyden, Dennis and Moré [3]). However, a drawback of this method is
the storage of the Broyden’s matrix. In fact, this matrix contains one vector per
iteration. Thus, the storage costs O(kn) where k is the total number of iterations.
And this cost becomes prohibiting in case of poor convergence. Thus, a restarted

2

version of this method was introduced in [9]. Unfortunately, convergence becomes
slow if there are too many restarts. In fact, all information gathered during pre-
vious iterations is lost when restarting. To overcome this drawback, the limited
memory Broyden methods do not discard the approximate subspace [18, 17] but
refine it. Among these methods, the rank reduction method, detailed below, gives
good results.

To describe the algorithms in this paper, we need the concept of an update func-
tion. Update functions are only a mean to denote the various Jacobian approxi-
mations which might be used in the iterative process [6]. Let L(Rn) denote the
space of all linear maps from Rn to Rn, and P(L(Rn)) denotes the collection of all
subsets of L(Rn). If the scheme for a quasi-Newton method is written

xk+1 = xk −B−1k F (xk), (3)

the method of generating the matrices {Bk} can then be described by specifying
for each (xk, Bk) a nonempty set Φ(xk, Bk) of possible candidates for Bk+1, where

Φ : Rn × Ln(R)→ P(Ln(R))

is a well defined update function. For example, if

B̄ = B +
(y −Bs)sT

sT s
, (4)

then the Broyden algorithm can be written as

xk+1 = xk −B−1k F (xk),

where Bk+1 ∈ Φ(xk, Bk) and

Φ(x,B) = {B̄ : s 6= 0}.

In this case s = x̄− x and y = F (x̄)− F (x), where x̄ = x−B−1F (x).

The organization of the paper is as follows. Section 2 introduces a description of
the rank reduction method. In section 3, we introduce an autoadaptative limited
memory and show its local and superlinear convergence. Section 4 introduces a
modified version of the autoadaptative algorithm. Finally, in section 5 we present
some numerical results. In the following, ‖.‖ and ‖.‖F stand respectively for the
Euclidean and the Frobenius norm.

3

2 Rank reduction method

The Broyden rank reduction method consists in approaching the update matrix by
a low rank matrix [18]. Equation (2) implies that if an initial matrix B0 is updated
l times, the resulting matrix Bl can be written as follows:

Bl = B0 +
l−1∑
k=0

(yk −Bksk)
sTk
sTk sk

= B0 + CDT = B0 +Q, (5)

with C = [c1, ..., cl], D = [d1, ..., dl], defined by

ck+1 =
(yk −Bksk)

‖ sk ‖
, dk+1 =

sk
‖ sk ‖

, k = 0, ..., l − 1.

The matrix

Q = CDT =
l∑

k=1

ckd
T
k

is the update matrix. Its rank is no more than l and its storage requires at most
2l vectors. In many cases, we can choose B0 = I, then Bl can be stored implicitly
using also 2l vectors.

The rank reduction idea uses the fact that the best approximation of rank p is given
by the truncated SVD [8]. When the rank of the update matrix Q is higher than p,
a given parameter limiting the available memory, we compute the singular values
decomposition of the matrix Q = UΣV T and then remove the smallest singular
value and its corresponding left and right singular vectors from the decomposition
of Q.
The matrix Bl in (5) is replaced by

B̃ = Bl − σpupvTp = B0 +
p−1∑
k=1

σkukv
T
k .

Then, the memory liberated is used to store a new update. Formally, the rank
reduction method is given in definition 2.1.

