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Abstract

A two-dimensional body, exhibiting a slight rotational movement, moves in a rarefied
medium of particles which collide with it in a perfectly elastic way. In previously re-
alized investigations by the first two authors, Plakhov & Gouveia (2007, Nonlinearity,
20), shapes of nonconvex bodies were sought which would maximize the braking force
of the medium on their movement. Giving continuity to this study, new investigations
have been undertaken which culminate in an outcome which represents a large qualitative
advance relative to that which was achieved earlier. This result, now presented, consists
of a two-dimensional shape which confers on the body a resistance which is very close to
its theoretical supremum value. But its interest does not lie solely in the maximization of
Newtonian resistance; on regarding its characteristics, other areas of application are seen
to begin to appear which are thought to be capable of having great utility. The optimal
shape which has been encountered resulted from numerical studies, thus it is the object
of additional study of an analytical nature, where it proves some important properties
which explain in great part its effectiveness.
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1 Introdution

One area of investigation in contemporary mathematics is concerned with the search for
shapes of bodies, within predefined classes, which permit the minimization or maximization
of the resistance to which they are subjected when they move in rarefied media. The first
problem of this nature goes back to the decade of the 1680s, a time when Isaac Newton
studied a problem of minimum resistance for a specific class of convex bodies, which moved
in media of infinitesimal particles, rarefied to such a degree that it was possible to discount
any interaction between the particles, and in which the interaction of these with the bod-
ies could be described as perfectly elastic collisions [I]. More recently we have witnessed
important developments in this area with the broadening of study to new classes of bodies
and to media with characteristics which are less restrictive: problems of resistance in non-
symmetrical bodies [2, B, 14, [5, 6], in nonconvex bodies of single collisions [7, 4, [8, 9] and
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multiple collisions [10, 1T}, 12], bodies of developable surfaces [9], considering collisions with
friction [13] and in media with positive temperature [14]. However most studies which have
been published have given special attention to classes of convex bodies.

The convexity of a body is a sufficient condition for the resistance to be solely a function
of singular collisions — all the particles collide at once with the body. This attribute allows
us to considerably reduce the complexity of the problems dealt with. Even the various studies
of classes of nonconvex bodies which have emerged, especially in the last decade, are based
almost always on conditions that guarantee a single impact per particle — [7, 4} [8, [9]. Only
very recently have there begun to emerge some studies supposing multiple reflections (see,
e.g. [10) 11], 12]).

In the class of convex bodies, the problem is normally reduced to the minimization of
Newton’s functional — an analytical formula for the value of the resistance. But, in the
context of nonconvex bodies, there is not any simple formula known for the calculation of the
resistance. Even if it is extremely complex, in general, to deal analytically with problems of
multiple collisions, for some specific problems of minimization the job has not been revealed
to be particularly difficult, there even being some results already available [10] [I1]. If, on the
other hand, we consider the problem of maximization, then in this case the solution becomes
trivial — for any dimension, it is enough that the front part of the body is orthogonal to the
direction of the movement.

And what if the body exhibits, besides its translational movement, a slight rotational
movement? When we think of this kind of problem, we have in mind, for example, artificial
satellites, of relatively low orbits, which do not possess any control system which could sta-
bilize their orientation, or other devices in similar conditions. In this situation we imagine
that, over its path, the device rotates slowly around itself.

The problem of resistance minimization for rotating nonconvex two-dimensional bodies
has already been studied in [12, [I5]: it was shown that the maximal reduction of resistance,
as compared with the convex case, is approximately 1.22%. In its turn, the problem of max-
imization of the average resistance of bodies in rotation is far from being trivial, in contrast
with that which occurs when we deal with purely translational movement. This class of prob-
lems was, therefore, the object of study of the work carried out by the authors in [16] 17]:
nonconvex shapes of bodies were investigated which would maximize the resistance that they
would have to confront if they moved in rarefied media, and, simultaneously, exhibited a
slight rotational movement. With the numerical study which was executed, various geomet-
rical shapes were found which conferred on the bodies rather interesting values of resistance:
but it was in later investigations, performed in the follow-up of this work, that the authors
managed to arrive at the best of the results — a two-dimensional shape which confers on the
body a resistance very near to its maximum theoretical limit. It is this latest result which
now is presented here.

The presentation of the work is organized in the following way. In section [2, we begin by
defining, for the two-dimensional case, the problem of maximization, which is the object of
the present study. Then, in section 3, we describe the numerical study which was realized in
the tracking of the body of maximum resistance and we present the main original result of this
study: a two-dimensional shape which maximizes Newtonian resistance. The two-dimensional
shape is then the object of study in section [4, where some important properties are shown
which help to explain the value of resistance which it displays. In section [5] we present
the main conclusions of our study and include some notes on possible working directions to
undertake in the future. Finally, in appendices [A] and [B], proofs of theorems [I] and [2] are



provided.

2 Definition of the problem for the two-dimensional case

Consider a disc in slow and uniform rotation, moving in a direction parallel to its plane. We
will designate the disc of radius r by C) and its boundary by dC,. We then remove small
pieces of the disc along its perimeter, in an e-neighborhood of 9C,, with ¢ € R, of value
arbitrarily small when compared with the value of r. We are thus left with a new body B
defined by a subset of C, and characterized by a certain roughness along all its perimeter.
The essential question which we put is the following: up to what point can the resistance of a
body B be augmented? More than getting to know the absolute value of this resistance, we
are principally interested in learning what is the increase which can be obtained in relation to
the smooth body (a perfectly circular contour, in this case), that is, learning the normalized
value

Resistance(B)

R(B) = Resistance(C,)

(1)

It is possible, from the beginning, to know some important reference values for the normalized
resistance: R(C,) = 1 and the value of the resistance R(B) will have to be found between
0.9878 ([12, 15]) and 1.5. The value 1.5 will be hypothetically achieved if all the particles
are reflected by the body with the velocity v (velocity with which the particles separate
definitively from the body) opposite to the velocity of incidence v (velocity with which the
particles strike the body for the first time), v = —v, the situation in which the maximum
momentum is transmitted to the body. It is also possible for us to know the resistance value
of some elementary bodies of the type B. This is the case, for example, of discs with the
contour entirely formed by rectangular indentations which are arbitrarily small or with the
shape of rectangular isosceles triangles. As was proved in [I7], these bodies are associated
with resistances, respectively, of R = 1.25 and R = v/2.

