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Information geometry and inductive inference methods can be used to model dynamical systems
in terms of their probabilistic description on curved statistical manifolds.

In this article, we present a formal conceptual reexamination of the information geometric con-
struction of entropic indicators of complexity for statistical models. Specifically, we present con-
ceptual advances in the interpretation of the information geometric entropy (IGE), a statistical
indicator of temporal complexity (chaoticity) defined on curved statistical manifolds underlying the
probabilistic dynamics of physical systems.

PACS numbers: Probability Theory (02.50.Cw), Riemannian Geometry (02.40.Ky), Chaos (05.45.-a), Com-
plexity (89.70.Eg), Entropy (89.70.Cf).

I. INTRODUCTION

The mystery of the origin of life and the unfolding of its evolution is perhaps the most fascinating topic that
motivates the description and, to a certain extent, the understanding of the extremely elusive concept of complexity
[1–3]. From a more pragmatic point of view, its description and understanding is also motivated by the question
of how complex is quantum motion. This issue is of primary importance in quantum information science, having
deep connections to entanglement and decoherence. However, our knowledge of the relations between complexity,
dynamical stability, and chaoticity in a fully quantum domain is not satisfactory [4, 5]. The concept of complexity
is very difficult to define and its origin is not fully understood [6–8]. It is mainly for these reasons that several
quantitative measures of complexity have appeared in the scientific literature [1, 2]. In classical physics, measures of
complexity are understood in a better satisfactory manner. The Kolmogorov-Sinai metric entropy [9, 10], the sum of
all positive Lyapunov exponents [11], is a powerful indicator of unpredictability in classical systems. It measures the
algorithmic complexity of classical trajectories [12–15]. Other known measures of complexity are the logical depth
[16], the thermodynamic depth [17], the computational complexity [18] and stochastic complexity [19] to name a few.
For instance the logical and thermodynamic depths consider complex (roughly speaking) whatever can be reached
only through a difficult path. Each one of these complexity measures captures to some degree our intuitive ideas
about the meaning of complexity. Some of them just apply to computational tasks and unfortunately, only very
few of them may be generalized so that their applications can be extended to actual physical processes. Ideally, a
good definition of complexity should be mathematically rigorous as well as intuitive so as to allow for the analysis
of complexity-related problems in computation theory and statistical physics. For obvious reasons, a quantitative
measure of complexity is genuinely useful if its range of applicability is not limited to a few unrealistic applications.
For similar reason, in order to properly define measures of complexity, the reasons for defining such a measure should
be clearly stated as well as what feature the measure is intended to capture.
One of the major goals of physics is modeling and predicting natural phenomena by using relevant information

about the system of interest. Taking this statement seriously, it is reasonable to expect that the laws of physics
should reflect the methods for manipulating information. Indeed, the less controversial opposite point of view may be
considered where the laws of physics are used to manipulate information. This is exactly the point of view adopted
in quantum information science where information is manipulated using the laws of quantum mechanics [20]. An
alternative viewpoint may be explored where laws of physics are nothing but rules of inference [21]. In this view the
laws of physics are not laws of nature but merely reflect the rules we follow when processing the information that
happens to be relevant to the physical problem under consideration.
Inference is the process of drawing conclusions from available information. When the information available is

sufficient to make unequivocal, unique assessments of truth, we speak of making deductions: on the basis of this or
that information we deduce that a certain proposition is true. In cases where we do not have statements that lead
to unequivocal conclusions, we speak of using inductive reasoning and the system for this reasoning is probability

http://arxiv.org/abs/1011.5556v1


2

theory [22]. The word ”induction” refers to the process of using limited information about a few special cases to draw
conclusions about more general situations. Following this alternative line of thought, we extended the applicability of
information geometric techniques [23] and inductive inference methods [24–28] to computational problems of interest
in classical and quantum physics, especially with regard to complexity characterization of dynamical systems in terms
of their probabilistic description on curved statistical manifolds. Moreover, we seek to identify relevant measures of
chaoticity of such an information geometrodynamical approach to chaos (IGAC) [29–36].
In this article, we present a formal and conceptual reexamination of the information geometric entropy (IGE)

