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Abstract

This paper presents the formulas of the expected long-run cost per unit time for a cold standby system having
two identical components with perfect switching. When a component fails, a repairman will be called in to bring
the component back to a certain state. The time to repair is composed of two different time periods: waiting time
and real repair time. The waiting time starts from the failure of a component to the start of repair, and the real
repair time is the time between the start to repair and the completion of the repair. We also assume that the time to
repair can either include only real repair time with a probability p, or include waiting time and real repair time
with a probability 1-p. Special cases are discussed when both the working times and real repair times are assumed
to be a type of stochastic processes: geometric processes, and the waiting time is assumed to be a renewal process.
The expected long-run cost per unit time is derived and a numerical example is given to demonstrate the

usefulness of the derived expression.

Keywords: Geometric process, Cold standby system, Long-run cost per unit time, Replacement policy,

Maintenance policy

1. Introduction

A two-component cold standby system is composed of a primary component and a backup

component, where the backup component is only called upon when the primary component fails. Cold

*Suggested Citation: Jia, J., Wu, S. Optimizing replacement policy for a cold-standby system with waiting repair times (2009) Applied Mathematics and
Computation, 214 (1), pp. 133-141.
Corresponding author. s.m.wu@kent.ac.uk
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standby systems are commonly used for non-critical applications. However, cold standby systems are
one of most important structures in the reliability engineering and have been widely applied in reality.
An example of such a system is the data backup system in computer networks.

The reliability analysis and maintenance policy optimisation for cold standby systems has attracted
attentions from many researchers. Zhang and Wang (2006, 2007) and Zhang et al (2006) derived the
expected long run cost per unit time for a repairable system consisting of two identical components and
one repairman when a geometric process for working times is assumed or for cold standby systems.
Utkin (2003) proposed imprecise reliability models of cold standby systems when he assumed that
arbitrary probability distributions of the component time to failure are possible and they are restricted
only by available information in the form of lower and upper probabilities of some events. Coit (2001)
described a solution methodology to optimal design configurations for non-repairable series—parallel
systems with cold-standby redundancy when he assumed non-constant component hazard functions and
imperfect switching. Yu et al. (2007) considers a framework to optimally design a maintainable
previous term cold-stand by next term system, and determine the maintenance policy and the reliability
character of the components.

Due to various reasons, repair might start immediately after a component fails. In some scenarios,
from the failure of a component to the completion of repair, there might be two periods: waiting time
and real repair time. The waiting time starts from the failure of the component to the start of repair; and
the real repair time is the time between the start to repair and the completion of the repair. This is
especially true for cold standby systems as they are not critical enough for a standby repairman be
equipped for it. For example, when a component fails to work, its owner will call its contracted
maintenance company or return the component to its suppler for repair. After a time period, which can
be the time spent by repairmen from their working place to the place where the component fails, or the
time on delivering the failed component to its supplier. This time period is called waiting time in what

follows. Usually, the waiting time can be seen as a random variable independent of the age of the
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component, whereas the real repair time can become longer and longer when the component becomes
older. On the other hand, the working time of the component can become shorter and shorter due to
various reasons such as ageing, and deterioration. Such working time patterns and real repair time
patterns can be depicted by geometric processes as many authors have studied (Lam 1988).

The geometric processes introduced by Lam (1988) define an alternative to the non-homogeneous
Poisson processes: a sequence of random variables {Xy, k=1,2,...} is a geometric process if the
distribution function of Xy is given by F(a“t) for k=1,2,... and a is a positive constant. Wang and Pham
(1996) later refer the geometric process as a quasi-renewal process. Finkelstein (Finkelstein 1993)
develops a very similar model: he defines a general deteriorating renewal process such that Fy.i(t) <
F(t). Wu and Clements-Croome (2006) extend the geometric process by replacing its parameter a**
with a;a"+ byb*?, where a>1 and 0<b<1. The geometric process has been applied in reliability analysis
and maintenance policy optimisation for various systems by many authors; for example, see Wang,
Pham (1996), and Wu and Clements-Croome (2005).