Apart from being defined in the disc C), it is assumed that the body to be maximized is
a connected set B € R?, with piecewise smooth boundary 0B. Therefore, let us consider a
billiard in R? \ B. An infinitesimal particle moves freely, until, upon colliding with the body
B, it suffers various reflections (one at least) at regular points of its boundary dB, ending up
by resuming free movement which separates it definitively from the body. Denote by convB
the convex hull of B. The particle intercepts the d(convB) contour twice: when it enters into
the set convB and in the moment that it leaves. L = |0(convB)| is considered the total length
of the curve d(convB), and the velocity of the particle is in the first and second moments
of interception represented by v and v', and x and z+ the respective points where they
occur. As well, the angles which the vectors —v and v make with the outer normal vector
to the section of d(convB) between the points x and 2T are designated ¢ and ¢*. They will
be positive if they are defined in the anti-clockwise direction from the normal vector, and
negative in the opposite case. With these directions, both ¢ as well as ™ take values in the
interval [—m/2,7/2].

Representing the cavities which characterize the contour of B by subsets {21, (2o, ..., which
in their total make up the set convB\ B, the normalized resistance of the body B (equation (1f))



takes the following form (cf. [17]):

|0(convB)| [ Lo ZLi

R(B):W i —R(Y) |, (2)

i#0
being Lo = |0(convB)NJB| the length of the convex part of the contour 0B, L; = |0(convB)N

Q;|, with i = 1,2, ..., the size of the opening of the cavity ;, and R(€2;) the resistance of the

normalized cavity €2;, in relation to a smooth segment of unitary size, with

~ 3 12 pr/2
R() = < / / (1 + cos (cp*(x, ) — cp)) cos pdpdx. (3)
8 ) _1/2.)—n)2

The function ¢ should be seen as the angle of departure of a particle which interacts with
a cavity €2; that has opening of unit size and is similar to €;, with the similarity factor 1/L;
— see illustration of figure [I]

Figure 1: Example of trajectory of a particle which interacts with a cavity Q.

From equation , we understand that the resistance of B can be seen as a weighted
mean () ., L;/L = 1) of the resistances of the individual cavities which characterize all its
boundary (including resistance of the convex part of the boundary), multiplied by a factor
which relates the perimeters of the bodies convB and C,. Thus, maximizing the resistance
of the B body amounts to maximizing the perimeter of convB (|0(convB)| < |0C;|) and the
individual resistances of the cavities ;.

Having found the optimal shape €*, which maximizes the functional , the body of
maximum resistance B will be that whose boundary is formed only by the concatenation
of small cavities with this shape. We can therefore restrict our problem to the sub-class of
bodies B which have their boundary integrally covered with equal cavities, and in doing so
admit, without any loss of generality, that each cavity £2; occupies the place of a circle arc of
size ¢ < r. As with L; = 2rsin(e/2r), the ratio between the perimeters takes the value

|0(convB)|  sin(e/2r) (e/7)?
aC.| —  e/2r SR TR )

or that is, given a body B of a boundary formed by cavities similar to €2, from and , we
conclude that the total resistance of the body will be equal to the resistance of the individual
cavity €1, less a small fraction of this value, which can be neglected when ¢ < r,

R(B) ~ R() — &/ r)zR(Q). (5)



Thus, our research has as its objective the finding of cavity shapes €2 which maximize the
value of the functional , whose limit we know to be found in the interval

1 <supgR(©2) < 1.5, (6)

as is easily proven using : if © is a smooth segment, ¢ (z,p) = —p and R() =
3 II{% fi{% (1 4 cos (2¢)) cos ¢ dp dx = 1; in the conditions of maximum resistance o™ (z, @)

= ¢, thus R(Q2) < %f_l{% 1/32 2cos pdpdr = 1.5.

3 Numerical study of the problem

In the class of problems which we are studying, only for some shapes of €2 which are very
elementary is it possible to derive an analytical formula of their resistance , as we saw in
the rectangular and triangular shapes previously referred to. For somewhat more elaborate
shapes, the analytical calculation becomes rapidly too complex, if not impossible, given the
great difficulty in knowing the function ¢ : [-1/2,1/2|x[—7/2,7/2] — [—7/2,7/2], which as
we know, is intimately related to the format of the cavity €2. Therefore, recourse to numerical
computation emerges as the natural and inevitable approach in order to be able to investigate
this class of problems.

There have been developed various computational models which simulate the dynamics
of billiard in the cavity. The algorithms of construction of these models, as well as the those
responsible for the numerical calculation of the associated resistance, were implemented using
the programming language C, given the computational effort involved (language C was created
in 1972 by Dennis Ritchie; for its study we suggest, among the extensive documentation
available, that which is the reference book of its language, written by Brian Kernighan and
Dennis Ritchie himself, [I8]). The efficiency of the object code, generated by the compilers of
C, allowed the numerical approximation of to be made with a sufficiently elevated number
of subdivisions of the intervals of integration — between some hundreds and various thousands
(up to 5000). The results were, because of this, obtained with a precision which reached in
some cases 1076, This precision was controlled by observation of the difference between
successive approximations of the resistance R which were obtained with the augmentation of
the number of subdivisions.

For the maximization for the resistance of the idealized models, there were used the global
algorithms of optimization of the toolbox “Genetic Algorithm and Direct Search” (version
2.0.1 (R2006a), documented in [19]), a collection of functions which extends the optimization
capacities of the MATLAB numerical computation system. The option for Genetic and Direct
search methods is essentially owed to the fact that these do not require any information
about the gradient of the objective function nor about derivatives of a higher order — as
the analytical form of the resistance function is in general unknown (given that it depends
on ¢t (z,¢)), this type of information, if it were necessary, would have to be obtained by
numerical approximation, something which would greatly impede the optimization process.
The MATLAB computation system (version 7.2 (R2006a)) was also chosen because it had
functionalities which allowed it to be used for the objective function the subroutine compiled
in C of resistance calculation, as well as the o (z, ) function invoked in itself.



3.1 “Double Parabola”: a two-dimensional shape which maximizes resis-
tance

In the numerical study which the authors carried out in [16] I7], shapes of ; defined by
continuous and piecewise differentiable f : [—1/2,1/2] — R functions were sought for:

Q= {(z.y): ~1/2<2<1/2, 0<y < f(x)}, (7)

with the interval [-1/2,1/2] x {0} being the opening.

