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Abstract. In a recent paper, Adamchik [V.S. Adamchik, On the Hurwitz

function for rational arguments, Appl. Math. Comp., 187 (2007), 3–12]

expressed in a closed form symbolic derivatives of four functions belonging

to the class of functions whose derivatives are polynomials in terms of the

same functions. In this sequel, simple closed-form higher derivative formulae

which involve the Carlitz-Scoville higher order tangent and secant numbers

are derived for eight trigonometric and hyperbolic functions.
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1. Introduction

Recently, Adamchik [1, Eqs. 26, 30, 31 and 32] expressed in a closed form symbolic
derivatives of four functions belonging to the class of functions whose derivatives are
polynomials in terms of the same functions. In particular, he completely solved a
long-standing problem of finding a closed-form expression for the higher derivatives
of the cotangent function (see, for instance, [2–5] and [6, p. 161]) by showing that

dn

dxn
cot(x) = (2 ı)n

(

cot(x)− ı
)

n
∑

k=1

k!

2

{

n

k

}

(

ı cot(x)− 1
)k
,

where
{

n

k

}

are the Stirling subset numbers.
In this sequel to the work of Adamchik, by using the derivative polynomials

introduced by Hoffmann [4, 7] (but see also references [2, 8]), we further investigate
the aforementioned class of functions and derive simple explicit closed-form higher
derivative formulae for cotangent, tangent, cosecant and secant functions and their
hyperbolic analogs. The formulae obtained involve the Carlitz-Scoville higher order
tangent and secant numbers [9, 10].

2. Derivative Polynomials

Following Hoffman [4, 7] we, by means of the exponential generating functions,
define two sequences of polynomials, {Pn(x)}

∞

n=0 and {Qn(x)}
∞

n=0, n ∈ N0 := N ∪
{0},where N := {1, 2, 3, . . .}, which are here referred to as the derivative polynomials
for tangent

P (x, t) :=
x+ tan(t)

1− x tan(t)
=

∞
∑

n=0

Pn(x)
tn

n!
(2.1)
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and the derivative polynomials for secant

Q(x, t) :=
sec(t)

1− x tan(t)
=

∞
∑

n=0

Qn(x)
tn

n!
. (2.2)

Equivalently, they may be defined by the formulae

dn

dxn
tan(x) = Pn

(

tan(x)
)

(2.1*)

and
dn

dxn
sec(x) = sec(x)Qn

(

tan(x)
)

, (2.2*)

as it can be easily shown that

Pn

(

tan(x)
)

=
dn

dtn
P
(

tan(x), t
)

∣

∣

∣

∣

t=0

=
dn

dtn
tan (x+ t)

∣

∣

∣

∣

t=0

=
dn

dxn
tan (x+ t)

∣

∣

∣

∣

t=0

=
dn

dtn
tan(x)

and

sec(x)Qn

(

tan(x)
)

= sec(x)
dn

dtn
sec
[

arctan
(

tan(x)
)

+ t
]

sec
[

arctan
(

tan(x)
)]

∣

∣

∣

∣

∣

t=0

=
dn

dtn
sec (x+ t)

∣

∣

∣

∣

t=0

=
dn

dxn
sec (x+ t)

∣

∣

∣

∣

t=0

=
dn

dxn
sec(x).

By making use of the chain rule it follows from (2.1*) that Pn(x) satisfy

P0(x) = x, Pn(x) = (1 + x2)P
′

n−1(x) (n ∈ N) (2.1**)

and, similarly, from (2.2*) that

Q0(x) = 1, Qn(x) = (1 + x2)Q
′

n−1(x) + xQn−1(x) (n ∈ N). (2.2**)

Another important and readily deducible property of Pn(x) and Qn(x) is

Pn(−x) = (−1)n+1 Pn(x) and Qn(−x) = (−1)nQn(x) (n ∈ N0). (2.3)

Upon noting that tan(x+ π

2
) = − cot(x) and sec(x+ π

2
) = − csc(x) and using (2.1*)

and (2.2*) in conjunction with (2.5), we obtain

dn

dxn
cot(x) = (−1)n Pn

(

cot(x)
)

(2.4)

and
dn

dxn
csc(x) = (−1)n csc(x)Qn

(

cot(x)
)

. (2.5)

We also consider the hyperbolic analogs of the derivative polynomials and define
the derivative polynomials for hyperbolic tangent

P(x, t) :=
x+ tanh(t)

1 + x tanh(t)
=

∞
∑

n=0

Pn(x)
tn

n!
(2.6)
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and for hyperbolic secant

Q(x, t) :=
sech(t)

1 + x tanh(t)
=

∞
∑

n=0

Qn(x)
tn

n!
, (2.7)

or, alternatively, as follows

dn

dxn
tanh(x) = Pn

(

tanh(x)
)