Definition 2.1 [18] Let F : D ⊂ Rn → Rn be given. Choose x0 in a neighborhood
V(x∗) of the solution x∗ (F (x∗) = 0), and B0 ∈ L(Rn). Define the update function
Φ : Rn × L(Rn)→ P(L(Rn)) by Φ(x,B) = {B̄ : s 6= 0}, where

B̄ = B + (y −Bs) s
T

sT s
− σpupvTp

(
I − ssT

sT s

)
,

4

with s = x̄ − x and y = F (x̄) − F (x) for x̄ = x − B−1F (x). Then an iteration of
the rank reduction method is defined by



xk+1 = xk −B−1k F (xk),

B̃k = Bk − σpupvTp ,

Bk+1 = B̃k + (F (xk+1) + σpupv
T
p sk)

sTk
sT
k
sk

= Bk + (yk −Bksk)
sTk

sT
k
sk
− σpupvTp

(
I − sks

T
k

sT
k
sk

) (6)

where σp, up and vp are respectively the minimal singular value and its left and
right vectors.

In implementations, the matrices C and D are used instead of the matrix Bk. After
a reduction, the pth columns of the matrices C and D are replaced by

cp = 1
‖sk‖

(F (xk+1) + σpupv
T
p sk)

dp = sk
‖sk‖

.

Rotten and Verduyn Lunel ([18]) showed that the rank reduction method converges
locally and superlinearly if the removed singular value σp is smaller than current
step size, i.e.,

σp ≤ ‖sk−1‖.

Simulations show, however, that after several iterations of the rank reduction
method the pth singular value of the update matrix remains more or less of the
same size (see Fig. 1), whereas the step size ‖sk−1‖ decreases to zero in case of
convergence. This implies that the local and superlinear convergence of the rank
reduction method cannot be exhibited since the assumptions in theorem 3.3 given
in [18] are not all satisfied. In fact, the choice of the value of p has an impact on
the convergence. Table 1 presents the execution time of the Broyden rank reduc-
tion method, for different values of p, in the case of the Martinez function (see
appendicies). The size of the problem is n = 100000 and (x0)j = 0.1, j = 1, ..., n.
The value of p should not be too large, where the SVD computation will be costly,
nor too small because the algorithm does not have good Broyden directions and
the globalization line search strategy needs more evaluations of the function F .
However, it is difficult to choose a priori the value of p. To eliminate this draw-
back, we introduce an autoadaptative limited memory Broyden’s method and we
study its local and superlinear convergence in the following paragraph.

5

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

Nonlinear iterations

S
in

gu
la

r
va

lu
es

 o
f Q

p=5

Fig. 1. The distribution of the singular values of the update matrix, Q, for p = 5, in case
of the convection-diffusion equation ([9])

Table 1
Impact of the choice of p on the execution time, in case of the Martinez function.

p 1 3 4 5 6 10

CPU time 68.955 65.827 63.438 70.405 100.070 132.046

Iterations 340 134 114 104 117 112

F evaluataions 1017 386 317 287 330 311

3 An autoadaptative limited memory method

The idea of this approach is to apply the rank reduction method as long as the
quotient σp/‖sk−1‖ remains controlled (lower than a threshold), i.e.,

σp ≤ η‖sk−1‖, k ∈ N, η > 0, (7)

where p stands for the parameter limiting the memory and k denotes the current
nonlinear iteration. If this condition is not satisfied, we increase the rank of the
approximation, i.e. we perform a classical Broyden’s iteration. For a given thresh-
old parameter η > 0 , the algorithm is written as follows.

6

Autoadaptative algorithm

1. Set p = 1.
2. For k = 0, 1, ... until convergence

2.1 Apply a Broyden step
Solve Bksk = −F (xk) for sk,
xk+1 = xk + sk,
yk = F (xk+1)− F (xk),

Bk+1 = Bk + (yk −Bksk)
sTk

sT
k
sk
,

2.2 If ‖ F (xk+1) ‖< ε, convergence is satisfied
2.3 If σp ≤ η ‖ sk ‖, reduce the approximate space

Bk+1 ← Bk+1 − σpupvTp .

Else p← p+ 1.

Note that in this algorithm the matrices C and D are used in implementations
instead of the matrix Bk. For more details of the update of these matrices, see
[17]. The autoadaptative limited memory algorithm has a local and superlinear
convergence. The details of the proof are given in the next paragraph.