The search for the maximum resistance was begun in the class of continuous functions
f with derivative f’ piecewise constant, broadening later to the study of classes of functions
with the second derivative f” piecewise constant. In the first of the cases the contour of
is a polygonal line, and in the second, a curve composed of parabolic arcs. Not having been
able with these shapes to exceed the value of resistance R = 1.44772, we decided, in this
new study, to extend the search to shapes different from those considered in . We studied
shapes 29 defined by functions x of y of the following form:

Q9 ={(z,y): 0<y<h, —g(y) <z <g(y)}, (8)

where h > 0 and g : [0,h] — Ry is a continuous function with g(0) = 1/2 and g(h) = 0.
The new problem of maximum resistance studied by us can therefore be formulated in the
following way:

To find sup, R(Y) in the continuous and piecewise differentiable functions
g:[0,h] — R, such as g(0) = 1/2 and g(h) = 0, with h > 0.

Similarly to the study which was carried out for the sets {2¢, in the search for shapes 9, the
functions g were considered piecewise linear and piecewise quadratic. If in the classes of linear
functions it was not possible to achieve a gain in resistance relative to the results obtained for
the sets {2y, in the quadratic functions the results exceeded the highest expectations: there
was found a shape of cavity 29 which presented the resistance R = 1.4965, a value very close
to its theoretical limit of 1.5. There were also carried out some tests with polynomial functions
of higher order or described by specific conical sections, but, not having verified any additional
gain in the maximization of resistance, it was decided not to report the respective results.
There therefore follows the description of the best result which was obtained, encountered in
the class of quadratic functions x = +¢g(y).

The value of resistance of the sets 29 were studied, just as defined in , in the class of
quadratic functions

ans(y) = ay®+ By +1/2, for 0<y < h,

where h > 0 and o = #;1/2 (given that gp g(h) = 0). In the optimization of the curve, the
two parameters of the configuration were made to vary: h, the height of the 929 curve, and
B, in its slope at the origin (¢’(0)). In this class of functions the algorithms of optimization
converge rapidly towards a very interesting result: the maximum resistance was reached with
h = 1.4142 and 8 = 0.0000, and assumed the value R = 1.4965, that is, a value 49.65% above
the resistance of the rectilinear segment. This result seems to us really interesting:

i. it represents a considerable gain in the value of the resistance, relative to the best result
obtained earlier (in [16} [I7]), which was situated 44.77% above the reference value;



ii. The corresponding set 29 has a much more simple shape than that of set 2y associated
with the best earlier result, since it is formed by two arcs of symmetrical parabolas,
while the earlier one was made up of fourteen of these arcs;

iii. this new resistance value is very near to its maximal theoretical limit, which, as is
known, is found 50% above the value of reference;

iv. The optimal parameters appear to assume value which give to the set 9 a configuration
with very special characteristics, as in what follows will be understood.

Note that the optimal parameters appear to approximate the values h = /2 = 1.41421 ...
and B = 0. The following question can therefore be put:

Are these not the exact values of the optimal parameters?

The graphical representation of the function R(h, ) through the level curves, figure 2| are
effectively in concordance with this possibility — note that the level curves appear perfectly
centered on the (v/2,0) coordinates; marked on the figure by “+” . Note also, in figure |3} the
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Figure 2: Level curves of the R(h, 5) function.

resistance graph R(h) for § = 0, where it can equally be perceived that there is a surprising
elevation of resistance when h — /2. Thus the resistance of the Q94 cavity was numerically
calculated with the exact values h = /2 and 8 = 0, the result having confirmed the value
1.49650.

There is yet one more reason which suggests also an affirmative response to the formulated
question. The shape of the set Q98 with h = v/2 and 3 = 0 is a particular case with which is
associated special characteristics which could justify the elevated value of resistance presented.
The two sections of the shape are similar arcs of two parabolas with the common horizontal
axis and concavities turned one towards the other — see figure dl But the particularity of
the configuration resides in the fact that the axis of the parabolas coincides with the line of
entry of the cavity (axis of z), and that the focus of each one coincides with the vertex of the
other.

This shape of cavity appears to effectively deal with a very particular case. In contrast
with what happened with all the other shapes which were studied, the integrand function
of functional displays a rather smooth shape, presenting only a few small irregularities
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Figure 4: (almost) Optimal 2D shape — the Double Parabola.

for ¢ angles of little amplitude. Noting this characteristic, and taking into account that
the integrand function almost does not depend on x, the resistance was calculated, for this
shape in particular, using the rule of Simpson 1/3 in the integration in order to ¢. The
double integration in the equation was thus numerically approximated by the following
expression:

1 N, Ny—1

R = §A3:Ag0' Z Z wy, (1 + cos (" (@4, o) — @k)) cos @r, 9)
=Nz /241 k=1

with wy = 2 for k odd and wy = 1 for k even, z; = —1/2 4 (i — 1/2)Az, Az = 1/N,,
o = —m/2+ kAp and Ap = 7/N,. N, and N, are the number of sub-intervals to consider
in the integration of the variables  and ¢ (both even numbers), respectively, and Az and Ap
the increments for the correspondent discreet variables. Given that the shape Q29v2.0 presents
horizontal symmetry, the first summation of the expression considers only the second half of
the interval of integration of the variable x.

In order to be easily referred to, this shape of cavity (figure ) will be, from here on,
named simply “Double Parabola”. Thus, in the context of this paper, the term “Double
Parabola” should be always understood as the name of the cavity whose shape is described
by two parabolas which, apart from being geometrically equal, find themselves “nested” in
the particular position to which we have referred.



Since the resistance of the Double Parabola assumes a value which is very close to its
theoretical limit, in a final attempt to achieve this limit, it was resolved to extend the study
even further to other classes of functions g(y) which admit the Double Parabola as a particular
case or which allow proximate configurations of this nearly optimal shape. In all these cases
the best results were invariably obtained when the shape of the curves approximated the shape
of the Double Parabola, without ever having overtaken the value R = 1.4965. It was begun
by considering functions g(y) piecewise quadratic, including curves splines, without achieving
interesting results; only for functions g(y) of 2 or 3 segments was it possible to approximate
the resistance and the shape of the Double Parabola. Cubic and bi-quadratic functions g(y)
were also consideredﬂ but in both cases the process of optimization brought them proximate
to the curves of quadratic order, with the coefficients of greater order taking values which
were almost zero. The problem was studied in the class of conical sections, considering, for
lateral facets of the cavity, two symmetrical arcs either of an ellipse or of a hyperbole. Also
in these cases the arcs assumed a shape very close to the arcs of the parabolas.

