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Abstract

We present new iterative methods of order of convergence four or higher, for solving
nonlinear systems, by composing iteratively golden ratio methods with a modified
Newton’s method. In addition, we define a new efficiency index involving the com-
putational effort as well as the functional evaluations per iteration. We use this new
index, joint with the usual efficiency index, in order to compare the new methods
with other known methods and present several numerical tests.
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1 Introduction

Let us consider the problem of finding a real zero of a function F : D ⊆
Rn −→ Rn, that is, a real solution x̄ of the nonlinear system F (x) = 0, with
n equations and n unknowns. This solution can be obtained as a fixed point
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of some function G by means of the fixed point iteration method. The best
known fixed point method is the classical Newton’s method (N), given by

x(k+1) = x(k) − [F ′(x(k))]−1F (x(k)), k = 0, 1, . . . ,

where x(0) is the initial estimation and F ′(x(k)) is the Jacobian matrix of the
function F evaluated in the kth iteration. It is known that this method has
order of convergence two under certain conditions.

The construction of iterative methods for the approximation of the solution
of F (x) = 0 is an interesting task in numerical analysis and applied scientific
branches. During the last years, numerous papers devoted to iterative methods
for solving nonlinear systems have appeared in several journals. Some methods
existing in the literature are based on the use of interpolation quadrature
formulas (see [1–4]), or include the second partial derivative of the function
F or different estimations of it (see [5–8]), or are Steffensen’s type methods
(see [9]), etc. We also pay attention to the known Jarratt’s method (J) (see
[10]) whose efficiency is widely recognized. As the order of convergence of this
method is four we will compare it with the new methods in the numerical
section.

On the other hand, a known acceleration technique consists of the composi-
tion of two iterative methods of orders p1 and p2, respectively, to obtain a
method of order p1p2 ([11]). Usually, new evaluations of the Jacobian matrix
and the nonlinear function are needed in order to increase the order of con-
vergence. However, the existence of an extensive literature on higher order
methods reveals that they are only limited by the nature of the problem to
be solved: in particular, the numerical solution of quadratic equations and
nonlinear integral equations are needed in the study of dynamical models of
chemical reactors [12], or in radioactive transfer [13]. Moreover, many of these
numerical applications use high precision in their computations; the results of
these numerical experiments show that the high order methods associated with
a multiprecision arithmetic floating point are very useful, because it yields a
clear reduction in iterations.

Nevertheless, some modifications on Newton’s method can be made in order
to limit the number of functional evaluations and increase the convergence
order (see for example [14,15]).

In [16], the authors presented the following family of multi-point iterative
methods for nonlinear systems

x(k+1) = x(k) − [F ′(x(k))]−1

(
m∑

i=1

AiF (ηi(x
(k)))

)
,

with ηi(x
(k)) = x(k) − τi[F

′(x(k))]−1F (x(k)), where τi and Ai are parameters
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to be chosen in R and m is a positive integer. The value of these parameters
plays an important role in the order of convergence of the method.

In this paper, we will work with two elements of this family whose iterative
expressions are

y(k) = x(k) − τ [F ′(x(k))]−1F (x(k)),

x(k+1) = x(k) − A[F ′(x(k))]−1F (y(k)),
(1)

where τ =
−1±√5

2
and A =

3±√5

2
.

In the following, we remember some known notions and results that we need
in order to analyze the convergence of the new methods.

Definition 1.1 Let {x(k)}k≥0 be a sequence in Rn convergent to x̄. Then,
convergence is called

(a) linear, if there exists M , 0 < M < 1, and k0 such that

∥∥∥x(k+1) − x̄
∥∥∥ ≤ M

∥∥∥x(k) − x̄
∥∥∥ , ∀k ≥ k0.

(b) of order p, p > 1, if there exists M , M > 0, and k0 such that

∥∥∥x(k+1) − x̄
∥∥∥ ≤ M

∥∥∥x(k) − x̄
∥∥∥

p
, ∀k ≥ k0.

Weerakoon and Fernando introduced in [17] the concept of Computational
Order of Convergence (COC). One of the main drawback of the COC is that
it involves the exact root, which in a real situation it is not known a pri-
ori. To avoid this, the authors introduced in [1] the concept of Approximated
Computational Order of Convergence as follows:

Definition 1.2 Let x̄ be a zero of function F and suppose that x(k−1), x(k)

and x(k+1) are three consecutive iterations close to x̄. Then, the computational
order of convergence p can be approximated using the formula

p ≈ ρ =
ln

(∥∥∥x(k+1) − x(k)
∥∥∥ /

∥∥∥x(k) − x(k−1)
∥∥∥
)

ln (‖x(k) − x(k−1)‖ / ‖x(k−1) − x(k−2)‖) . (2)

We call this number the approximated computational order of convergence
(ACOC).