[35], a statistical indicator of temporal complexity (chaoticity) of dynamical systems in terms of their probabilistic
description using information geometry and inductive inference.
We emphasize we do not present here any new application of the IGAC (for instance, one of our most recent

applications appears in [36]), however (and, most importantly) we do report some relevant conceptual advances in the
interpretation of the IGE as a useful measure of complexity for statistical models suitable for probabilistic descriptions
of dynamical systems.
The layout of this article is as follows. In Section II, we briefly review our information geometric approach to the

description of complex systems by using information geometry and inductive inference. In Section III, we focus on
the key-steps leading to the construction of the IGE and on its conceptual interpretation. Finally, in Section IV we
present our final remarks.

II. COMPLEXITY ON CURVED MANIFOLDS

IGAC [29–34] is a theoretical framework developed to study chaos in informational geodesic flows describing physical
systems. The reformulation of dynamics in terms of a geodesic problem allows for the application of a wide range of
well-known geometric techniques to the investigation of the solution space and properties of the equations of motion.
All dynamical information is collected into a single geometric object (namely, the manifold on which geodesic flow
is induced) in which all the available manifest symmetries of the system are retained. For instance, integrability of
the system is connected with existence of Killing vectors and tensors on this manifold. The sensitive dependence
of trajectories on initial conditions, which is a key ingredient of chaos, can be investigated by using the equation
of geodesic deviation. IGAC is the information-geometric analogue of conventional geometrodynamical approaches
[37, 38] where the classical configuration space ΓE is replaced by a statistical manifold MS with the additional
possibility of considering chaotic dynamics arising from non conformally flat metrics (the Jacobi metric is always
conformally flat). It is an information-geometric extension of the Jacobi geometrodynamics (the geometrization of
a Hamiltonian system by transforming it to a geodesic flow [39]). In the Riemannian [37] and Finslerian [38] (a
Finsler metric is obtained from a Riemannian metric by relaxing the requirement that the metric be quadratic on
each tangent space) geometrodynamical approach to chaos in classical Hamiltonian systems, an active field of research
concerns the possibility of finding a rigorous relation among the sectional curvature, the Lyapunov exponents, and
the Kolmogorov-Sinai dynamical entropy (i.e., the sum of positive Lyapunov exponents) [40].
An n-dimensional C∞ differentiable manifold (or more simply, a manifold) is a set of points M admitting coordinate

systems CM and satisfies the following two conditions: 1) each element c ∈ CM is a one-to-one mapping from M
to some open subset of Rn; 2) For all c ∈ CM, given any one-to-one mapping ξ from M to Rn, we have that
ξ ∈ CM ⇔ ξ ◦c−1 is a C

∞ diffeomorphism. In this article, the points of M are probability distributions. Furthermore,
we consider Riemannian manifolds (M, g). The Riemannian metric g is not naturally determined by the structure
of M as a manifold. In principle, it is possible to consider an infinite number of Riemannian metrics on M. A
fundamental assumption in the information geometric framework is the choice of the Fisher-Rao information metric
as the metric that underlies the Riemannian geometry of probability distributions [23, 41, 42], namely

gµν (Θ)
def
=

∫
dXp (X |Θ)∂µ log p (X |Θ)∂ν log p (X |Θ) = −

(
∂2S (Θ′, Θ)

∂Θ′µ∂Θ′ν

)

Θ′=Θ

, (1)

with µ, ν = 1,..., n for an n-dimensional manifold; ∂µ = ∂
∂Θµ and S (Θ′, Θ) represents the logarithmic relative entropy

[43],

S (Θ′, Θ) = −
∫

dXp (X |Θ′) log

(
p (X |Θ′)

p (X |Θ)

)
. (2)

The quantity X labels the microstates of the system. The choice of the information metric can be motivated in
several ways, the strongest of which is Cencov’s characterization theorem [44]. In this theorem, Cencov proves that
the information metric is the only Riemannian metric (except for a constant scale factor) that is invariant under a
family of probabilistically meaningful mappings termed congruent embeddings by Markov morphism [44, 45].
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A geodesic on a n-dimensional curved statistical manifold MS represents the maximum probability path a complex
dynamical system explores in its evolution between initial and final macrostates Θinitial and Θfinal, respectively. Each
point of the geodesic represents a macrostate parametrized by the macroscopic dynamical variables Θ ≡