The Double Parabola being the best shape encountered, and dealing with a nearly optimal
shape, in the section which follows it is the object of deeper study, of an essentially analytical
nature, where the reasons for its good performance are sought.

4 Characterization of the reflections in the shape “Double
Parabola”

Each one of the illustrations of figure [5| shows, for the “Double Parabola”, a concrete tra-
jectory, obtained with our computational model. It is comforting to verify that, with the
exception of one trajectory, in all the others the particle emerges from the cavity with a ve-
locity which is nearly opposite to that which was its entry velocity. This is the “symptom”
which unequivocally characterizes a cavity of optimal performance. Even in the case of the
trajectory of the illustration (f), the direction of the exit velocity appears not to vary greatly
from that of entry.

If we analyze the five first illustrations, we may verify that there exists something in com-
mon in the behavior of the particle: in describing the trajectory, the particle is always subject
to three reflections. This appears to be a determinant characteristic for the approximation
of the two angles of entry and exit. If, for example, we imagine three trajectories with prox-
imate configurations, respectively, the trajectories (a), (b) and (c), but with the difference
of not possessing the third reflection, the result would be completely different, as easily can
be seen in the illustrations. Although this conviction is by nature essentially empirical, the
results of the study which follow are heading in the direction of confirming that one very
significant part of the “benign” trajectories — those in which the vectors velocity of entry
and of exit are nearly parallel; we call them so because they represent positive contributions
to the maximization of resistance — suppose exactly three reflections.

We now will try to interpret another type of results obtained with our computational
model, commencing with the graphical representation of the distribution of the pairs (¢, p™)
on the Cartesian plane — see figure [6] This graph was produced with 10.000 pairs of values

'In the bi-quadratic curves, the point of interception of the trajectory of the particle with the boundary of
the cavity is calculated by resolving an equation of the 4th degree. The roots of this equation were obtained
numerically using the method described in [20]. The equations of inferior order were always resolved by utilising
the known analytical formulas.



(z,¢), generated by a random process of uniform distribution.

The points concentrate themselves on the proximities of the diagonal ¢ = ¢*, which
revealing of good behavior on the part of the cavity. In addition, with these results it is
shown that the response of the cavity deteriorates as ¢ approaches zero. Therefore, it begins
to be understood that the “benign” trajectories have their origin essentially in entry angles
of elevated amplitude.

If we consider figure [0, there appears to exist an additional perturbation in the behavior
of the cavity when the amplitude of the entry angle is inferior to about 20°, which means
that some (¢, ") pairs become, in relation to the others, more dispersed and more distant
from the diagonal ¢ = . We have already called attention to the possible importance of
the three reflections in the degree of approximation verified in the angles ¢ and ™. It occurs

JAANA

) x = 0.45, ¢ = T75°. ) x=0.45, p =55°. (c) z =045, ¢ = 35°.
) x=0.3, p =T75° ) x = 0.0, ¢ = 35°. ) x =0.48, ¢ = 5°.

Figure 5: Example of trajectories obtained with the computational model.

80
60
40 1

20

Ay
o

20}
I
—40} I
I
I

B < @0
]

—80 —60 -40 -20 0 20 40 60 80

-80 |

Figure 6: Distribution of the (¢, ™) pairs on the Cartesian plane.



to us, therefore, to put the following question: is it not precisely the number of reflections
that, on differentiating themselves from the 3 occurrences, interfere so negatively with the
behavior of the cavity? The investigations that follow will demonstrate, among other things,
that our suspicion on this point has a basis.

The following theorem says that for ¢ outside some interval (—¢g,¢p), the number of
reflections is always three. The proof is presented in appendix [A]

Theorem 1. For ¢ entry angles superior (in absolute value) to py = arctan <§> ~ 19.47°,

the number of reflections to which the particle is subjected in the interior of the Double
Parabola cavity is always equal to three, and they occur alternately on the left and right
faces of the cavity, no matter what the entry position may be.

As a way to verify that the deductions which we have made are effectively in concordance
with the numerical results of the computational model which was developed, we present one
more graph, figure E produced with 10.000 pairs of (z, ) values, generated randomly with
uniform distribution. As can be observed in figure [7] all the trajectories with 4 or more

n® of reflections
o =4 M W A 1D N ® ©

Figure 7: Distribution of the (¢, nr) pairs on the Cartesian plane, being nr the n° of reflec-
tions.

reflections, among the 10.000 considered, happened within the interval (—¢yg, pg). Outside
this interval (for || > ¢g) the trajectories are always of three reflections. Additionally, we
can verify that there isn’t any trajectory with less than three reflections. This numerical
evidence is confirmed by the following theorem:

Theorem 2. Any particle which enters in the cavity Double Parabola describes a trajectory
with a minimum of 3 reflections.

The proof of theorem 2 is presented in appendix

Of the conclusions which we arrived at we can immediately come to the following corollary:
in trajectories with 4 or more reflections the angular difference ¢ — ¢, no matter how much
bigger it may be, will never be superior to 2¢g ~ 38.94°, a value which is much more inferior
to the greatest angle which it is possible to form between two vectors (180°). The proof of this
corollary is simple: as a trajectory of 4 or more reflections is always associated with a entry
angle —pp < ¢ < g, the exit angle will be situated necessarily in the same interval; taking
into account the property of reversibility associated with the law of reflection which governs
reflections, if just to be absurd we were to admit || > g, on inverting the direction of the
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particle, we would be in the position of having a trajectory of more than 3 reflections with a
T entry angle situated outside the interval (—g, o), which would enter into contradiction
with the initial postulate.

Summarizing:

e There is verified a great predominance of trajectories with 3 reflections;

There are no trajectories of fewer than 3 reflections;

The critical angle ¢ has the value ¢y = arctan (%) ~ 19.47°;

Outside the interval (—g, ¢0), all the trajectories are of 3 reflections;

In trajectories with 4 or more reflections, the angular difference is delimited by 2¢q:
o — @ F| < 2¢0.