(2.6*)

and
dn

dxn
sech(x) = sech(x)Qn

(

tanh(x)
)

. (2.7*)

These polynomials also may be generated by recurrence relations

P0(x) = x, Pn(x) = (1− x2)P
′

n−1(x) (n ∈ N) (2.6**)

and

Q0(x) = 1, Qn(x) = (1− x2)Q
′

n−1(x)− xQn−1(x) (n ∈ N) (2.7**)

and they satisfy the symmetry relations

Pn(−x) = (−1)n+1 Pn(x) and Qn(−x) = (−1)nQn(x) (n ∈ N0). (2.8)

Note that

dn

dxn
coth(x) = Pn

(

coth(x)
)

and
dn

dxn
csch(x) = csch(x)Qn

(

coth(x)
)

. (2.9)

3. Higher Derivative Formulae

The tangent numbers (of order k) T (n, k) and secant numbers (of order k) S(n, k)
are respectively defined by (see [9, p. 428] and [10, p. 305])

tank(t) =

∞
∑

n=k

T (n, k)
tn

n!
(k ∈ N) (3.1)

and

sec(t) tank(t) =
∞
∑

n=k

S(n, k)
tn

n!
(k ∈ N0). (3.2)

It is obvious, by parity considerations, that T (n, k) 6= 0 is only when 1 ≤ k ≤ n

and either both n and k are even or both n and k are odd. The same applies to
S(n, k) when 0 ≤ k ≤ n. Observe that, T (n, 1) and S(n, 0) are, in fact, well-known
the tangent and Euler numbers. Moreover, by (2.1) and (3.1), we have

Pn(0) = T (n, 1) and Qn(0) = S(n, 0). (3.3)

Our main results are as follows.

Theorem 1. Assume that n and k are nonnegative integers and let Pn(x) and
Qn(x) be the polynomials as defined by (2.1) and (2.2). Then, in terms of the
tangent numbers of order k, T (n, k), given by (3.1), we have:

Pn(x) = T (n, 1) +

n+1
∑

k=1

1

k
T (n+ 1, k)xk , (3.4)
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and, in terms of the secant numbers of order k, S(n, k), given by (3.2), we have:

Qn(x) =

n
∑

k=0

S(n, k)xk. (3.5)

Theorem 2. Let Pn(x) and Qn(x) be the polynomials defined by (2.6) and (2.7).
Then:

Pn(x) = (−1)
n−1

2 T (n, 1) +

n+1
∑

k=1

(−1)
n+k−1

2

k
T (n+ 1, k)xk (3.6)

and

Qn(x) =

n
∑

k=0

(−1)
n+k

2 S(n, k)xk, (3.7)

where T (n, k) and S(n, k) are the numbers (3.1) and (3.2).

Corollary 1. In terms of the tangent and secant numbers of order k, T (n, k) and
S(n, k), for n ∈ N0, we have:

(a)
dn

dxn
tan(x) = T (n, 1) +

n+1
∑

k=1

1

k
T (n+ 1, k) tank(x);

(b)
dn

dxn
sec(x) = sec(x)

n
∑

k=0

S(n, k) tank(x);

(c)
dn

dxn
cot(x) = (−1)n

[

T (n, 1) +
n+1
∑

k=1

1

k
T (n+ 1, k) cotk(x)

]

;

(d)
dn

dxn
csc(x) = (−1)n csc(x)

n
∑

k=0

S(n, k) cotk(x).

Corollary 2. In terms of the tangent and secant numbers of order k, T (n, k) and
S(n, k), for n ∈ N0, we have:

(a)
dn

dxn
tanh(x) = (−1)

n−1

2 T (n, 1) +

n+1
∑

k=1

(−1)
n+k−1

2

k
T (n+ 1, k) tanhk(x);

(b)
dn

dxn
sech(x) = sech(x)

n
∑

k=0

(−1)
n+k

2 S(n, k) tanhk(x);

(c)
dn

dxn
coth(x) = (−1)

n−1

2 T (n, 1) +

n+1
∑

k=1

(−1)
n+k−1

2

k
T (n+ 1, k) cothk(x);

(d)
dn

dxn
csch(x) = csch(x)

n
∑

k=0

(−1)
n+k

2 S(n, k) cothk(x).

Remark 1. We remark that, since, as detailed above, T (n, k) and S(n, k) are
nonzero only under certain conditions, then the above given formulae can be written
(for computational purposes) in somewhat simplified form. For instance, we have
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P2m−1(x) = T (2m− 1, 1) +

m
∑

r=1

1

2 r
T (2m, 2r)x2r (m ∈ N)

and

P2m(x) =

m
∑

r=0

1

2 r + 1
T (2m+ 1, 2r + 1)x2r+1 (m ∈ N0).