(
θ1,..., θn

)

defining the macrostate of the system. Each component θk with k = 1,..., n is solution of the geodesic equation,
d2θk

dτ2 + Γk
lm

dθl

dτ
dθm

dτ
= 0. Furthermore, each macrostate Θ is in a one-to-one correspondence with the probability

distribution p (X |Θ). This is a distribution of the microstates X . The set of macrostates forms the parameter space
DΘ while the set of probability distributions forms the statistical manifold MS. Applications of the IGAC using the
IGE as a suitable indicator of temporal complexity (chaoticity) appear in [29–34].

III. THE INFORMATION GEOMETRIC ENTROPY

In this Section we focus on the key-steps leading to the construction of the IGE and comment on its conceptual
interpretation.

A. Preliminaries

Once the distances among probability distributions have been assigned using the metric tensor gµν (Θ), a natural
next step is to obtain measures for extended regions in the space of distributions. Consider an n-dimensional volume of
the statistical manifold Ms of distributions p (X |Θ) labelled by parameters Θµ with µ = 1,..., n. The parameters Θµ

are coordinates for the point p and in these coordinates it may not be obvious how to write an expression for a volume
element dVMs

. However, within a sufficiently small region any curved space looks flat. That is to say, curved spaces
are ”locally flat”. The idea then is rather simple: within that very small region, we should use Cartesian coordinates
wherein the metric takes a very simple form, namely the identity matrix δµν . In locally Cartesian coordinates χα the
volume element is given by the product dVMs

= dχ1dχ2.....dχn, which in terms of the old coordinates read,

dVMs
=

∣∣∣∣
∂χ

∂Θ

∣∣∣∣ dΘ
1dΘ2 with dΘn =

∣∣∣∣
∂χ

∂Θ

∣∣∣∣ d
nΘ. (3)

The problem at hand then is the calculation of the Jacobian
∣∣∣ ∂χ∂Θ

∣∣∣ of the transformation that takes the metric gµν into

its Euclidean form δµν . Let the new coordinates be defined by χµ = Ξµ
(
Θ1,...., ΘN

)
. A small change dΘ corresponds

to a small change dχ,

dχµ = Xµ
mdΘm where Xµ

m
def
=

∂χµ

∂Θm
(4)

and the Jacobian is given by the determinant of the matrix Xµ
m,
∣∣∣ ∂χ∂Θ

∣∣∣ = |det (Xµ
m)|. The distance between two

neighboring points is the same whether we compute it in terms of the old or the new coordinates, dl2 = gµνdΘ
µdΘν =

δαβdχ
αdχβ. Therefore the relation between the old and the new metric is gµν = δαβX

α
µX

β
ν . Taking the determinant of

gµν , we obtain g
def
= det (gµν) =

[
det
(
Xα

µ

)]2
and therefore

∣∣det
(
Xα

µ

)∣∣ = √
g. Finally, we have succeeded in expressing

the volume element totally in terms of the coordinates Θ and the known metric gµν (Θ), dVMs
=

√
gdnΘ. Thus, the

volume of any extended region on the manifold is given by,

VMs
=

∫
dVMs

=

∫ √
gdnΘ. (5)

Observe that
√
gdnΘ is a scalar quantity and is therefore invariant under orientation preserving general coordinate

transformations Θ → Θ′. The square root of the determinant g (Θ) of the metric tensor gµν (Θ) and the flat infinites-
imal volume element dnΘ transform as,

√
g (Θ)

Θ→Θ′

→
∣∣∣∣
∂Θ′

∂Θ

∣∣∣∣
√
g (Θ′), dnΘ

Θ→Θ′

→
∣∣∣∣
∂Θ

∂Θ′

∣∣∣∣ d
nΘ′, (6)

respectively. Therefore, it follows that,

√
g (Θ)dnΘ

Θ→Θ′

→
√
g (Θ′)dnΘ′. (7)