5 Conclusion and future perspectives

In the continuation of the study carried out previously by the authors in [16, 17], with the
work now presented it has been possible to obtain an original result which appears to us to
have great scope: the algorithms of optimization converged for a geometrical shape very close
to the ideal shape — the Double Parabola. This concerns a form of roughness which confers a
nearly maximal resistance (very close to the theoretical upper bound) to a disc which, not only
travels in a translational movement but also rotates slowly around itself. In figure |8 one of
these bodies is shown. Noting that the contour of the presented body is integrally formed by

Figure 8: (almost) Optimal 2D body.

42 cavities 2 with the shape of a Double Parabola, each one of which with a relative resistance
of 1.49650, from and we conclude that R(B) = Sm:/r# () ~ 1.4951 is the total
resistance of the body, a value 49.51% above the value of resistance of the corresponding disc
of smooth contour (the smallest disc which includes the body). We know that if the body
were formed by a sufficiently elevated number of these cavities, its resistance would even reach
the value 1.4965, but the example presented is sufficient in order for us to understand how
close we are to the known theoretical upper bound (50%).

Although the value of resistance of the Double Parabola had been determined numerically,
an analytical study was done in section [4] with the objective of consolidating the presented
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results. We have managed to prove some important properties which help in the understand-
ing of the elevated value of resistance which was obtained. We will try in the future to develop
other theoretical studies which will allow us to consolidate this result even further. For ex-
ample, an interesting open problem lies in delimiting the lag between the angles of entrance
and exit for the trajectories of 3 reflections — for the others (trajectories with 4 or more
reflections) we already know that |¢ — o] < 2pg =~ 2 x 19.47°.

The Double Parabola is effectively a result of great practical scope. Besides maximizing
Newtonian resistance, it is exciting to verify that the potentialities of the Double Parabola
shape found by us could also reveal themselves to be very interesting in other areas of practical
interest. If we coat the interior part of the Double Parabola cavity with a polished “surface”,
the trajectory of the light in its interior will be described by the principles of geometrical
optics, in particular rectilinear propagation of light, laws of reflection and reversibility of light.
Thus, as the computational models which were developed by us to simulate the dynamic of
billiards in the interior of each one of the shapes studied (where collisions of particles are
considered perfectly elastic) are equally valid when the problem becomes of an optical nature,
we can also look at 2D shape found by us in this new perspective. Given the characteristics of
reflection which the Double Parabola shape presents we can rapidly conceive for it a natural
propensity for being able to be used with success in the design of retroreflectors — see in [21]
the exploratory study of its possible utilization in roadway signalization and the automobile
industry.

An incursion into the three-dimensional case, carried out in [2I], also showed that the
Double Parabola is a shape of cavity which is very special. Our conviction of its effectiveness
was strongly reinforced when we obtained the best result for the 3D case. This result was
achieved with a cavity whose surface is the area swept by the movement of the Double Parabola
curve in the direction perpendicular to its plane. The value of its resistance (R = 1.80) having
been a little below the theoretical upper bound for the 3D case (R = 2), to go beyond this
value will be also an interesting challenge to consider in the future.

For the 2D case we envision greater difficulty in going beyond the result which has already
been reached — whether for the proximity which it has to the theoretical upper bound, or
for the fact that we have already carried out, without success, a series of investigation with
just this objective.

A Proof of theorem [1l

Consider a particle which enters into the cavity in (z,0), with the vector velocity forming
an angle ¢ with the vertical axis, just as is found represented in the illustrations of figure [9]
where we assume that the axis of symmetry of the cavity is the axis of the y and that its base
ApA is placed on the axis x. In this way, the position of the particle at entry of the cavity
assumes only values in the interval (—%, 1) x {0}.

Given the symmetry of the cavity in relation to its vertical axis, it will be enough to
analyze its behavior for g < ¢ < 90°. The conclusions at which we arrive will be in this way
equally valid for —90° < ¢ < —¢y.

We will analyze therefore in detail and separately each one of the sub-trajectories which
compose all the trajectory described by the movement of the particle in the interior of the
cavity.

Sub-trajectory BO—B{
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For ¢ > g, we have the guarantee that the first reflection occurs in the parabolic curve of
the left side of the cavity, just as can be easily deduced from the illustration (a). So that the
particle collides with the left curve it is enough that the ¢ angle is superior to arctan(z/v/2), a
magnitude which has as upper bound g = arctan(y/2/4). We thus have the initial trajectory

of the cavity represented in illustration (a) by vector BO—Bl> .

Sub-trajectory Bl—Bg)

_A}fter colliding in Bﬂ) agreement with the law of reflection, the particle follows trajectory
B1Bsy. We prove that B; B has an ascendant path — illustration (a). We trace the straight

line A1 As, segment, parallel to the initial trajectory of the particle By By, which passes through
the focus of the left parabola (A;). Because of the focal property of this parabola, a particle

which takes the sub-trajectory m , after reflection at Ao, will follow a horizontal direction
Ay A3 (proceeding after its trajectory, after a new reflection, in the direction of the focus A
of the second parabola). Upon the occurrence of the first reflection of the particle at B, a
point of the curve necessarily positioned below As, the trajectory Bl—BQ), which it will follow
straight away, will be on an ascendant path, since the derivative % of the curve at this point
(B1) is superior to the derivative in Ay, where the trajectory followed was horizontal.

B2

Ao ’ Ad Ao
X>\ Bo DT
¢ o+ ¢
(c) (d

Figure 9: Set of illustrations to the study of the trajectory of particles with entry angle
@ > g ~ 19.47°, in the cavity “Double Parabola”.
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Although we now know that ITB; takes an ascendant path, nothing yet guarantees to us
that the second reflection happens necessarily in the parabola of the right side. If we are able
to verify that for ¢ = ¢g the second reflection is always on the right side, no what the entry
position x is, therefore, logically, the same will happen for any value ¢ > ¢o. This premise
can be easily accepted with the help of illustration (a) of figure for any value of ¢ > g,
with the first reflection at a given point Bj, it is always possible to trace a trajectory for
© = o which presents the first reflection at the same point By; the second reflection at the
curve of the right side being for the case ¢ = g, necessarily the same will happen for the
trajectory with ¢ > (g, since the angle of reflection will be less in this second case, just as is
illustrated in the figure. Consequently, it will be enough for us to prove for ¢ = g, that the
second reflection always occurs in the parabola of the right side, so that the same is proven
for any which is the ¢ > .

u rcp Bo
@

Figure 10: Illustrations to the study of the second reflection.

