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Abstract

A characteristic feature of many relevant real life networks, like the WWW,
Internet, transportation and communication networks, or even biological and
social networks, is their clustering structure. We discuss in this paper a
novel algorithm to identify clusters -sets of densely interconnected nodes-
in a network. The algorithm is based on local information and therefore it
is very fast with respect other proposed methods, while it keeps a similar
performance in detecting the clusters.
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1. Introduction

Many real life networks like the WWW | Internet, transportation and com-
munication networks, or even biological and social networks have a strong
clustering structure (they contain groups of vertices which are highly in-
terconnected -vertices have many mutual neighbors-). Here we consider the
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notion of cluster in a general way. Therefore, depending on the context, it can
be synonymous of community, class, module, etc. The problem of detecting
clusters in a given network is an important issue in social studies, biological
(epidemiology, ecological webs, metabolic), computer science (WWW | Inter-
net, distributed systems, cluster computing). Clusters are also interesting
as they reflect hierarchical aspects and are related to classification issues for
information retrieval. Clusters play also an important role when executing
most communication algorithms and should be considered to improve their
performance.

The construction of efficient and fast algorithms for the identification of
the clustering structure in a generic network is a nontrivial task. The first
problem is the non existence of a precise definition of cluster. Intuitively,
a network can be said to have cluster structure if it consists of subsets of
nodes, with many connections among the same subset, but few links between
subsets, see, for example, [1, 2]. Algorithms to detect these subsets have ap-
peared in the literature and they can be classified in two main groups (see
the above two references for more details): hierarchical clustering methods
(also known as agglomerative), which consist of generating a tree (dendro-
gram) from a complete graph with as many vertices as the original network
and where each edge has a weight measuring how close are the corresponding
vertices. Starting from the set of all vertices with no edges between them,
edges are iteratively added between pairs of vertices in order of decreasing
weight. From the tree one can then infer the different clusters. To obtain
the weights, some algorithms consider the spectrum of the adjacency matrix
of the graph representing the network. The other class of algorithms are
called divisive. From the whole graph, by iteratively cutting the edges, one
obtains a set of disconnected subgraphs identified as clusters. Of course, the
selection of the edges to be cut, i.e. identifying those connecting clusters, is
the crucial point of a divisive algorithm. Girvan and Newman (GN) [1] have
recently provided a divisive algorithm based on the “edge betweenness”: The
betweenness of an edge is the number of shortest paths, between all pairs of
vertices of a graph, that go through this edge. If a graph is made of dense
loosely interconnected clusters clearly all shortest paths between vertices in
different clusters will go through a few edges, joining the clusters, which will
have a large betweenness value. The main step of the GN algorithm is the
computation of the edge betweenness of all the edges and then the removal
of those with the highest value. An iterative process allows the obtention
of the clusters. This process, however, is computationally expensive as for a



graph with n vertices and m edges the cost is O(nm?), making it impractical
even for relatively small graphs.

More recently Newman [3] and Radicchi et al. [2] have provided faster,
but less precise, methods. Newman’s new method is based on what he calls
“modularity” which measures the fraction of edges in a graph connecting
different possible clusters and selecting these clusters by using an standard
greedy optimization algorithm. The algorithm is O((n + m)n) for the worst
case and O(n?) on a sparse graph. On the other hand Radicchi et al. use the
“edge clustering coefficient” defined as the number of triangles to which a
given edge belongs, divided by the number of triangles that might potentially
include it, given the degrees of the adjacent vertices. This algorithm is O(m?)
in the worst case.

In this paper we introduce a fast and efficient deterministic algorithm
which uses local information based on each vertex. The algorithm is also
agglomerative and has order O(mn), providing similar results than the GN
method and other faster methods.

2. Notation and definitions

We model networks as graphs. Given the graph G = (V| E) with vertex
set V and edge set F, we will denote by I'y(v) the set of vertices at distance
k from a vertex v. Sometimes we will write, for short, I'(v) instead of I'y (v).
Thus, the degree of v is deg(v) = §(v) := |I'(v)]. In terms of the adjacency
matrix of G, A;;, we have d(v;) = Zvjev Aij = >_; Aij. We denote as A the
maximum degree of a graph.