This paper presents the formulations of the expected long-run cost per unit time for a cold standby
system that consists of two identical components with perfect switching. When a component fails, a
repairman will be called in to bring the component back to a certain state. The time to repair is
composed of two different time periods: waiting time and real repair time. The waiting time starts from
the component failure to the start to repair, and the real repair time is the time between the start to repair
and the completion of the repair. Both the working times and real repair times are assumed to be a type
of stochastic processes: geometric processes, and the waiting time is assumed to be a renewal process.
We also assume that the time to repair can either include only real repair time with a probability p, or
include waiting time and real repair time with a probability 1-p. The expected long-run cost per unit time

is derived and a numerical example is given to demonstrate the usefulness of the derived expression.
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The paper is structured as follows. The coming section introduces geometric processes defined by
Lam (1988), denotation and assumptions. Section 3 discusses special cases. Section 4 offers numerical

examples. Concluding remarks are offered in the last section.

2. Definitions and Model Assumptions

This section first borrows the definition of geometric process from Lam (1988), and then makes

assumptions for the paper.
2.1 Definition

Definition 1 Assume &, n are the two random variables. For arbitrary real number «, there is
P({>a)>P(n>a)
then &is called stochastically bigger than 7. Similarly, if £ stochastically smaller than 7.
Definition 2 (Lam 1988) Assume that { X ,, n=1,2,...} is a sequence of independent non-negative
random variables. If the distribution function of X is F(a"'t), for some a>0 and all, n=1,2, ..., then
{X,,n=1,2,...} iscalled a geometric process.

Obviously,

if a>1, then { X, n=1,2,...} is stochastically decreasing,
if a<l,then {X,,n=1,2,...} is stochastically increasing, and

if a=1, { X,,n=1,2,...} is arenewal process.

2.2 Assumptions and Denotation

The following assumptions are assumed to hold in what follows.
A. At the beginning, the two components are both new, component 1 is first working and component 2

is under cold standby.
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B. When both of the two components are in good condition, one is working and the other is under cold
standby. When the working component fails, a repairman repairs the failed component immediately
with probability p, or repairs it with a waiting time with probability 1-p. As soon as the working
component fails, the standby one will start to work. Assume the switching is perfect. After a failed
one has been repaired, it is either put in use if another one fails or put in standby if another one is
working. If one fails while the other is still under repair, the failed one must wait for repair until the
repair for another one is completed.

C. The time interval from the completion of the (n-1)th repair to that of the nth repair of component i

is called the nth cycle of component i, where i=1,2; n=1,2,.... Denote the working time and the
repair time of component i in the nth cycle (i=1,2; n=12,...)as X and Y, respectively.
Denote the waiting time of component i (i =1, 2) in the nth cycle as {Z{" ,n=1,2,---}. Denote the
cumulative distribution functions of XV, Y® and 2", as F (x) G,(x),and S(x), respectively.

D. X, Y® and z® (i=1,2, and n=1,2, ...) are statistically independent.

E. When a replacement is required, a brand new but identical component will be used to replace, and
the replacement time is negligible.

F. Denote the repair cost per unit time of two components as Cy,, the working reward per unit time as

Cuw, the replacement cost as C;.

3. Expected cost under replacement policy N

Figure 1 shows a typical scenario, given the above-mentioned assumption. In what follows, we consider
a replacement policy N, where a replacement is carried out if the number of failures reaches N for the
component 1.