In illustration (b) oigt)lre th_e‘frajectory until the second reflection of a particle with
the angle of entry g (ByoB; and BBs) is shown. As one can conclude from the illustration,
the By reflection only will happen on the curve of the left side if the o angle is less than /.
We have determined the value of the two angles.

Being (1, y1) the coordinates of the point By, we will have tan(a’) = —z1/(v/2—1), thus

/_arC an M — arctan % = arctan @
v ( V2—y )_ t <\5—y1>_ ' ( 4 ) 1o

In order to arrive at the value of o we resolve the system of three equations, of unknown «,
0 and [, which are taken directly from the geometry of the actual figure

at+pB+0=m
B =wo+0
arctan (%yl) +po+0=7%

The tangent line to the curve in B; makes with the vertical an angle whose tangent has as its
value the derivative j—; of the curve at that point (in y = y1), where g—z = d%(%y2 - =1y
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Because of this, that angle emerges represented in the third of the equations by the magnitude
arctan(y;/2). By resolving the system, the following result is obtained for «

o = ¢y + 2arctan(y; /2) = arctan(v/2/4) + 2 arctan(y; /2). (11)

Finally we prove that @ > o/, no matter what y; € (0, \@) is. Of the equations and
, it will be equivalent to proving

arctan(v/2/4) + 2arctan(y; /2) > arctan((v2 + y1)/4).

Given that 0 < y; < v/2, both of the members of the inequality represent angles situated in
the first quadrant of the trigonometrical circle. Because of this we can maintain the inequality
for the tangent of the respective angles. Applying the tangent to both of the members, after
effecting some trigonometrical simplifications, we arrive at the following relation

L4V2— V2t 163 V244
4 4—11%—\62/1 4

Which, with additional algebraic simplifications, takes the form

Y1 (\/53/1 + 14—|—y%)/(4 —yi —V2y1) > 0.

As 0 < 31 < V/2, it can easily be seen that both the numerator and the denominator of
the fraction present in this latest inequality are positive magnitudes. Thus a > o/, which
contradicts the condition which was necessary so that the reflection By could occur on the
curve of the left side, it therefore being proven, as we intended, that in no situation does the
reflection By of illustration (b) of figure [10| happen on the curve of the left side. Logically, we
can therefore conclude that the same happens for whatever is ¢ > ¢g: the second reflection
of the particle occurs always in the parabola of the right side.

Sub-trajectory B2—>B3

We prove that the sub-trajectory l?)Bg has a descendant path — illustration (b) of ﬁgure@
Imagine, for this purpose, a sub-trajectory M , parallel to By B, and which passes through
the focus Ay. The sub-trajectory M which will follow the reflection in Ao — a point of the
parabola on the right side situated below By — will be horizontal. The derivative of the curve
in Ay being superior to the derivative value in Bs, the sub-trajectory ByBs will necessarily
be of a descending nature.

Even if we already know that the sub-trajectory is descendant, we have not yet shown
that sub-trajectory in no situation conducts the particle directly to the exit of the cavity.
Therefore follows the proof that the reflection Bs always occurs in a position superior to Ag
— illustration (c) of figure @ We trace Ay By, a segment of the horizontal straight line which
passes through the point of reflection Bs. If the particle followed this trajectory, it would
collide at the same point Bs, but heads itself to Ag. Therefore, by the law of reflection, Bs
will have to be above Ag, since BBy makes an angle with the normal vector at the curve in
By less than thﬂrmed by segment AsBs.

Sub-trajectory B3 By

We will now show that the sub-trajectory which follows the reflection at B3 crosses the
segment AgA7, that is, directs itself to the outside of the cavity — illustration (d) of figure @
We trace, therefore, A3B3, a segment of horizontal straight line which passes through the
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point of reflection Bs. If the particle followed this trajectory, it would collide at B3 and
would head itself towards A;. Therefore, by the law of reflection, the straight line where the
sub-trajectory ﬁ is placed will have necessarily to pass below Ap, since By B3 makes an
angle with the normal vector at the curve in B3 bigger than that formed by the segment
AsBs. We have shown that the sub-trajectory crosses the axis of the = at a point situated to
the left of Ay, but we have not yet shown that it occurs to the right of Ag. For that, we will
have to prove that the third is the last of the reflections, that is, that in no situation does
there occur a fourth reflection in the parabola of the left side. There follows this proof, of
them all the most complex one.

In order to prove that following the third reflection there occurs no other collision in the
left parabola, we will show that a fourth collision — represented by By in the illustration
(a) of figure — has its origin always in an entry angle ¢ inferior to ¢g. We will thus

(a) (b)

Figure 11: Ilustrations to the study of a hypothetical fourth reflection.

study the trajectory of the particle in the inverse order of its progression: we commence by
admitting the existence of the sub-trajectory ﬁ of illustration (a) and we will analyze its
implications in all the preceding trajectory.

In illustration (a) of figure [11]are to be found represented the sub-trajectories ﬁ; and

B3B4. We begin by relating as with «ag, the angles which the vectors ByBs and B3By,
respectively, form with the vertical axis. For these purposes we resolved the system of three
equations, of unknown as, A3 and (33, which are taken from the geometry of the ﬁgureﬂ

03 = B2 + as
arctan (3ys3) + B2 =3
g +0s+ 0=

obtaining
a9 = 2arctan(ys/2) — as,

in which arctan(ys/2) is the angle which the straight line tangent at the curve in Bs makes with

the vertical — the inclination of the straight line tangent is given by g—; ‘yzys = %(igf —

1

2) |y:y3

= %yg. In its turn, the angle ag can be expressed in the following way: a3 =

2The variables denoted by x; and y;, with i = 1, ..., 4, represent the coordinates of i-th point of reflection,
identified by B;.
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arctan((z3 — z4)/(ys —ya)) = arctan((;93 — 1y1)/(ys —ya)) = arctan((ys + ya)/4), which
permits us to write as in function only of the ordinates y3 and y4 of the extremes of the
—_—

vector B3 By,
ag = 2arctan(ys/2) — arctan((ys + y4)/4). (12)

In order to be able to prove what we intend — impossibility of occurrence of the reflection
By — we need to find a lower bound for the ordinate of the position where each one of the
four reflections occurs, or in other words, to determine {y7,y3,y3, yi}, just that

Y1 > y? Y2 > y;7 Y3 > y§7 Ya > yZ7 v<907x) € (90077[-/2) X (_1/27 1/2> (13)

It can easily be understood that y; = 0. We will therefore determine the other three lower
bounds, commencing with 5.
We know that 0 < y4 < ys; therefore, from we take away that

arctan(ys/2) < ae < 2arctan(ys/2) — arctan(ys/4).