Equation (7) implies that the infinitesimal statistical volume element is invariant under general coordinate transfor-
mations that preserve orientation (that is, with positive Jacobian).
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B. The Formal Construction

The elements (or points) {p (X |Θ)} of an n-dimensional curved statistical manifold Ms are parametrized using n
real valued variables

(
θ1,..., θn

)
,

Ms
def
=
{
p (X |Θ) : Θ =

(
θ1,..., θn

)
∈ D(tot)

Θ

}
. (8)

The set D(tot)
Θ is the entire parameter space (available to the system) and is a subset of Rn,

D(tot)
Θ

def
=

n⊗

k=1

Iθk = (Iθ1 ⊗ Iθ2 ...⊗ Iθn) ⊆ R
n (9)

where Iθk is a subset of R and represents the entire range of allowable values for the macrovariable θk. For example,
considering the statistical manifold of one-dimensional Gaussian probability distributions parametrized in terms of
Θ = (µ, σ), we obtain

D(tot)
Θ = Iµ ⊗ Iσ = [(−∞, +∞)⊗ (0, +∞)] ⊆ R

2. (10)

In the IGAC, we are interested in a probabilistic description of the evolution of a given system in terms of its

corresponding probability distribution on Ms which is homeomorphic to D(tot)
Θ . Assume we are interested in the

evolution from τ initial to τfinal. Within the present probabilistic description, this equivalent to studying the shortest
path (or, in terms of the ME method [24], the maximally probable path) leading from Θ (τ initial) to Θ (τfinal).
Is there a way to quantify the ”complexity” of such path? We propose that the IGE SMs

(τ ) is a good complexity
quantifier [29–34]. In what follows, we highlight the key-points leading to the construction of this quantity.
We posit that a suitable indicator of temporal complexity within the IGAC framework is provided by the information

geometric entropy (IGE) SMs
(τ ) [32],

SMs
(τ )

def
= log ṽol

[
D(geodesic)

Θ (τ )
]
. (11)

The average dynamical statistical volume ṽol
[
D(geodesic)

Θ (τ )
]
is defined as,

ṽol
[
D(geodesic)

Θ (τ )
]

def
= lim

τ→∞

(
1

τ

∫ τ

0

dτ ′vol
[
D(geodesic)

Θ (τ ′)
])

, (12)

where the ”tilde” symbol denotes the operation of temporal average. For the sake of clarity, we point out that in the
RHS of (12), we intend to preserve the temporal-dependence by considering the asymptotic leading term in the limit

of τ approaching infinity. The volume vol
[
D(geodesic)

Θ (τ ′)
]
is given by,

vol
[
D(geodesic)

Θ (τ ′)
]

def
=

∫

D
(geodesic)
Θ (τ ′)

ρ(Ms, g)

(
θ1,..., θn

)
dnΘ, (13)

where ρ(Ms, g)

(
θ1,..., θn

)
is the so-called Fisher density and equals the square root of the determinant of the metric

tensor gµν (Θ),

ρ(Ms, g)

(
θ1,..., θn

) def
=
√
g
((
θ1,..., θn

))
. (14)

The integration space D(geodesic)
Θ (τ ′) in (13) is defined as follows,

D(geodesic)
Θ (τ ′)

def
=
{
Θ ≡

(
θ1,..., θn

)
: θk (0) ≤ θk ≤ θk (τ ′)

}
, (15)

where k = 1,.., n and θk ≡ θk (s) with 0 ≤ s ≤ τ ′ such that,

d2θk (s)

ds2
+ Γk

lm

dθl

ds

dθm

ds
= 0. (16)
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The integration space D(geodesic)
Θ (τ ′) in (15) is a n-dimensional subspace of the whole (permitted) parameter space

D(tot)
Θ . The elements of D(geodesic)

Θ (τ ′) are the n-dimensional macrovariables {Θ} whose components θk are bounded by

specified limits of integration θk (0) and θk (τ ′) with k = 1,.., n. The limits of integration are obtained via integration
of the n-dimensional set of coupled nonlinear second order ordinary differential equations characterizing the geodesic
equations. Formally, the IGE SMs

(τ) is defined in terms of a averaged parametric (n+ 1)-fold integral (τ is the
parameter) over the multidimensional geodesic paths connecting Θ (0) to Θ (τ ).
In conventional approaches to chaoticity, chaos is specified within the context of dynamical systems themselves.