If we consider a subset of vertices C' C V and a vertex v; € C, we
can split the degree of v; into two contributions (with respect to the subset
where it belongs): dc(v;) = 6¢ (vi) + g (vi), where o¢(v;) = 3, o Ay s
the number of edges connecting this vertex v; to other vertices of C' and
62t (v;) = >_u,¢c Aij is the number of edges towards vertices in the rest of
the graph.

A cluster is roughly defined as a part of a network where internal con-
nections are denser than external ones. In the implementation of our algo-
rithm we consider a definition of cluster which is a normalized version of
the definition of “cluster in the weak sense” as it appears in Radicchi et al.
[2]. These authors define cluster in a weak sense as a subgraph C such that
> vec 08 (Vi) > 27, o 08" (vs). This is in contrast with the definition of clus-
ter in a strong sense which for a subgraph C'is 6% (v;) > 6% (v;), Vu; € C.



This last definition has been also proposed in [4] for the identification of web
clusters. The problem of finding a partition of the vertex set which corre-
sponds to an optimal clustering structure of the graph and in particular the
identification of this optimality has lead to the introduction of modularity by
Newman [3]. It has been shown that the problem is NP-hard [5]. Therefore
it is of interest to provide algorithms that can produce quickly near-optimal
solutions. On the other hand even the modularity method does not works
for extremal artificial cases [6], and very often the experimentation with data
coming from real networks provides best method to test the usefulness of a
given method.

In our algorithm we will use these other definitions: If C' C V, degq(v;)
is the number of edges between v; and all other vertices in C. Then we have:
degq(v;) < degy(v;). The average degree of a graph G(V, E) is avgdeg(G) =
> ey dega(vi)/[V]. The normalized average degree of a set of vertices C' is

defined as deer (o)
eg(vV;
ZviEC degg(vi)

| C

n_avgdeg(C) =

and we have 0 < n_avgdeg(C') < 1.

3. A neighborhood based clustering algorithm

The new clustering algorithm which we propose here is a constructive
algorithm. The main aim of our algorithm is to sort out the set of vertices of
the graph into clusters that maximize their normalized average degree. For
the formation of these clusters we perform a dynamic process which involves
the creation of pre-clusters that the algorithm joins to other pre-clusters
under some conditions. (To facilitate the reading of this paper, we use in
many occasions the word cluster instead of pre-cluster. However the clusters
are not totally formed until the algorithm finishes.)

We initialize a pre-cluster from a vertex and some of it neighbors in such
a way that the number of edges between this pre-cluster and the rest of
the vertices is the minimum possible, see Figure 1. We assume that this
pre-cluster will have more intra-cluster edges if it is started from a vertex
with a high degree. The experiments performed show that this assumption
is correct for random graphs and many real-life networks.

If other clusters are present from a former iteration of the algorithm, the
pre-cluster will be joined with one of them if the number of inter-cluster edges



Figure 1: Formation of a pre-cluster from v and some of its neighbors {v1, va,v3}. Pre-
cluster Cpre = {v,v1,v2,v3} is constituted with elements of I'1(v) (the set of vertices
adjacent to v)such that the number of edges between Cp,. and I't (v) is minimum.

is higher than the expected value number of edges between the two clusters,
if all edges were distributed at random in the graph, see Algorithm 1 for the
details. The general process is as follows:

1.

Create a list L with all vertices ordered according to their degree (de-
creasing order).

Check L and look for the first element f of this list such that at least
half of its neighbors are also in the list L. We form an auxiliary cluster,
Cpre, by selecting vertices from the set given by this vertex f and its
neighbors in L, and such that at least half of their adjacencies are to
vertices in L, and at the same time at least half of the adjacent vertices
in L are also adjacent to neighbors of f.

. Extract from L all vertices which are now in C,.. If this results in an

empty list, then there are no new clusters. Go to the last step.

. Check if C),. can be added to any existing cluster. If this is not possible,

and it has more than two vertices, create a new cluster with it. The
condition to add the auxiliary cluster to an already existing cluster is
the following: the normalized average degree of the union of the two
clusters must be at least the same than the normalized average degree
for each of the clusters, and the number of adjacencies between them
has to be greater than the average for all the vertices of the graph.
Repeat from the second step until we obtain an empty list L or isolated
vertices.

. Each remaining vertex is added to an existing cluster.

Algorithm 1 provides a pseudocode version of our algorithm with the

details which allow a practical implementation.