Being aware that s is situated in the first quadrant of the trigonometrical circle, we can
maintain the inequalities for the tangent of the respective angles. After some algebraic sim-
plifications, we obtain

y3/2 < tan(az) < y3 (12 +y3)/16. (14)

The equation of the straight line which connects By to Bs takes the form = = m(y — y3) + 3,
with m = tan(ag) and z3 = iy% — % As we are interested in finding the ordinate of the point
of interception of this straight line with the parabolic curve situated on the right side, with
equation z = —%yQ + %, we have to resolve the equation of second degree, in the variable
y, which results in the elimination of the variable z by combination of the two previous
equations. The ordinate s, of the second reflection, being the positive root of the equation,
takes the form yo = —2m + \/4m?2 + dmys — y2 + 4 .

The magnitude y; is expressed in function of two variables, m and ys, which as we know
assume only positive values. So as to accept more easily the deductions which we are going
to make in the tracking of y3, we will imagine, without any loss of generality, that y3 is a
fixed value. We begin by showing that the derivative of y2 in order to the variable m,

dys 2 (2m +y3 — \/4m2 + 4dmys — y§ + 4)
- , 15
dm VAm? + dmys — 2 + 4 (15)

has a negative value for whatever value of y3 is. As y3 < v/2, inevitably y2 < 4, thus the two
radicands (4m? + 4mys — y3 + 4) present in the equation have always a positive value.
The restriction y3 < v/2 allows us still to successively deduce the following inequalities

y%<2<:)2y32,<4®y§<4—y§@4m2+4my3+y§<4m2+4my3+4—y§

<:>(2m+y3)2<4m2+4my3—y§—|—4<:>2m+y3< \/4m2+4my3—y§—|—4.

This last inequality confirms that ?1% < 0, for whatever y3 may be. In this way, the value ys is
so much less the greater is the value of m. As is examined in , m< M=uys (12 + y%)/lG,
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thus yo > —2M + \/4]\42 +4Mys — y3 + 4 . Substituting M, there is obtained, after some
simplifications,

: 3 1 1
y2 > f(ys), with f(ys) = —Zvs — gyg’; + g\/272?/§ + 40y5 + y§ + 256 . (16)

In order to find the minimum value of f(y3) we begin by computing its derivative:

d ) 272y5 + 80y3 + 3y5 — (12 + 3y3)+/272y5 + 40y3 + S + 256
S J\Y3) = .
dys 84/272y32 + 40y3 + 45 + 256

The radicands being clearly positive, we only have to concern ourselves with the numerator
of the fraction. To find the roots of the derivative function & f(ys3) is equivalent because of
this to resolving the equation

(27293 + 80y3 + 3y3)° = (12 + 3y2)* (27203 + 40y2 + 4§ + 256) ,
which can be simplified in the following:
2304 — 10243 — 992y3 — 1605 — 3y5 = 0.

This polynomial equation has only one real positive root, of the value g3 = %\/ —51 4679 ~
1.017, signifying that f(y3) has a global minimum in g3, because, as we show in what follows,

% f(y3) > 0 and the function does not presents other points of stationarity.
3

We thus show that J‘—;Qf(yg) > 0, with
3

d? ) 18240y4 + 2960yS + 180y5 + 3yi° + 34816 + 30720y3
—f(y3) = :
dy3 4(272y3 + 40y4 + S + 256)2

(81633 + 1205 + 3y + 768y3)\/272y2 + 40y3 + yS + 256 an
4(272y2 + 40y + oS + 256)2 '

We show that % f(y3) > 0 is equivalent to showing that the numerator of the first fraction is
3

superior to the numerator of the second, in ((17)). After elevating the two terms to the square,
we arrive at the inequality

—3ya0 + 36yat + 9464yL% +191616y1° 4 151411245 + 5817344y
+13535232y4 + 15532032y3 + 9469952 > 0.

We easily prove the veracity of this relation, given that we have a unique negative term
(—3yi®) which, for example, is inferior in absolute value to the constant term (9469952),
ys < V2 = 3yib < 768 < 9469952. The proof is thus complete that f(y3) has a global

minimum in g3, of the value f(g3) = %\/ —51 4+ 6+/79.
Accordingly, from , we finally conclude that

8
v2 > Y3 = 5/ =51+ 6v79 = 1.356. (18)

A lower bound is then found for the height of the second reflection By (illustration (a) of
figure . We now determine y3, a lower bound for the height of the third reflection Bs.
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So that the reflection Bg occurs in the parabola of the right side it is necessary that the
angle ao is greater than the angle formed between the vertical axis and the segment of straight
line which unites Bs with the superior vertex of the cavity,

1,2 1

- —1Y3 + 3 2

o > arctan (i) = arctan (M) = arctan (M)’) (19)
V2 —y3 V2 —y3 4

This inequality, in conjunction with the second relation of inequality of , allows us to
write

(V2 +y3)/4 < tan(az) < y3 (12+43) /16 = (V2 +y3)/4 < y3 (12 + y3) /16,
from which results the inequality
3 + 8ys + 4v2 > 0. (20)

As the polynomial of the left hand-side of has a positive derivative and admits a
unique real root, we immediately conclude that it constitutes an inferior limit for ys, this
limit being

1 1 —1
vi=3 (54\@ + 6\/546) L 8(54\@ + 6\/546) 3~ 0.670. (21)

It is left to us to determine yj, a lower bound for the value of y; — the ordinate where the
first reflection occurs. To this end we resort to illustration (b) of figure which gives us a
more detailed representation of the part of the cavity where the first two reflections occur,
B; and Bj. The scheme presented was constructed counting that the first reflection (Bj)
occurs at a point which is more elevated than that of the third reflection (Bsz). This is in
fact the situation. This itself can be proven by showing that s is always smaller than the
angle formed between the normal vector at the curve in By and the vertical axis, or that is
az < § — arctan (%yg) )

Taking, in , at the upper limit of tan(as) and having in mind that y < /2, we build
the following sequence of inequalities which proves what is intended:

~51.06° ~54.74°

12 4 y2 V2 2 1
ap < arctan (3/3(16y3)> < arctan (E{) < g — arctan ({) < g — arctan <2y2> .