The first step is to generalize the theorem 3.3 given in [18]. Indeed we need a
modified version of this theorem which allow us to ensure convergence for any
fixed threshold for the ratio ‖R‖‖s‖ . This corresponds to the update function

Φ(x,B) = {B̄ +R :‖ R ‖F≤ η ‖ s ‖, η > 0, s 6= 0}. (8)

Then we can prove the local and superlinearly convergence.

Theorem 3.1 Let η > 0 and F : Rn → Rn be differentiable in the open, convex
set D, and assume that for some x∗ in D and F ′(x∗) is K-Lipschitz at the point
x∗, where F (x∗) = 0 and F ′(x∗) is nonsingular. Then the update function

Φ(x,B) =

{
B̄ −R

(
I − ssT

sT s

)
: ‖R‖F < η‖s‖, η > 0, s 6= 0

}
,

where B̄ is given by the equation (4), is well defined in a neighborhood V = V1 × V2

7

of (x∗, F
′(x∗)), and the corresponding iteration

xk+1 = xk −B−1k F (xk) (9)

with Bk+1 ∈ Φ(xk, Bk), k ≥ 0, is locally and superlinearly convergent at x∗.

The sufficient condition [3] for the sequence {xk} to converge superlinearly to x∗
is:

lim
k→∞

‖Eksk‖
‖sk‖

= 0,

where Ek = Bk − F ′(x∗) and sk = xk+1 − xk. The proof follows the proof of the
theorem 3.3 given in [18]. Notice just that with the new hypothesis we have

‖Ē‖F ≤ ‖E‖F + (K + 2η) max{‖ē‖, ‖e‖},

when proving Lemma 3.5 in [18].

�

In case of the autoadaptative limited memory method, the round-off matrix in
theorem 3.1 is given by the pth term in the singular value decomposition of the
update matrix

Q =
p∑

i=1

σiuiv
T
i .

The matrix Bk+1 = B0 +Q, in case of the autoadaptative limited memory method
is in the set Φaa(xk, Bk), where

Φaa(x,B) =



{
B̄ − σpupvTp

(
I − ssT

sT s

)
: σp < η‖s‖, s 6= 0, η > 0

}
, if σp ≤ η‖s‖

{
B̄ : s 6= 0

}
, otherwise .

(10)
And we have the following theorem

Theorem 3.2 Under classical hypothesis, the autoadaptative limited memory method
converges locally and superlinearly.

8

Table 2
Performance of the autoadaptative limited memory method, for the Broyden banded
function

η 1e− 6 1e− 2 1e2 1e10 1e12 Broyden

CPU time 315.283 226.770 136.017 106.532 111.901 124.763

Iterations 72 66 58 40 41 73

F evaluations 132 126 113 116 121 132

p final value 66 51 31 2 1 –

The proof comes directly from theorem 3.1 because

Φaa(x,B) ⊆
{
B̄ −R

(
I − ssT

sT s

)
: ‖R‖F < η‖s‖, η > 0, s 6= 0

}
.

In fact if σp > η‖s‖ then there is no rank reduction and then R = 0 in this case.

�

4 Preliminary results and modified version of the algorithm

We apply first the autoadaptative limited memory algorithm to the Broyden
banded function [15]. The performance of this algorithm is compared to the Broy-
den algorithm described in [9]. For this example, the size of the problem is n =
100000, and the initial guess is given by x0 = 0. We search a solution of the
inequality

‖ F (x) ‖< 10−10.

The performance of the autoadaptative limited memory method, for different val-
ues of η, is given in table 2.
For too small values of η, for example η ≤ 10−2, the autoadaptative method does
not converge as well as the Broyden’s method. Indeed, in this case, the value of p
tends to increase and thus the singular values decomposition of the update matrix
takes more computational time.
On the other hand, when the value is too large, the convergence is slow because
the value of p remains too small and then the approximation of the Jacobian ma-
trix is not good enough during the first iterations. In fact, if we look closer at the
convergence, we can say that the ideal behavior for p value is to increase in the
first phase of convergence and then to remain constant while the approximation
size is good enough to ensure a good convergence. This didn’t occur with the fixed