Input: G = (V, E) a graph.V, set of vertices; E set of edges.
Output: C1,Cy, - - - Oy Subsets of vertices (clusters) partitioning V.
// VERTEX ORDERING.
L —V; // n(=|V|) vertices in decreasing degree
// CLUSTER FORMATION.
Lyre :=0, k:=0;// Number of clusters
while L # () do
Cpre :=0,L1:=0,Ly:=0
if k=0 then f:=1y; // Start cluster from highest degree vertez.
if £ > 0 then
// Select vertez to start a new cluster.
for i from 1 to |L| do

if [; has more than IF(QM adjacent vertices in L then f :=1;;
else [ :=1;

Ll — {qul(f)}

Ly —{T2(f)}

foreach v; € L1 do
if v verifies 07 (vi) > 67" (vi) and 07" 1 (vi) > @ then
| Cpre — v; // Add the vertex to Cpre.

if Cpre = 0 then break // Exit from the while loop

if £ =0 then
Cl = Cpre
L := L\ Cpre // Remove from L the vertices in Cpre.
k=1

else

for ¢ from 1 to k do

if m_avgdeg(Cpre U C;) > n_avgdeg(Cpre) and
n_avgdeg(Cpre UC;) > n_avgdeg(C;) and the number of edges between
Cpre and C; is greater than |Cppe| - |Ci| - avgdeg(G)/(]V] — 1)) then
C; = C; UCppe // Add vertices of Cpre to Cj.
L:=L\Cpre
else
if |Cpre| > 2 then
Cit+1 = Chpre // Form new cluster with vertices of Cpre.
L:=L\Cpre
k=k+1
else
Lpre = Lpre ) Cpre
L L:=L\Cpre

/ REDISTRIBUTION OF THE REMAINING VERTICES

= BN

oreach v € LU Ly, do
v is added to the cluster that has more adjacencies to it.

| If several clusters exist, it is added to the first according to the creation order.

Algorithm 1: Clustering algorithm.




4. Results

4.1. Computer generated clustered networks

To test our algorithm we first use the same method than in the Girvan
and Newman paper [1]: We generate a number of random graphs with a given
cluster structure and then we run the algorithm to check its performance. We
have performed two sets of tests. In the first set, as in [1], each graph has 128
vertices divided into four groups of 32. The second set considers also graphs
with 128 vertices but divided into fours groups with 64,32,16 and 16 vertices,
respectively. Each vertex has on average 6™ edges connecting it to members
of the same group and §°"* edges to members of other groups, with 5™ and §°u¢
chosen such that the total expected degree is 16. The performance results
from the average count of the vertices that are misclassified for different
values of 6™ (40 instances). We see that our algorithm performs similarly

128 1 E 100 128

Figure 2: Adjacency matrices of sample random graphs. The two left matrices correspond
to graphs with four clusters of 32 vertices and 6™ 10 and 14, and the two other matrices
to graphs with four clusters of size 16, 16, 64 and 32 and §™ 10 and 14.

to the Girvan and Newman method, correctly identifying more than 90% of
vertices for values of 5™ greater than 6. When §™ approaches the value 8, i.e.
when the average number of intra- and inter-cluster edges per vertex is the
same, the algorithm fails, as it happens also for all the clustering algorithms
described in literature.

We have considered relatively small graphs for this comparative test as
the running time for the GN algorithm increases very quickly with the order
of the graph. Our algorithm, on the contrary, can classify correctly very large
graphs (we have tested graphs with ten thousand vertices and several hundred
thousand edges in minutes, when the GN method is totally impractical in
the same conditions). At the end of this section we discuss the running
complexity of our algorithm.



N
o
L1
N
o
L1

'='=l:u:.-§

(32,32,32,32) (64,32,16,16)

-# Girvan-Newman algorithm
-~ new algorithm

-# Girvan-Newman algorithm
-o- new algorithm

Fraction of vertices
classified correctly
o
[6,]
1
Fraction of vertices
classified correctly
o
T

o
o

o
o

T T T T T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of inter-cluster edges Number of inter-cluster edges

o
o

Figure 3: Fraction of vertices correctly identified by our algorithm considering computer-
generated clustered graphs of order 128 and average degree 16 (left: (32,32,32,32), right:
(64,32,16,16). The values obtained with the new algorithm are represented by circles and
those of the algorithm of Girvan and Newman [1] by squares. Each data point is an average
over 40 graphs.