The existence of classical dynamical chaos can be inferred from the exponential divergence of the Jacobi vector field
associated to the geodesic flow which coincides with the natural microscopic dynamics, that is the dynamics described
by Newton’s equation of motion. Furthermore, dynamical chaos requires two basic ingredients: stretching and folding
of phase space trajectories. In geometric language, chaos requires hyperbolicity and compactness of the manifold
where a geodesic flow ”lives”.
In our information geometric approach to chaos, chaoticity is specified within the context of suitable statistical

manifolds underlying the probabilistic (entropic) dynamics of dynamical systems when only incomplete information
on the systems is available. Indeed, our approach could have a wide range of applicability. For instance, as a special
limiting case, Newtonian dynamics can be derived from prior information codified into an appropriate statistical model
[46]. The basic assumption is that there is an irreducible uncertainty in the location of particles so that the state of
a particle is defined by a probability distribution. The corresponding configuration space is a statistical manifold the
geometry of which is defined by the information metric. The trajectory (geodesic) follows from a principle of inference,
the method of Maximum Entropy. No additional ”physical” postulates such as an equation of motion, or an action
principle, nor the concepts of momentum and of phase space, not even the notion of time, need to be postulated.
A geodesic on a curved statistical manifold represents the maximum probability path a dynamical system explores

in its (probabilistic and statistical) evolution between the initial and the final macrostates on the statistical manifold.
Each point of the geodesic is parametrized by the macroscopic dynamical variables defining the macrostate of the
system. Furthermore, each macrostate is in a one-to-one relation with the probability distribution representing the
maximally probable description of the system being considered. The set of macrostates forms the parameter space
while the set of probability distributions forms the statistical manifold. The parameter space is homeomorphic to the
statistical manifold. The resulting entropic dynamics reproduces the Newtonian dynamics of any number of particles
interacting among themselves and with external fields. Both the mass of the particles and their interactions are
explained as a consequence of the underlying statistical manifold.
Once again, we point out that several interesting applications of the IGE appear in the literature [29–36]. For in-

stance in [29], we proposed a novel information-geometric characterization of chaotic (integrable) energy level statistics
of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field and conjectured our
findings might find some potential physical applications in quantum energy level statistics. However, in the next
Section we will report our latest conceptual advances in the interpretation of the IGE.

C. The Conceptual Interpretation

The quantity vol
[
D(geodesic)

Θ (τ ′)
]
is the volume of the effective parameter space explored by the system at time τ ′.

Its faithful geometric visualization may be highly non trivial, especially in high-dimensional spaces [47]. The temporal
average has been introduced in order to average out the possibly very complex fine details of the entropic dynamical
description of the system on MS [48]. Thus, we provide a coarse-grained-like (or randomized-like) inferential descrip-
tion of the system chaotic dynamics. The long-term asymptotic temporal behavior is adopted in order to properly
characterize dynamical indicators of chaoticity (for instance, Lyapunov exponents, entropies, etc.) eliminating the

effects of transient effects which enters the computation of the expected value of vol
[
D(geodesic)

Θ (τ ′)
]
. In chaotic

transients, one observes that typical initial conditions behave in an apparently chaotic manner for a possibly long
time, but then asymptotically approach a nonchaotic attractor in a rapid fashion. We term the asymptotic quantity

ṽol
[
D(geodesic)

Θ (τ)
]
,

ṽol
[
D(geodesic)

Θ (τ)
]

def
= lim

τ→∞

(
1

τ

∫ τ

0

[∫

D
(geodesic)
Θ (τ ′)

ρ(Ms, g)