Fig.1 a possible progressive figure of the system
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Denote the time between the (n-1)th replacement and the nth replacement of the system as T, .
Obviously, {T,,T,, ...} forms a renewal process.
Let C(N) be the expected long run cost per unit time of the system under the policy N. Because

{T,,T,, ...} is arenewal process, the interval time between two consecutive replacements is a renewal

cycle. Then, according to renewal reward theorem, we can know that the long run average cost per unit

time is given by

Expected cost incurred in a cycle

C(N)=
(N) Expected length of a cycle

(1)
Let W be the length of a renewal cycle of the system, then

N-1
W = Xl(l) 4 Z[max{zi(l) +Yi(1)’ Xi(z)}l {A(l)}+ max{Yi(l’, Xi(2)}|{Bi(1)}]+

i=1

N-2
S Imaq{Z® +Y@, X OH{AP3+ maxY,?, X GH{BA I+ X .

i=1

The expected length of a renewal cycle is

EW) = E[XP1+ EIXPT+ S Emaxz® + Y, X @H{AD}+ max{Y,”, X 2} {BOY]

+. i+1

+ sz E[max{Z® +Y,2, X OH{A® }+max{Y,?, X O H{BP}]- (2)
Let C be the cost of a renewal cycle of the system under the policy N, then

N-1 N-2 —
C=C, +C, D Y@ + > Y@ 1 & 1AL+ (XD - Z@)HANIAZ) + YA 1B+ X PHBIN(BP,)}
i=1 i=1

—cw[ixf“ +§xi<2>], ©)

where A={X® -Z@, >Y&}A={X®-z2, <¥2},B={X® -¥,® >0}, and
B={Xx®-v2 <o}
If X and Y are two independent non-negative random variables and their cumulative distribution

functions are F(x) and G(x), respectively, we have following three lemmas.
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Denote E(C) as the expected value of C. By substituting the numerator and denominator of Eq. (1) with

E(C) and E(W), respectively, we have

c(Ny=£©)

EW)
Then the optimal replacement number can be obtained by minimising the value of C(N) in Eq. (4).

Lemmal

E(max{X,Y}) = EX +j: F(X)[L— G(x)]dx

= EY +j: G(X)[L- F(x)]dx .

The proof of Lemma 1 is given in Appendix.

Lemma 2
E[I{Y > X}X]+E[1{0<Y < x}Y]=j: [1- FOOI[L - G(x)]dx .
The proof of Lemma 2 is given in Appendix.

Similarly, we have

Lemma 3

E[(Y — X)I{Y = X >o}]:jo°° [1—G(X)] F(x) dx -

4. Special Cases and Discussion

(4)

()

(6)

(7)

(8)

Denote the distributions of X" andY " as F(a"'t) and G(b"'t), respectively, where a>1,0<bh<1.

{Y " n=1,2,...} constitutes an increasing geometric process, whereas { X ,n=1,2,...} constitutes a

decreasing geometric process. Then we have the following Theorem.
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n-1 n-1

3 1), G, (1) =GO 1) =1— exp(—>
)7

A

Theorem Assume F. (t)=F(a"'t)=1-exp(— t), and

S(t)=1-exp(— l) , (t>0), respectively. Then the expected length of a renewal cycle is given by
Y

A N-2 U 1
EW) =4+ — +(@N-3)1—p)y+23 £ ¢
a —='b b
1 /12 p/ALZbNJ
+(1- p)A -
4= (aN"Z (a"?+ 1) @ Pu+b NP2V Py A+ ui+auy) J i a"?("?A+a )

& ) 1 1 ) 1
i ;((1_ P)A (ai(}/ai +A) ’ at(ya +/1)] “ ((ai,u+bi"l/l)(Zbi_lj//1+,u/1+ai,uy)

. 1 +p Al+a)  Au(@'u+au+2b"2) )
@7 +bA)2b Y A+ uA+a tuy) a b Ar+a Wb a+a ) ))
and the expected cost is a cycle is
N-2 2/1 aN—l’u7/2 22 /J
E(C)=C |25 # + H +(1- - -
( ) m( ;b'_l + bN—Z ( p){bNZ (aNfly_'_ﬂ’)(beZ]/_lu) (aNfly_'_/l)(beZl_i_aNfl‘u)

;L,U N-1 yi

+ NEFEER pJ+cr _C”(22F+Wj’ (10)

and the expected long run cost per unit time is given by

ciNy=E©) (11)

EW)

If one sets a=1 and b=1, the above results E(W) and E(C) will be the situations where the components

can be repaired as good as new.