9

threshold. In fact, since σp remains almost constant, when ‖ sk−1 ‖ becomes too
small, the p value may increase almost at each iteration. Increasing the η value
whenever the ratio σp/ ‖ sk−1 ‖ increases too much will allow us to keep the p value
constant for many iterations. That is why the algorithm is modified to adjust the
threshold value during the iterations. We start with a low η and increase it each
time that the p value is also increased. Then the p value becomes harder to in-
crease and the rank of the update matrix Q remains more or less constant while the
convergence occurs. Finally, we use the following modified autoadaptative limited
memory algorithm.

Modified autoadaptative algorithm

1. Set p = 1 and an initial value η. Let α > 1.
2. For k = 0, 1, ... until convergence

2.1 Apply a Broyden step
Solve Bksk = −F (xk) for sk,
xk+1 = xk + sk,
yk = F (xk+1)− F (xk),

Bk+1 = Bk + (yk −Bksk)
sTk

sT
k
sk
,

2.2 If ‖ F (xk+1) ‖< ε, convergence is satisfied
2.3 If σp ≤ η ‖ sk ‖, reduce the approximate space

Bk+1 ← Bk+1 − σpupvTp .

Else p← p+ 1 and η ← αη.

For the remaining numerical tests we use the modified version of the algorithm
and take arbitrarily α = 10. We recommend to choose an initial value ηinit for η in
[1e− 2, 1e2]. In implementations we should also set an upper limit of the η value.
In this case, η remains bounded and consequently the convergence theorem can be
applied.

10

Table 3
Performance of the modified autoadaptative limited memory Broyden method, in case
of the Martinez function

ηinit 1e− 6 1e− 4 1e− 2 1 1e3 1e5 Broyden

CPU time 226.055 129.760 119.133 68.886 48.963 47.218 422.279

Iterations 105 95 95 87 132 184 196

F evaluations 285 258 249 221 369 526 582

p final value 18 16 14 12 9 7 -

5 Numerical results

In this section we present numerical tests by applying the modified autoadaptative
limited memory method to a few classical test functions from the literature and
we present a comparison of this method with the Broyden’s method described in
[9]. Details of the test functions are given in the appendices.

5.1 Martinez function

The size of this problem is n = 100000, and the initial guess is given by xi =
0.1, i = 1, ..., n. We search a solution of the inequality

‖ F (x) ‖< 10−10.

For the Martinez function, the autoadaptative limited memory Broyden’s method
efficiently reduces the computational time (see table 3). Indeed, it requires less
evaluations of the function F , and the size of the update matrix does not increase
too much. In figure 2, we plot the nonlinear residual against the number of non-
linear iterations, for different values of η. The black circles represent the increase
of p during the iterations. We first notice that a too big ηinit slows down the con-
vergence too much during the first phase and then it is important to choose it not
too big. If we choose a very small ηinit then we may consume memory which is not
compulsory for a good convergence.

For the Broyden’s method, the computational time is spent in the evaluation of
the function F , and the computation of products Bk with a vector, see table 4. For
the modified autoadaptative limited memory Broyden’s method the computational
time is spent in evaluations of the function F and the computation of the singular

11

0 50 100 150 200 250
−30

−25

−20

−15

−10

−5

0
Martinez function

Nonlinear iterations

Lo
g

no
nl

in
ea

r
re

si
du

al
 n

or
m

Broyden
autoadp, η

init
 = 1e−6

autoadp, η
init

 = 1e−4

autoadp, η
init

 = 1e−2

autoadp, η
init

 = 1e1

autoadp, η
init

 = 1e6

Fig. 2. The convergence of the modified autoadaptative limited memory method, in case
of the Martinez function

Table 4
Profiling results for the Broyden method, in case of the Martinez function

F evaluations products with Bk

Calls 582 18721

%time 50.6 45.8

value decomposition of the update matrix (if the value of p increases too much),
see table 5.