In order to compare different methods, we use the efficiency index, I = p1/d

(see [18]), where p is the order of convergence and d is the number of functional
evaluations per iteration required by the method. This is the most used index.
However, in the n-dimensional case, it is also important to take into account
the number of operations performed, since for each iteration a number of linear
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systems must be solved. We recall that the number of products/quotiens that
we need for solving m linear systems with the same matrix, by using LU
factorization, is

1

3
n3 + mn2 − 1

3
n,

where n is the size of the linear systems.

For this reason we define the Computational Efficiency Index as

IC = p1/(d+op), (3)

where op is the number of products/quotients per iteration. We use this new
index to compare the different methods.

Let F : D ⊆ Rn −→ Rn be sufficiently differentiable in D. The qth derivative
of F at u ∈ Rn, q ≥ 1, is the q-linear function F (q)(u) : Rn × · · · ×Rn −→ Rn

such that F (q)(u)(v1, . . . , vq) ∈ Rn. It is easy to observe that

1. F (q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn),
2. F (q)(u)(vσ(1), . . . , vσ(q)) = F (q)(u)(v1, . . . , vq), for all permutation σ of {1, 2, . . . , q}.

From the above properties we can use the following notation:

(a) F (q)(u)(v1, . . . , vq) = F (q)(u)v1 . . . vq,
(b) F (q)(u)vq−1F (p)vp = F (q)(u)F (p)(u)vq+p−1.

On the other hand, for x̄ + h ∈ Rn lying in a neighborhood of a solution x̄ of
F (x) = 0, we can apply Taylor’s expansion and assuming that the Jacobian
matrix F ′(x̄) is nonsingular, we have

F (x̄ + h) = F ′(x̄)


h +

p−1∑

q=2

Cqh
q


 + O(hp), (4)

where Cq = (1/q!)[F ′(x̄)]−1F (q)(x̄), q ≥ 2. We observe that Cqh
q ∈ Rn since

F (q)(x̄) ∈ L(Rn × · · · × Rn,Rn) and [F ′(x̄)]−1 ∈ L(Rn).

In addition, we can express F ′ as

F ′(x̄ + h) = F ′(x̄)


I +

p−1∑

q=2

qCqh
q−1


 + O(hp), (5)

where I is the identity matrix. Therefore, qCqh
q−1 ∈ L(Rn). From (5), we

obtain

[F ′(x̄ + h)]−1 =
[
I + X2h + X3h

2 + X4h
3 + · · ·

]
[F ′(x̄)]−1 + O(hp), (6)
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where

X2 = −2C2,

X3 = 4C2
2 − 3C3,

X4 = −8C3
2 + 6C2C3 + 6C3C2 − 4C4,

...

We denote e(k) = x(k) − x̄ the error in the kth iteration. The equation

e(k+1) = Le(k)p + O(e(k)p+1
),

where L is a p-linear function L ∈ L(Rn×· · ·×Rn,Rn), is called the error equa-
tion and p is the order of convergence. Observe that e(k)p is (e(k), e(k), · · · , e(k)).

The rest of this paper is organized as follows: Section 2 describes the new
three-step iterative methods of order 4 obtained by composing the golden ratio
methods of order 3, described by (1), with modified Newton’s method. These
new methods show to be very efficient, as they improve Newton’s method even
taking into account the number of operations included in each iteration. This is
a key fact, as Newton-type methods usually need a great amount of operations
in each iteration, which is important in systems of nonlinear equations.

Subsequently, we analyze the following question: how far can this composition
be made in order to optimize the order of convergence and the computational
effort? This is showed to be related directly with the size of the system, but
the results are advantageous to high-order methods.

The last section is devoted to numerical results obtained by applying some of
the obtained methods to several systems of nonlinear equations. From these
results, we compare different methods, confirming the theoretical results.

2 Description of the methods and convergence analysis

Let F : D ⊆ Rn −→ Rn be a sufficiently differentiable function and let x̄ be a
zero of the nonlinear system F (x) = 0.

Let us consider a fixed point function M : Rn −→ Rn such that the itera-
tive method x(k+1) = M(x(k)) converges to the solution x̄ of F (x) = 0, with
convergence order p. We define a new iteration function G : Rn −→ Rn by
applying a modified Newton’s iteration function to M(x):

G(x) = M(x)− [F ′(x)]−1F (M(x)). (7)
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Then, the new iterative process is:

x(k+1) = M(x(k))− [F ′(x(k))]−1F (M(x(k))), (8)

which will be proved to have order of convergence p + 1. This result, for the
scalar case, is proved in [11]. So, an extension is made to the multidimensional
case.