4.2. Real-life networks

Computer-generated clustered networks are of interest as we know be-
forehand the number of clusters and their characteristics. These graphs are
very useful to check the limitations of a clustering method. However the in-
terest of introducing a new clustering algorithm lies on its application to find
cluster in real data. Therefore we have used our algorithm with well-known
benchmaks clustered networks: the Zachary karate club network, a scientists
collaboration network, a dolphins network and the network of characters in
the novel from Victor Hugo “Les Misérables”.

Zachary karate club.- This has become a classical test as it has been con-
sidered in many studies on clustering methods. The graph was constructed
by Wayne W. Zachary [7] after collecting data on the social relations between
the members of a karate club. In Fig.4 we show the clusters obtained with
our method, which correspond exactly to the split of the club after a dispute
between the club’s administrator and the karate instructor.

Scientific collaborations network.- This example considers the collabora-
tion network of scientists who perform research on networks (as reflected by
their publications). The graph was generated by Mark Newman using names
drawn from the large bibliography of his interesting review on complex net-
works [8] and coauthorship data from preprints submitted to the condensed
matter section of Archive at arxiv.org between Jan 1, 1995 and April 30,
2003. Fig. 5 shows only the largest connected component of his graph with
142 vertices. The clusters found with our algorithm have only minor differ-
ences from those found with the GN method in [1, 9].
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Figure 4: Clusters found by the algorithm described in this paper for the friendship network
associated to Zachary’s karate club [7]. Our algorithm finds exacly the same partition as
in the original paper.
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Figure 5: Largest connected component of the network of coauthorships between scientists
publishing on networks (data provided by M. Newman [9]). This component contains 142
scientists. We have colored the vertices according to the clusters found using our algorithm.
The resulting clusters are close to those found with the GN method [1] .
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Dolphins network.- In this example we study a community of 62 bottlenose
dolphins living in Doubtful Sound, New Zealand. This network was compiled
by Lusseau [10] from statistical observations of associations along many years.
He reported a split into two groups which can be identified from the results
of our algorithm (Fig. 6). See [9] for more details.

Les Misérables network. This network reflects the interactions between
major characters in the novel Les Misérables, by Victor Hugo, considering
their appearances by scene as compiled by Knuth [11]. An edge in the graph
represents the simultaneous appearance of the corresponding characters in
one or more chapters of the novel. The clusters obtained agree (with minor
modifications) with those obtained with other methods, see for example [12].

4.8. Algorithm complezity

To analyze the running time of our algorithm we should notice that it
relies on local neighborhood information, exploring adjacent vertices up to
distance two, while the GN algorithm uses global information derived from
the betweenness factor and involves, at each step, computing the shortest
path between all pair of vertices. With respect to other local algorithms, the
consideration of a neighborhood up to distance two, allows a much better
performance.

From the pseudocode we see that the new algorithm is a fast method,
O(mn), suitable for very large networks and not difficult to implement. Note
than the algorithm involves exploring the 2-neighborhood of all the vertices
of the graph (taking for each, on average, A? steps), but this action has to
be performed only once and therefore the calculation is O(nA?) ~ O(mn),
at most.

5. Conclusion

The detection and study of the cluster structure of very large networks is
an area of increasing interest due of the expanding importance of networks
like the WWW, Internet, transportation systems, ad-hoc networks etc. Al-
though the concept of cluster is clear from an intuitive point of view, to
perform a correct analysis of a network it is essential to use an unambigu-
ous and quantitative definition of a cluster, and more important to provide
constructive algorithms useful to deal with these large networks. Notice that
the determination of all the subgraphs of a given network that form a cluster

11
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Figure 6: Cluster structure in the bottlenose dolphins of Doubtful Sound [10], found with
our algorithm. We find two large communities and a small one (6 individuals, lighter color).
The split of the network into two groups observed by Lusseau matches this division if we
add the small group to the largest one. Clustering algorithms by other authors produce
more subdivisions in the large group. [9].
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Figure 7: Clusters resulting from our algorithm for the interactions between major char-
acters in the novel Les Misérables by Victor Hugo.
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according to a given definition is an NP-complete problem. Therefore it is
useful to deal with the problem using heuristic and probabilistic methods.

In this paper we propose a new constructive deterministic clustering al-

gorithm. It relies on the local structure of the graph and does not need the
determination of global parameters, resulting in a very fast method with a
performance comparable to well established algorithms.
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