5. Numerical Example



170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

5.1 Parameter set 1

If weset a=1.8,b=0.98,1=100, #=10,y =5,C, =500,C,, =20,C, =5000, and p=0.8, thenthe

optimum number for a replacement will be N=6, and the corresponding expected long run cost per unit
time is -433.41. The expected long-run cost per unit time is shown in Table 1, which corresponds to
Figure 1.

Fig. 2 The change of C(N) over N for parameter set 1

5.2 Parameter set 2

Ifweset a=1.1,b=0.98,1=100, x=1,y=0.2,C_, =500,C,, =20,C, =5000, and p=0.8, then the

optimum number for a replacement will be N=35, and the corresponding expected long run cost per unit
time is -491.85. The expected long-run cost per unit time is shown in Table 2, which corresponds to
Figure 2.

Fig. 3 The change of C(N) over N for parameter set 2

Compare Figures 2 and 3, we can find that the optimum replacement time becomes longer in the second
situation. In both situations, we can easily find an optimum replacement time point. However, due to the

complexity of Eq. (11), we are not able to prove that there exists a unique optimal value N.

6. Conclusions

Cold standby systems are a category of important reliability structure in engineering. Searching an
optimal replacement point for such systems is of interest and important. This paper derived the expected
long run cost per unit time for a cold standby system when time to repair is composed of two time
periods: waiting time and real repair time. We also considered a special scenario where the working
times and real repair times are geometric processes. Numerical examples are given to demonstrate the

usefulness of the derived expression.



192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

References

Coit, D.W. 2001, "Cold-standby redundancy optimization for nonrepairable systems", IIE Transactions

(Institute of Industrial Engineers), vol. 33, no. 6, pp. 471-478.

Finkelstein, M.S. 1993, "A scale model of general repair”, Microelectronics Reliability, vol. 33, no. 1,

pp. 41-44.

Lam, Y. 1988, "A note on the optimal replacement problem", Advances in Applied Probability, vol. 20,

no. 2, pp. 479-482.

Utkin, L.V. 2003, "Imprecise reliability of cold standby systems", Int J Qual Reliab Mgmt, vol. 20, no.

6, pp. 722-739.

Wang, H. & Pham, H. 1996, "A quasi renewal process and its applications in imperfect maintenance”,

International Journal of Systems Science, vol. 27, no. 10, pp. 1055-1062.

Wu, S. & Clements-Croome, D. 2006, "A novel repair model for imperfect maintenance”, IMA Journal

Management Mathematics, vol. 17, no. 3, pp. 235-243.

Wu, S. & Clements-Croome, D. 2005, "Optimal maintenance policies under different operational

schedules”, IEEE Transactions on Reliability, vol. 54, no. 2, pp. 338-346.

Yu, H., Yalaoui, F., Chatelet, E & Chu, C. 2007, "Optimal design of a maintainable cold-standby

system", Reliability Engineering & System Safety, vol. 92, no. 1, pp. 85-91.

Zhang, Y. L., Wang, G. J. and Ji, Z. C. 2006, “Replacement problems for a cold standby repairable

system,” International Journal of Systems Science, 37(1), pp 17-25.

10



211

212

213

214

215

Zhang, Y. L. and Wang, G. J. 2006, A bivariate optimal repair- replacement model using geometric

process for cold standby repairable system. Engineering Ootimization, 38(6), pp 609-619.

Zhang, Y.L. & Wang, G.J. 2007, "A deteriorating cold standby repairable system with priority in use",

European Journal of Operational Research, vol. 183, no. 1, pp. 278-295.

11



216
217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

Appendix
Proof of Lemma 1.

Proof: Because X ,Y are two independent random variables, therefore

E(max{X,Y })

= [[ max{x, y}- £ (x)g(y)dxcly

= [[ v (g (y)dxdy + [] xF (x)g(y)dxdly

X<y x>y

=[] v (ayxixdy+ [ ] xf (x)g(y)dydx
=], YaWF(ydy + [ %G () f ()

=— [ XF ()AL= GOT+ [ XG(x)  (x)dlx

:I: [Xf ()[L—-G(x)]+ xG(x) f (x)]dx +I: F()[1-G(x)Jdx
=EX +j;° F(X)[L— G(x)]dx

4F () 20 g(y) = SEW)

where f (X) =
dx dy

Proof of Lemma 2.