We now try to find yj. We can define y} as being the ordinate of the point of interception
of the left parabola with the semi-straight line with its origin at point B, positioning as low
as possible (y2 = y3), and with equal slope to the largest value permitted for the slope of the

trajectory which preceded By (BiBs). The equation of the straight line which connects B

to By takes the form z = m(y — y2) + x2, with m = tan(aq) and xe = —iy% + % As we are
interested in finding the point of intersection of this straight line with the parabolic curve
situated on the left side, with equation x = % 2 % , we will have to resolve the equation

of the second degree, in the variable y, which results in the elimination of the variable x by
combination of the two previous equations. Although we have two positive real roots, we are
only interested in the smaller of the two, which takes the form

y1:2m—\/4m2—4my2—y§+4. (22)
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As we said, if we do y2 = y5 and place the maximum slope to the straight line, which in
the previous equations is equivalent to considering m minimum, we obtain y; = yj. Being
m = tan(«aq ), we should determine the value of a; through the system of equations

a1 = 205 + an
arctan (%yg) t+ag+0 =75

which is taken from the geometry of illustration (b) of figure . Is obtained
ap =7 — 2arctan(y2/2) — ao. (23)

From this latest equality, from , and given that y» < v/2 and y3 < v/2, we deduce that
o1 > m—2arctan(ya/2) —arctan(ys (12 4 y3)/16) > m—2arctan(1/v/2) —arctan(7/2/8), thus
m = tan(ay) > tan(m — 2arctan(1/v/2) —arctan(7v/2/8)) = 23v/2. If in we do m = 321/2
and y2 = y5 we then obtain the inferior limit for ¥

23 1
yi = 1—0x/§ —~ 90\/444498 — 33120v/2\/ =51 + 6/79 — 38400V/79 ~ 1.274. (24)

Summarizing, (y5,vs,y5,ys) ~ (1.274,1.356,0.670,0).
With the help of illustration (b) of figure [11] we will, finally, analyze the entry angle ¢ of
. . . 1 d
the particle. With the system of equations (511 = e y=u1)
200+ +a1=m
arctan (%y1) +o+b6 =735

and with equalities and we obtain, successively,

¢ = aj—2arctan(y;/2),
¢ = m—2arctan(y;/2) — 2arctan(y2/2) — az, (25)
¢ = m—2arctan(y;/2) — 2arctan(ys/2) — 2 arctan(ys/2) + arctan((ys + ya)/4).

Taking (25), from we deduce that ¢ < 7 — 2arctan(y;/2) — 2arctan (y2/2) —
arctan((v/2 + y3)/4). In agreement with the definitions and with the values found in

, and , we can conclude that
@ < 1 — 2arctan(y} /2) — 2arctan(y;/2) — arctan((v/2 + y3)/4) ~ 19.18°,

or that is
© < o =~ 19.47°.

With this we can finally conclude that it is impossible to have a fourth reflection, since for
this to happen the particle would have to have entered in the cavity with an angle ¢ < (g,
as we have just finished showing — something which would contradict our initial imposition,
@ > . As the cavity presents symmetry in relation to its central vertical axis, the conclusion
to which we have arrived is equally valid for ¢ < —¢g, thus being proven that which we
intended (theorem [I)):

For || > g, there always occur three reflections, alternatively on the left and
right facets of the Double Parabola cavity.
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B Proof of theorem [2

For |p| > ¢o the statement of theorem [2|is already proved. It remains to consider the case
—pp < @ < g, but given the symmetry of the cavity we will only need to study the interval
0 < ¢ <.

We will base our proof on some of the deductions which we made in appendix [A] the
illustrations of figure [9] being especially useful to us. We will also assume to be truthful the
following premise: “If the second reflection happens on the same facet of the cavity where
the first reflection occurred, there will necessarily be a third reflection”. We exempt ourselves
from proving this principle because it appears evident to us.

For 0 < ¢ < ¢ the first reflection can just as well occur on the left-hand facet as on the
right-hand side. We will analyze each one of the cases separately.
1st reflection on the left-hand side

Being 0 < ¢ < g we can have the first two reflections on the left-hand facet, it being
in this case guaranteed, as we assume above, that 3 or more reflections will exist. If on the
other hand, the second reflection is on the right side, an initial part of the trajectory can
always be represented by the first three illustrations of figure |§| (assuming 0 < ¢ < ¢g), which
guarantee, also in this case, the existence of a third reflection Bs. In order to prove what we
have just finished saying, it will be enough to prove the ascendant nature of the sub-trajectory
B1B:.

We establish on the parabola of the left side (illustration (a) of figure[9)) the first point of
reflection B;. For whatever Bj is it is always possible for us to trace an initial sub-trajectory
B()—Bl> with its origin in an entry angle ¢ > ¢p. As in appendix [A] (page we showed the
sub-trajectory Bl—Bg> which would follow it to be ascendant, the same will necessarily come
about for whatever 0 < ¢ < g may be, given that in this case B()—Bl> will represent a more
accentuated negative slope. Since in appendix |A| (page we characterized Bg—Bg> only with
basis in the ascendant nature of the sub-trajectory preceding ﬁ , the conclusions to which
we arrive for BQ—B;; are equally valid for 0 < ¢ < ¢g.
1st reflection on the right side

Also in this case we can have the first two reflections on the right-hand facet, it being
guaranteed that 3 or more reflections will exist. If this does not occur, we will necessarily
have a trajectory with the aspect of the trajectory BgBjBsBj illustrated in the scheme of
figure where as well there are represented two auxiliary trajectories (the dotted lines),
AgB1As and Ay By As, which, on passing through the foci of the parabolas, present the sub-
trajectory posterior to the reflection horizontal. Having as a basis the laws of reflection,
we can succinctly deduce the following: as the angle AgB;As must be interior to the angle
BTBTBg, W/egnclude that 1TB§ is of a ascendant nature; as Bl/BQ\.Bg is necessarily an interior
angle to A1 Bo A3, we conclude that Bs must be situated between A; and As, which guarantees
the existence of a third reflection. Thus is the proof of the theorem [2| concluded.
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Figure 12: Illustrative scheme to the study of the trajectory of particles with entry angle
0 < ¢ < .
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