5.2 Broyden tridiagonal function[15]

The size of the problem is n = 100000, and the initial guess is given by x0 = 0.
We search a solution of the inequality

‖ F (x) ‖< 10−10.

For different initial values of η, the performance of the autoadaptative limited
memory Broyden’s method is given in table 6. Again, for this example the modified

12

Table 5
Profiling results for the modified autoadaptative limited memory method, in the case of
the Martinez function

ηinit 1e− 6 1e− 4 1e− 2 1e1 1e6

p final value 18 16 14 11 4

F calls 285 258 249 200 587

% F time 48.8 56.0 60.0 72.6 92.6

SVD calls 103 93 93 77 199

% SVD time 42.5 31.8 27.2 17.2 2.2

Table 6
Performance of the modified autoadaptative limited memory Broyden method, in case
of the Broyden tridiagonal function

ηinit 1e− 4 1e− 2 1e1 1e3 1e8 Broyden

CPU time 44.671 32.589 30.022 27.203 31.508 52.396

Iterations 72 68 70 70 88 109

F evaluations 177 161 173 179 249 320

p final value 16 14 11 9 5 –

autoadaptative method converges better than the Broyden’s method. In figure 3,
we plot the nonlinear residual during the nonlinear iterations. The black circles
represent an increase of p.

In the modified autoadaptative limited memory method, to reduce the necessary
computational time of the SVD of the update matrix and the function evaluations,
it is necessary to avoid use of too small or too large initial values for η. The table
7 shows the number of function evaluations and singular value decompositions for
different values of ηinit. It also shows the portion of the total time spent for these
two tasks. The goal is then to find a balance between these two costs.

13

0 20 40 60 80 100 120
−30

−25

−20

−15

−10

−5

0

Nonlinear iterations

Lo
g

no
nl

in
ea

r
re

si
du

al
 n

or
m

Broyden tridiagonal function

Broyden
autoadp, η

init
 = 1e−4

autoadp, η
init

 = 1e−2

autoadp, η
init

 = 1

autoadp, η
init

 = 1e3

autoadp, η
init

 = 1e8

Fig. 3. The convergence of the modified autoadaptative limited memory Broyden method,
in case of the Broyden tridiagonal function

Table 7
Profiling results for the modified autoadaptative limited memory method, in case of the
Broyden tridiagonal function

ηinit 1e− 4 1e− 2 1e1 1e3 1e8

p final value 16 14 11 9 5

F calls 177 161 173 179 249

% F time 48.5 54.0 67.1 75.9 91.3

SVD calls 70 66 68 68 86

% SVD time 38.2 33.3 21.7 14.2 2.2

5.3 Spedicato4 function [15], function 4

The size of the problem is n = 100000, and the initial guess is given by x0 =
(−1.2, ...,−1.2, 1)T . We search a solution of the inequality

‖ F (x) ‖< 10−12.

14

Table 8
Performance of the modified autoadaptative limited memory Broyden method, in case
of the Spedicato4 function

ηinit 1e− 6 1e− 4 1e− 2 1 Broyden

CPU time 25.675 25.194 203.114 301.995 65.110

Iterations 33 38 200 200 55

F evaluations 180 199 2311 3600 734

p final value 7 7 2 1 –

Table 9
Performance of the modified autoadaptative limited memory Broyden method, in case
of the discrete integral equation function

ηinit 1e− 2 1e− 1 1 1e1 1e2 1e4 Broyden

CPU time 1065.208 1109.916 1045.173 1225.619 1150.727 1295.578 1058.041

Iterations 7 7 7 7 7 8 8

F evaluations 8 8 8 8 8 9 8

p final value 4 3 3 3 3 3 –

For initial values of η that are more than 10−4 the modified autoadaptative algo-
rithm does not converge before 200 iterations. Otherwise, the method converges as
well as the Broyden method, see table 8. In fact, for these cases, the value of p does
not increase. Thus the approximate subspace does not allow to determine more
precisely the Broyden directions. Starting with more than one Broyden direction
(p > 1) can lead to the convergence of the algorithm.