Theorem 2.1 Let F : D ⊆ Rn −→ Rn be sufficiently differentiable at each
point of an open neighborhood D of x̄ ∈ Rn that is a solution of the system
F (x) = 0. Let us suppose that F ′(x) is continuous and nonsingular in x̄.
Let us also suppose that the method described by a fixed point function M(x)
converges to x̄, with convergence order p. Then, the sequence obtained by the
iterative process (8) converges to x̄ with order p + 1.

Proof: From (4) and (5) we obtain

F (x(k)) = F ′(x̄)
[
e(k) + C2e

(k)2 + C3e
(k)3 + C4e

(k)4
]
+ O(e(k)5)

and

F ′(x(k)) = F ′(x̄)
[
I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4

]
+ O(e(k)5),

where Ck = (1/k!)[F ′(x̄)]−1F (k)(x̄), k = 2, 3, . . ., and e(k) = x(k) − x̄.

From the above expression, we have

[F ′(x(k))]−1 =
[
I + X2e

(k) + X3e
(k)2 + X4e

(k)3
]
[F ′(x̄)]−1 + O(e(k)4),

where X2 = −2C2, X3 = 4C2
2 − 3C3 and X4 = −8C3

2 + 6C2C3 + 6C3C2− 4C4.

On the other hand, by taking into account that M(x) describes an iterative
method of order p, we have

M(x(k))− x̄ = O(e(k)p),

so

F (M(x(k))) = F (x̄) + F ′(x̄)
(
M(x(k))− x̄

)
+ F ′′(x̄)

(
M(x(k))− x̄

)2
+ · · ·

= F ′(x̄)
(
M(x(k))− x̄

)
+ O

(
e(k)2p)

.

Therefore,
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[F ′(x(k))]−1F (M(x(k))) =

=
[
I + X2e

(k) + X3e
(k)2 + X4e

(k)3
]
[F ′(x̄)]−1

[
F ′(x̄)

(
M(x(k))− x̄

)
+ O

(
e(k)2p)]

= M(x(k))− x̄ + X2

(
M(x(k))− x̄

)
e(k) + O

(
e(k)p+2)

.

Then,

x(k+1) − x̄ = M(x(k))− x̄− [F ′(x(k))]−1F (M(x(k))) = O
(
e(k)p+1)

.

2

As we have mentioned in the introduction, we consider two third-order meth-
ods based on golden ratio, whose associated fixed point functions are:

Mi(x) = x− Ai[F
′(x)]−1F (ηi(x)), (9)

for i = 1, 2, where A1 = 3+
√

5
2

, A2 = 3−√5
2

and

ηi(x) = x− τi[F
′(x)]−1F (x),

being τ1 = 1
ϕ
, τ2 = −ϕ and the golden ratio ϕ = 1+

√
5

2
. These methods, that

we will denote by G1 and G2, have convergence order three (see [16]) and their
classical efficiency index is:

IG = 3
1

n2+2n ,

which is better than the one of Newton’s method for all n ≥ 1.

Moreover, the computational index of the golden ratio methods is

(IC)G = 3
1

1
3 n3+3n2+5

3 n .

When these methods are composed with the modified Newton’s method of
”frozen” Jacobian matrix, the resulting method (that we will denote by NG)
have the following iterative expression:

z(k) = x(k) − −1 +
√

5

2
[F ′(x(k))]−1F (x(k)),

y(k) = x(k) − 3 +
√

5

2
[F ′(x(k))]−1F (z(k)), (10)

x(k+1) = y(k) − [F ′(x(k))]−1F (y(k)),

in the particular case of A1 and τ1. Let us note that, in this new method, only
the Jacobian matrix at the iteration x(k) is evaluated. This is a key fact to the
efficiency of the resulting method.
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Certainly, the new linear system to be solved at the third step of each iteration
holds the same matrix, the ”frozen” Jacobian matrix F ′(x(k)). This improves
the computational efficiency of the method, as only n2 operations and n func-
tional evaluations are added at each iteration. So, the corresponding index of
NG is:

(IC)NG = 4
1

1
3 n3+4n2+8

3 n .

The relation between the efficiency indices of Newton’s, Golden and NG meth-
ods is as follows: for n > 1,

ING > IG > IN

and respect to the computational efficiency index, for 5 > n ≥ 2,

(IC)NG > (IC)N

and
(IC)G > (IC)N .

Nevertheless, for n ≥ 5,

(IC)NG > (IC)G > (IC)N .