Proof: As X and Y are two independent non-negative random variables,

E[HY > X}X]= [[f (g (y)dxdy

X<y

=[x 099 ey

= j: xf (X)[L— G(x)]dx

:_j:’ X[1-G(x)]d[1- F(x)]

12
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:f : [1-G(x) — xg ()][1 - F(x)ldx

E[HO<Y < X¥]= [] ¥ (g (y)dxdy

O<y<x

={ ya(y)L-F(y)ldy

= [ xg ()R- F(x)]dx
and
E[I{Y > X IX]+E[1{0<Y < x}Y]:j: [1— F(x)][L- G(x)]dx .
Proof of Theorem.

Proof.

According to the above theorems and formula (2) (3), we have

EW) = EIXP 1+ EIXP T+ S Efma{z® + 2, X OH{A Y+ max{y®, X OYH{BOY]

i=1

N-2
+ > EImaq{Z{® +Y,?, X T H{AP}+ max{Y®, X I} {B*}]
i1

=E[XO7+ EIXP] + S{EMmadz® +Y,%, X @1 p) + E[maxy?, X @}]p}

- SHEmMaAZ® +Y,%, X OH(L- p)}+ Emaxy,”, X U3]p}

i+1

N-1 N-2
= E[Xl(l)] + E[Xl(\ll)] +{Z E[max{Zi(l) +Yi(l)1 Xi(Z)}] + ZE[maX{Zi(Z) +Yi(2)1x'(l)}]}(1_ p)

i+l
i=1 i=1

03 Efmax{Y,?, X 21+ S Efmax(Y,®, X U} ]}p

i=1 i=1

=E[XP]+ EIXPT+HY EIZ® +Y,9] + > [ HO1-F @+ Y EZO +Y,0)

13
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+ 3] MO FaO13a- p) HEEN T SENTT+ 3] 6 0 F Ol
#3761 F., (0]

=1+ ﬁ'

> T ,ZJ [(L~ P)H (t) + PG, (D][L~ F, (1)t

* Z j: [~ p)H; () + pG, (O]~ F., (D]dt

ﬂ,

=4+

b"l bN — I [(1-p)H . (1) + pG (™ *DI[L- F (@™ )]t

+ Z j: [(1- p)H, () + pG(bt)][2— F(a't) - F(a"'t)]dt

and

EL:Cm[?Z;bi—‘i Zb,_l (t-p)f. =R, OIL-G®" )]t + p[ " [L-G(b" *)][1 - F(a" *t)]dt]

i=1

N i N-1 /1
+C -C — )y —
' “’[; a™ Fat

=C {2Zb,l bNZ +(1-p)f [1-Ry (IL-G(b" 2t)]dt+pj [1-G(b" 2t)][L- F(a“ 't)]dt}

= A A
+C -C [22 ait a 71]

where t >0, H, (t) and R, (X) represent the cumulative distribution functions of the random variables
ZO 4y O and X -z @ | respectively. Hence we have H, (x) =S(t) *G, (t), and

Ry (X) =F, (t) *[L— S(-t)], where “*” indicates convolution, and

i-1

H ()=S0 *G0b™ =] {1- exp[—b—(t—u)]}d [1- exp(——)]

{exp(—lt) )
Jr 7R

t
=]l-—-e -y~
Xp ( y) b.,l

14
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Ry (O=F (" ) *[L-S(-0]=[ f-ep[-"— (-]} exp(;)
=ep(H) -1+ fop(- 21 -ep()]
y A+a Ty A 14

where

/10 pH, L+ pGO" D][1- F (@ 0]t

— (1— p)/th[ 1 _ /'lz ] + pﬂ«ZbN_2 ,
a"?(ya?+a) @“Cu+b" P Y Py A+ pa+attuy) T atVEbNPa+at )