(
θ1,..., θn

)
dn~θ

]
dτ ′

)
= exp (SMs

(τ )) , (17)

the information geometric complexity of the geodesic paths on MS . Again, we emphasize that in the RHS of (17), we
intend to preserve the temporal-dependence by considering the asymptotic leading term in the limit of τ approaching

infinity. To have a more intuitive understanding of ṽol
[
D(geodesic)

Θ (τ )
]
, we recall that in going from Θ (τ0)

def
= Θinitial
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to Θ (τ f )
def
= Θfinal we assume the system passes through a continuos succession of (infinitesimally close ) intermediate

steps. For instance at the k̄-th step (with k̄ = 1, 2, 3,..), we study the evolution of the system from Θ
(
τ k̄−1

)
at

τ k̄−1 to Θ (τ k̄) at τ k̄ = τ k̄−1 + dτ . At the
(
k̄ + 1

)
-th step, we study the evolution of the system from Θ (τ k̄) at τ k̄ to

Θ
(
τ k̄+1

)
at τ k̄+1 = τ k̄ + dτ , and so on. Now, let us consider the following adimensional quantity characterizing two

consecutive steps, the k̄-th and
(
k̄ + 1

)
-th steps,

(
δṽol

ṽol

)

k̄→k̄+1

def
=

ṽol[τ k̄, τ k̄+1 ]

[
D(geodesic)

Θ (τ ′)
]
− ṽol[τ k̄−1, τ k̄ ]

[
D(geodesic)

Θ (τ ′)
]

ṽol[τ k̄−1, τ k̄ ]

[
D(geodesic)

Θ (τ ′)
] (18)

where the average infinitesimal statistical volume explored from τm to τM , i.e., ṽol[τm, τM ]

[
D(geodesic)

Θ (τ ′)
]
, is given

by,

ṽol[τm, τM ]

[
D(geodesic)

Θ (τ ′)
]

def
=

1

τM − τm

∫ τM

τm

vol
[
D(geodesic)

Θ (τ ′)
]
dτ ′. (19)

The quantity
(

δṽol

ṽol

)
k̄→k̄+1

is the average relative increment of the volume of the statistical macrospace explored by

the system in its dynamical evolution between two infinitesimally close and consecutive steps (macrostates). The

temporal behavior of
(

δṽol

ṽol

)
k̄→k̄+1

is a rough indicator of the presence of complex behavior in the evolution being

considered. To have a more reliable complexity indicator, a step-average over an asymptotically infinite number N of

steps would be required. Therefore, the quantity to consider becomes δṽol

ṽol
,

δṽol

ṽol

def
= lim

N→∞

1

N

N∑

k=1

(
δṽol

ṽol

)

k̄→k̄+1

(20)

where
(

δṽol

ṽol

)
k̄→k̄+1

defined in (18). For instance, a linear increase of δṽol

ṽol
would be a reasonable manifestation of the

presence of chaoticity (temporal complexity, dynamical stochasticity),

δṽol

ṽol

N , τ→∞≈ KIGτ ⇔ ṽol
N , τ→∞≈ exp (KIGτ ) . (21)

The quantity KIG

τ→∞≈ dSMs (τ)
dτ

is a model parameter of the complex system and depends on the temporal evolution of
the statistical macrovariables [29]. It may be interpreted as playing a role similar to that of the KS entropy rate (sum
of all positive Lyapunov exponents of the dynamical trajectories) and it is, in principle, an experimentally observable
quantity [29]. We emphasize there may be physical processes described by several characteristic time scales where the

exponential divergence of ṽol may not be required, although in the presence of chaoticity [49].
We point out that our construction and interpretation has some similarities with the logical and thermodynamic