It can be observed that the new method NG is better than the source method
G only when the size of the system is greater than or equal to five.

Now, a question is stated: how many iterated compositions of the modified
Newton’s method have to be made in order to obtain an optimal relation
between the order of convergence and the efficiency indices? Let us note that
the computational and classical efficiency indices of the (p− 3)-times iterated
Newton-Golden method (NGp), can be expressed only in terms of the order
of convergence p and the size of the system:

INGp = p
1

n2+(p−1)n

and

(IC)NGp = p

1
1
3 n3+pn2+(p− 4

3)n .

The optimal relation for each index is shown in Table 1, in terms of the size
of the system. Note that the method with optimal order of convergence, in
relation with the computational efficiency index, have needed less iterations
than the respective one for the classical efficiency index.

Arrived at this point, it is useful to analyze this procedure from another point
of view: does the total number of operations (or functional evaluations) actu-
ally decrease when the optimal order of convergence is close? Does it works for
big-sized systems? The answer to these questions is found in Figure 1, when
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n optimal p for I optimal p for IC

3 4 3

4 5 3

5 6 4

10 8 5

20 12 7

30 16 8

40 20 10

50 23 11

100 37 18

500 129 55

1000 226 94

Table 1
Optimal iteration-method for different values of the size of the system n.

the size of the nonlinear system is n = 99. In order to generate this figure, we
estimate the zeros of the nonlinear function (that will be studied in more detail
in Section 3) F (x) = (f1 (x) , f2 (x) , . . . , fn (x)), where x = (x1, x2, . . . , xn)T

and fi : Rn → R, i = 1, 2, . . . , n, such that

fi (x) = xixi+1 − 1, i = 1, 2, . . . , n− 1

fn (x) = xnx1 − 1.

We use the iterated methods NGp: for each execution of NGp, with increas-
ing values of p, we calculate the total number of operations and functional
evaluations (by the simple product of the number of iterations needed in each
case and the number of operations and functional evaluations per iteration).
It can be observed that when the order of the method is near of its optimal
value, the total number of operations and functional evaluations is much lower
than in previous executions, as the number of iterations needed to solve the
nonlinear system has also decreased.

3 Numerical results

In this section we will check the effectiveness of some numerical methods
in order to estimate the zeros of several nonlinear functions, some of them
obtained by applying a finite differences scheme to boundary-value problems.
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Fig. 1. Total number of operations and functional evaluations for NGp-methods.

Numerical computations have been carried out in MATLAB, with variable
precision arithmetic that uses floating point representation of 200 decimal
digits of mantissa. Every iterate x(k+1) is obtained from the previous one, x(k),
by adding one or more terms of the form A−1b where x(k) ∈ Rn, A is a real n×n
matrix and b ∈ Rn. The matrix A and the vector b are different according to
the method used, but in any case the inverse calculation −A−1b is carried out
solving the linear system Ay = −b, using Gaussian elimination with partial
pivoting.

The stopping criterion used is
∥∥∥x(k+1) − x(k)

∥∥∥+
∥∥∥F

(
x(k)

)∥∥∥ < 10−100. Therefore,
we check that iterates converge to a limit and moreover that this limit is a
solution of the system of nonlinear equations.

Tables 2, 3 and 4 show several results obtained by using the previously de-
scribed methods and the Newton’s and Jarratt’s methods, in order to estimate
the zeros of functions. Given an initial estimation x(0), we analyze, for every
method, the number of iterations needed to converge to the solution, the ap-
proximated computational order of convergence, ρ, defined in (2), and the total
number of operations (products/quotients) (TO) and functional evaluations
(TFE).
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Method Iterations ρ TO TFE

N 6 2.00 1999206 59400

J 4 3.83 2783616 78804

NG4 6 3.75 2469621 70686

NG8 4 7.65 1568028 41976

NG18 3 17.40 1470051 34452

Table 2
Numerical results for the function (11).

The value of ρ that appears in Tables 2, 3 and 4 is the last coordinate of
vector ρ when the variation between its coordinates is small. When this does
not happen, the value of ρ is said to be not conclusive, and is denoted by ”-”
in the mentioned tables.

Firstly, let us consider the nonlinear function F (x) = (f1 (x) , f2 (x) , . . . , fn (x)),
where x = (x1, x2, . . . , xn)T and fi : Rn → R, i = 1, 2, . . . , n, such that

fi (x) = xixi+1 − 1, i = 1, 2, . . . , n− 1

fn (x) = xnx1 − 1.
(11)

When n is odd, the exact zeros of F (x) are x̄1 = (1, 1, . . . , 1) and x̄2 =
(−1,−1, . . . ,−1). Results appearing in Table 2 are obtained for n = 99 and
all the methods converge to x̄1.