5.4 Discrete integral equation function[14]

The size of the problem is n = 10000, and the initial guess is given by x0 = 0. We
search a solution of the inequality

‖ F (x) ‖< 10−10.

For different initial values of η, the performance of the autoadaptative limited
memory is nearly the same as that of the Broyden method, see table 9. In this
example also the p value does not increase too much. The computational time is
especially spent in the evaluation of the function F although that, for each initial
value of η, the convergence of the algorithm requires only a few F-evaluations.

15

Table 10
Choice of α, in case of the Martinez function

α 2 10 100 500 103 104 105 106

CPU time 482.797 116.748 53.790 45.031 42.406 37.788 39.941 38.139

Iterations 97 95 85 94 96 96 104 110

F evaluations 250 249 218 253 258 254 283 302

p final value 42 14 8 6 6 5 4 4

Hence, a solution by the autoadaptative limited memory method would cost much
less than that of one by an inexact Newton method, which requires many F-
evaluations for each nonlinear iteration.

5.5 Influence of α on the convergence

To see how the algorithm depends on the choice of α, we apply the modified
scheme to the function of Martinez for different values of α. We take the case
where ηinit = 10−2. The table 10 introduces the obtained results. We have seen
in the section 2 that it is not trivial to identify an optimal value of p. For the
modified scheme, the convergence depends on the choice of the value of α, but a
sufficiently large value of α may identify a good memory to ensure convergence.
In our tests we take arbitrarily α = 10. We can take also a sequence that increases
in the iteration.

6 Conclusion

We have presented an autoadaptative limited memory Broyden’s method, and
shown its locally superlinear convergence. It automatically adapts the memory to
store the Broyden’s directions. Numerical tests show that it reduces efficiently the
cost of the necessary storage and the time to obtain the convergence. Increasing
the threshold η with the quotient σp/‖sk‖ gives the satisfactory results, but the
presented strategy can be certainly refined. However, the procedure of choosing
the parameter α to increase η in modified algorithm is not studied yet. We set
α = 10 arbitrarily. We show numerically that this choice is sufficient to prevent
p to increase in each iteration when ‖ sk−1 ‖ becomes too small. The threshold η
can be updated by a technique as that in the choice of forcing terms in inexact

16

Newton methods [1]. The idea is to change η value depending on the increase of
the ratio σp/ ‖ sk−1 ‖. The main drawback of this algorithm is that there is no
result yet about the global convergence, and thus the initial guess must be not too
far from the solution. But we can use the theoretical results given in [11] for the
Globalization of this algorithm.

Appendix

(1) Broyden banded function

- Origin : [15]
- Dimension : n ≥ 7
- Initial guess : not specified

F1(x) = x1(2 + 5x21) + 1− x2(1 + x2)

F2(x) = x2(2 + 5x22) + 1− x1(1 + x1)− x3(1 + x3)

F3(x) = x3(2 + 5x23) + 1−
2∑

j=1

xj(1 + xj)− x4(1 + x4)

F4(x) = x4(2 + 5x24) + 1−
3∑

j=1

xj(1 + xj)− x5(1 + x5)

F5(x) = x5(2 + 5x25) + 1−
4∑

j=1

xj(1 + xj)− x6(1 + x6)

Fn(x) = xn(2 + 5x2n) + 1−
n−1∑

j=n−5
xj(1 + xj)

Fi(x) = xi(2 + 5x2i) + 1−
i−1∑

j=i−5
xj(1 + xj)− xi+1(1 + xi+1), i = 6, ..., n− 1

(2) Martinez function

- Origin: 59th Martinez paper , 13th problem
- Dimension: n
- Initial guess: not specified