depths. For instance, we recall that the logical depth [16] is considered to be one of the best candidates as a measure of
(statistical) complexity [1]. It is an example of a statistical complexity where the correlated structure of the systems’s
constituents play a key role in determining the complex path connecting the initial and final states of the system under
investigation. It is a time measure of complexity and represents the run time required by a universal Turing machine
executing the minimal program to reproduce a given pattern. We emphasize that such run time is obtained by a
suitable averaging procedure over the various programs that will accomplish the task by weighting shorter programs
more heavily. Therefore, the logical depth of any system is defined if a suitably coarse-grained description of it is
encoded into a bit string. In our construction of the IGE, the temporal average has been introduced in order to average
out the possibly very complex fine details of the entropic dynamical description of the system on MS . Therefore, we
also provide a coarse-grained-like inferential description of the system’s chaotic dynamics. Furthermore, we point out
that one key objection to the thermodynamic depth [17] cannot emerge in our construction of complexity measure.
The thermodynamic depth of a process is a structural measure of complexity and it represents the difference between
the system’s coarse- and fine-grained entropy. The ”depth” of a macrostate reached by a particular trajectory is
−const log pj (here const = kB is chosen to be Boltzmann’s constant for systems whose successive configurations can
be described in the physical space of statistical mechanics), where pj is the probability of the j-th trajectory. For
the whole range of possible trajectories, the resulting weighted average is −const

∑
j pj log pj . The set {pj} represent

probabilities which are consistent with all the measurements that have been made on the system during its history.
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This way of reasoning seems very close in spirit to our complexity measure construction. However, the key-objection
to the thermodynamic depth is the arbitrariness and lack of explanation of how the macrostates of the system leading
to the formation of the path-trajectory are selected [50]. Instead, in our construction the selection is as objective
as possible since it relies on the universal ME updating method [24] where we maximize the logarithmic relative
entropy S

(
Θk̄−1, Θk̄

)
[43] between each pair

(
Θk̄−1, Θk̄

)
of consecutive macrostates forming the path connecting the

initial Θinitial to the final Θfinal macrostate. The ME method of determining macroscopic paths makes no mention
of randomness or other incalculable quantities. It simply chooses the distribution (macrostate) with the maximum
entropy allowed by the information constraints. Thus, it selects the most uninformative distribution of microstates
possible. If we chose a probability distribution with lower entropy then we would assume information we do not
possess; to choose one with a higher entropy would violate the constraints of the information we do possess. Thus
the maximum entropy distribution is the only reasonable distribution. Are there other methods of updating? Yes,
but the ME method is the most fundamental, following the rules of probability theory as outlined by Cox. He proved
that probability theory is the only logically consistent theory of inductive inference [22].

IV. FINAL REMARKS

In this article, we have presented a formal and conceptual reexamination of the information geometric entropy
(IGE), a statistical indicator of temporal complexity (chaoticity) of dynamical systems in terms of their probabilistic
description on curved statistical manifolds.
In our information geometric approach, the information geometric complexity represents a statistical measure

of complexity of the macroscopic path Θ
def
= Θ(τ ) on MS connecting the initial and final macrostates Θi and

Θf , respectively. The path Θ (τ ) is obtained via integration of the geodesic equations on MS generated by the
universal ME updating method. At a discrete level, the path Θ (τ) can be described in terms of an infinite continuos
sequence of intermediate macroscopic states, Θ (τ) =

[
Θi,..., Θk̄−1, Θk̄, Θk̄+1,..., Θf

]
with Θj = Θ(τ j), determined

via the logarithmic relative entropy maximization procedure subjected to well-specified normalization and information
constraints. The nature of such constraints define the (correlated) structure of the underlying probability distribution
on the particular manifold MS . In other words, the correlated structure that may emerge from our information-
geometric statistical models has its origin in the valuable information about the microscopic degrees of freedom of
the actual physical systems. It emerges in the ME maximization procedure via integration of the geodesic equations
on MS and is finally quantified in terms of the intuitive notion of volume growth via the information geometric
complexity or, in entropic terms by the IGE. The information geometric complexity is then interpreted as the volume
of the statistical macrospace explored in the asymptotic limit by the system in its evolution from Θi to Θf . Otherwise,
upon a suitable normalization procedure that renders the information geometric complexity an adimensional quantity,
it represents the number of accessible macrostates (with coordinates living in the accessible parameter space) explored
by the system in its evolution from Θi to Θf .
In our view, this work constitutes a non-trivial effort toward an understanding of the concept of complexity in

dynamical systems in terms of their probabilistic description on curved statistical manifolds through information
geometry and inductive inference. It is also our view that this effort should be extended to a full quantum domain
[29, 30].
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