Let us observe that the optimal method, in terms of number of iterations
and computational efficiency, is the iterated NG method of order 18, as was
expected, being the total number of operations and functional evaluations
much lower than the ones from classical Newton’s method.

If we consider the nonlinear boundary value problem

y′′(x) = y(x)3 + sin(y′(x)2), x ∈ [0, 1]

y(0) = 0, y(1) = 1

taken from [9], and use the finite differences method, we take the nodes xi = ih,
i = 0, 1, . . . , n where h = 1

n
, and use second order approximations for y′(xi)

and y′′(xi). By denoting the unknowns values y(xi) by yi, i = 0, 1, 2, . . . , n the
solution of the following nonlinear system provides us an estimation of the
solution of the boundary value problem:

yi+1 − 2yi + yi−1

h2
−y3

i−sin
(

yi+1 − yi−1

2h

)2

= 0, i = 1, 2, 3, . . . , n−1. (12)
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Method Iterations ρ TO TFE

N 8 2.00 4488 1056

J 5 3.83 7480 1265

NG4 5 3.45 4015 770

NG5 4 4.83 3696 660

NG11 3 10.92 4950 693

Table 3
Numerical results for the boundary problem (12) with n = 9.

Method Iterations ρ TO TFE

N 8 2.00 374408 21216

J 5 3.28 507280 26265

NG4 5 4.08 260015 13770

NG8 4 7.58 249628 11832

NG10 3 9.42 202827 9180

Table 4
Numerical results for the boundary problem (12) with n = 49.

If we take n = 9 and the initial estimation x(0) = (0, 0.1, . . . , 0.9, 1), the
results obtained by applying different methods are showed in Table 3. We
observe that, in this case, the optimal iterated method is NG5, although the
number of iterations made is not the least one. The fact is that, in terms
of computational efficiency (see TO and TFE for NG5), is better to get the
solution in 4 iterations with NG8 than in 3 with NG10.

In order to know what happens when the size of the system increases, we
observe the results showed in Table 4, obtained by applying the known and
new methods on the system (12) with n = 49. The initial estimation is x(0) =
(0, 0.02, . . . , 0.98, 1) in this case. We observe that the optimal order is 10,
as well in terms of number of iterations as in computational efficiency. This
improves the theoretical results.

Finally, let us consider the boundary-value problem

y′′(x) = −(1 + a2(y′)2), x ∈ [0, 1]

y(0) = 0, y(1) = 0

taken from [19]. This problem arises in the study of finite deflections of an

12



Method Iterations ρ TO TFE

N 7 2.00 291207 17150

J 4 4.00 361816 19404

NG4 4 4.00 185612 10192

NG8 3 8.08 168021 8232

NG11 3 6.25 189630 8673

Table 5
Numerical results for the boundary problem (13) with n = 49.

elastic string under a transverse load and its exact solution is

y(x) = ln

(
cos (a(x− 1/2))

cos a/2

)
1

a2
.

In order to get an estimation of this solution, we also use the second order finite
differences method and, therefore, the following nonlinear system provides us
an estimation of the solution of the original boundary value problem:

yi+1 − 2yi + yi−1

h2
+1+ a2

(
yi+1 − yi−1

2h

)2

= 0, i = 1, 2, 3, . . . , n− 1. (13)

The results obtained by applying different methods to system (13), with the
initial estimation x(0) = (0.2, . . . , 0.2), n = 49 and a = 1/7, are showed in
Table 5. It is observed that, in practice, the optimal order of convergence is
8, which is a better result than the expected one. In fact, the exact error of
this estimation is, in norm, 8.7994 · 10−7, whereas if a smaller system is solved
(n = 9, for example), the corresponding error is 9.8374 · 10−6. In Figure 2
the exact error on each component of the estimation obtained for n = 49 is
showed. Although the exact error seems to be high, it is necessary to take
into account that the order of the finite differences method used to transform
the boundary-value problem in a nonlinear system of equations is two; if a
better estimation is needed, a higher order method should be used in this
transformation.

In general, it can be concluded that the high-order methods generated are
very efficient, specifically in the case of large systems. As we mentioned in the
introduction, this can be the case when numerical applications are made (in
particular, numerical solution of quadratic equations and nonlinear integral
equations are needed in the study of dynamical models of chemical reactors
[12], or in radioactive transfer [13]). The results of these numerical experiments
show that the high order methods associated with a multiprecision arithmetic
floating point are very useful.
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Fig. 2. Exact error made in the calculus of the deflections of an elastic string.
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