Proof of Theorem 1. In order to prove the formula (3.4) we first note that the
generating function of the polynomials Pn(x) can be rewritten as

P (x, t) =
(

x+ tan(t)
)

∞
∑

k=0

(

x tan(t)
)k

= x+
(

1 + x2
)

∞
∑

k=1

xk−1 tank(t)

which, by making use of the definition of T (n, k) in (3.1) and the elementary double
series identities [11, p. 57, Eq. (2)]

∞
∑

n=1

n
∑

k=1

A(k, n) =

∞
∑

n=1

∞
∑

k=1

A(k, n + k) =

∞
∑

n=1

∞
∑

k=n

A(k, n),

becomes

P (x, t) = x+
(

1 + x2
)

∞
∑

k=1

xk−1

∞
∑

n=k

T (n, k)
tn

n!

= x+
∞
∑

n=1

(

1 + x2
)

(

n
∑

k=1

T (n, k)xk−1

)

tn

n!
. (3.8)

On the other hand, by (2.1) in conjunction with the recurrence (2.1**), we have

P (x, t) = P0(x) +
∞
∑

n=1

Pn(x)
tn

n!
= P0(x) +

∞
∑

n=1

(

1 + x2
)

P
′

n−1(x)
tn

n!
(3.9)

and thus comparing (3.8) with (3.9) clearly yields

P
′

n−1(x) =
n
∑

k=1

T (n, k)xk−1

so that we find by integration that

Pn(x) = Pn(0) +

n+1
∑

k=1

1

k
T (n+ 1, k)xk. (3.10)

Now, in view of (3.3), the desired result (3.4) follows from (3.10).
Similarly, along the same lines, we have

Q(x, t) =

∞
∑

k=0

sec(t) tank(t)xk =

∞
∑

k=0

(

∞
∑

n=k

S(n, k)
tn

n!

)

xk

=

∞
∑

n=0

(

n
∑

k=0

S(n, k)xk

)

tn

n!
=

∞
∑

n=0

Qn(x)
tn

n!
,

and in this way we arrive at the second needed result (3.5).
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Proof of Theorem 2. We first verify that

Pn(x) = ın−1Pn(ı x) and Qn(x) = ınQn(ı x),

and then, upon applying these last identities and Theorem 1, the two assertions of
Theorem 2 follow.

Proof of Corollaries 1 and 2. The parts (a)–(d) of Corollary 1, in view of
Theorem 1, are direct consequences of, respectively, the formulae (2.1*), (2.2*),
(2.4) and (2.5). Similarly, the parts (a)–(d) of Corollary 2 follow by Theorem 2 and,
respectively, formulae (2.6*), (2.7*) and (2.9).

4. Concluding Remarks

We have explicitly expressed the trigonometric and hyperbolic derivative poly-
nomials in a closed form in the terms of the higher tangent and secant numbers,
T (n, k) and S(n, k). The first few derivative polynomials are

P0(x)
P0(x)

}

= x,
P1(x)
P1(x)

}

= ±x2 + 1,
P2(x)
P2(x)

}

= 2x3 ± 2x,

P3(x)
P3(x)

}

= ±6x4 + 8x2 ± 2,
P4(x)
P4(x)

}

= 24x5 ± 40x3 + 16x,

P5(x)
P5(x)

}

= ±120x6 + 240x4 ± 136x2 + 16,

P6(x)
P6(x)

}

= 720x7 ± 1680x5 + 1232x3 ± 272x,

and

Q0(x)
Q0(x)

}

= 1,
Q1(x)
Q1(x)

}

= ±x,
Q2(x)
Q2(x)

}

= 2x2 ± 1,

Q3(x)
Q3(x)

}

= ±6x3 + 5x,
Q4(x)
Q4(x)

}

= 24x4 ± 28x2 + 5,

Q5(x)
Q5(x)

}

= ±120x5 + 180x3 ± 61x,

Q6(x)
Q6(x)

}

= 720x6 ± 1320x4 + 662x2 ± 61.

It should be noted that the numbers T (n, k) and S(n, k) appear to be insufficiently
investigated but simplicity of the the above-found formulae suggests that they would
be interesting ones and well worthy of further study.

In conclusion, we confine ourselves to give only one of numerous consequences of
the results presented in Section 3. The following formula

ζ
(

n, 1− x
)

+ (−1)n ζ
(

n, 1− x
)

=
(−1)nπn

(n− 1)!

[

T (n− 1, 1) +
n
∑

k=1

1

k
T (n, k) cotk(πx)

]

(n ∈ N \ {1}; 0 < x < 1)

(c.f. [1, p. 8, Theorem 2.2]) is obtained from our Corollary 1(c) and the reflection
formula for the Hurwitz zeta function ζ(s, a) (see, for instance, [12, Sec. 2.2]).
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Remark. Since submitting this paper (June 7, 2008) the author has learned of the
following related publications: Refs. [13− 15]
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