17

F1(x) = (3− 0.1x1)x1 + 1− 2x2 + x1

Fi(x) = (3− 0.1xi)xi + 1− xi−1 − 2xi+1 + xi, i = 2, ..., n− 1

Fn(x) = (3− 0.1xn)xn + 1− 2xn−1 + xn

(3) Broyden Tridiagonal function

- Origin: [15]
- Dimension: n
- Initial guess: not specified

F1(x) = (3− 2x1)x1 − 2x2 + 1

Fn(x) = (3− 2xn)xn − xn−1 + 1

Fi(x) = (3− 2xi)xi − xi−1 − 2xi+1 + 1, i = 2, ..., n− 1

(4) Spedicato4 function

- Origin: [15], function 4
- Dimension: n
- Initial guess: x0 = (−1.2, ...,−1.2, 1)T

Fi(x) =

 1− xi if i odd

10(xi − x2i−1) if i even

(5) Discrete integral equation function

- Origin: [14]
- Dimension: n
- Initial guess: (x0)j = tj(tj − 1)

Fi(x) = xi +
h

2

(1− ti)
i∑

j=1

tj(xj + tj + 1)3 + ti
n∑

j=i+1

(1− tj)(xj + tj + 1)3

 ,
where h = 1

n+1
, ti = ih and x0 = xn+1 = 0.

18

References

[1] Heng-Bin An, Ze-Yao Mo, and Xing-Ping Liu. A choice of forcing terms in
inexact Newton method. Journal of Comp. and Appl. Math., 200:47–60, 2007.

[2] C.G. Broyden. A class of methods for solving nonlinear simultaneous equa-
tions. Math. Comput., 19:577–593, 1965.

[3] C.G. Broyden, J.E.Dennis, and J.J. Moré. On the local and superlinear con-
vergence of quasi-Newton methods. J. Ins. Maths. Applics., 12:223–245, 1973.

[4] R. S. Dembo, C. C. Eisenstat, and T. Steihaug. Inexact Newton methods.
SIAM J. Num. Anal., 19:400–408, 1982.

[5] R. S. Dembo and T. Steihaug. Truncated Newton algorithms for large scale
optimization. Math. Prog., 26:190–212, 1983.

[6] J.E. Dennis and J.J. Moré. Quasi-Newton methods, motivation and theory.
SIAM Rev., 19(1):46–89, 1977.

[7] J.E. Dennis and R.B. Schnabel. Numerical methods for unconstrained opti-
mization and nonlinear equations. Prentice-Hall, 1983.

[8] G. Golub and C.F. Van Loan. Matrix computations. 3rd edition. John Hokins
Press, 1996.

[9] C.T. Kelly. Iterative methods for linear and nonlinear equations. SIAM, 1995.
[10] C.T. Kelly. Solving nonlinear equations with Newton’s method. SIAM, 2003.
[11] D.H. Li and M. Fukushima. Derivative-free line search and global convergence

of Broyden-like method for nonlinear equations. Optimization methods and
software, 13:181–201, 2001.

[12] J. M. Martinez. Continuous Optimization. The state of art, chapter Algo-
rithms for solving nonlinear systems of equations, pages 81–108. Kluwer Aca-
demic Publishers, 1994.

[13] J. M. Martinez. Practical quasi-Newton methods for solving nonlinear sys-
tems. Journal of Computational and Applied Mathematics, 124:143–167, 2000.

[14] J.J Moré and M.Y. Cosnard. Numerical solution of nonlinear equations. ACM
Trans. Math. Soft., 5(1):64–85, 1979.

[15] J.J Moré, B.S. Garbow, and K.E. Hillstrom. Testing unconstrained optimiza-
tion software. ACM Trans. Math. Soft., 7(1):17–41, 1981.

[16] J.M. Ortega and W.C. Reinboldt. Iterative solution of nonlinear equations in
several variables. SIAM, 2000.

[17] B. Van De Rotten. A limited memory Broyden method to solve high dimen-
sional systems of nonlinear equations. PhD thesis, Mathematical Institute,
University of Leiden, The Netherlands, 2003.

[18] B. Van De Rotten and S.M. Verduyn Lunel. A limited memory Broyden
method to solve high dimensional systems of nonlinear equations. Techni-
cal Report MI 2003-06, Mathematical Institute, University of Leiden, The
Netherlands, 2003.

19