[T~ p)H, 0+ PG D)][2- F(a't) - F (" 1))t

1 1

1
i i 3 i—1 ]_
a'(ya'+4) a“(ya"+A)

] PR o
@u+b" A2y A+ ud+a uy)

=(1-p)A{[

| | 1 | B+ p[;tma) B ;py(aima‘-lmzb‘ju)
@+ A2y A+ uA+a T uy) a' (b A+a' w)(b' A +a' ")

1

[ L-Ry@®IL-G(b" t)]dt

//L a.N—l bN72

("2 —eo(l) - Texn(—
= 2 ()~ g (==

t)—exp(%)]}-exp{— tht

_ 2u a“uy? X u

"2 @ 0" —n @ 0" A+a )

and

j: [1-G(b" ][l - F(a“ *t)]dt

a ™t b2 Au
- eXP1— tpdt=———————.
A ) et Y7 } b"?A+au

=, oo (-
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Times | Costrate | Times | Costrate | Times | Costrate | Times | Costrate | Times | Cost rate
1 -88.74 15 -305.11 29 -178.66 43 -111.84 57 -71.56
2 -107.92 16 -292.59 30 -172.52 44 -108.29 58 -69.32
3 -279.47 17 -280.78 31 -166.64 45 -104.87 59 -67.14
4 -389.09 18 -269.62 32 -161 46 -101.56 60 -65.02
5 -428.42 19 -259.06 33 -155.6 47 -98.37 61 -62.97
6 -433.41 20 -249.07 34 -150.42 48 -95.28 62 -60.97
7 -424.96 21 -239.6 35 -145.44 49 -92.29 63 -59.04
8 -411.2 22 -230.61 36 -140.66 50 -89.4 64 -57.15
9 -395.37 23 -222.07 37 -136.06 51 -86.6 65 -55.33

10 -378.99 24 -213.94 38 -131.63 52 -83.89 66 -53.55
11 -362.83 25 -206.21 39 -127.38 53 -81.27 67 -51.82
12 -347.25 26 -198.84 40 -123.27 54 -78.73 68 -50.14
13 -332.41 27 -191.8 41 -119.32 55 -76.27 69 -48.5
14 -318.37 28 -185.08 42 -115.51 56 -73.88 70 -46.91

288  Table 1. The expected long-run cost per unit time versus replacement times for parameter set 1.

Times | Costrate | Times | Costrate | Times | Costrate | Times | Costrate | Times | Cost rate
1 -17.37 15 -384.14 29 -489.22 43 -489.36 57 -477.22
2 -18.96 16 -403.59 30 -490.15 44 -488.78 58 -476.05
3 -37.01 17 -420.14 31 -490.84 45 -488.15 59 -474.85
4 -58.53 18 -434.04 32 -491.32 46 -487.48 60 -473.61
5 -83.54 19 -445.6 33 -491.63 47 -486.76 61 -472.34
6 -111.78 20 -455.12 34 -491.8 48 -485.99 62 -471.03
7 -142.75 21 -462.91 35 -491.85 49 -485.18 63 -469.7
8 -175.68 22 -469.24 36 -491.79 50 -484.33 64 -468.33
9 -209.62 23 -474.35 37 -491.65 51 -483.43 65 -466.93

10 -243.55 24 -478.46 38 -491.43 52 -482.5 66 -465.5
11 -276.47 25 -481.74 39 -491.13 53 -481.52 67 -464.05
12 -307.51 26 -484.34 40 -490.77 54 -480.5 68 -462.56
13 -336.03 27 -486.39 41 -490.36 55 -479.44 69 -461.05
14 -361.63 28 -487.99 42 -489.88 56 -478.35 70 -459.5

289  Table 2. The expected long-run cost per unit time versus replacement times for parameter set 2.

290  Note: times in Table 1 and Table 2 stands for replacement times; Cost rate stands for the expected long-

291  run cost per unit time
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