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Scattered and track data interpolation using an efficient strip searching procedure

G. Allasia, R. Besenghi, R. Cavoretto, A. De Rossi∗

Department of Mathematics, University of Turin, via Carlo Alberto 10, I–10123 Torino, Italy.

Abstract

A new local algorithm for bivariate interpolation of large sets of scattered and track data is presented. The method,

which changes partially depending on the kind of data, is based on the partition of the interpolation domain in a

suitable number of parallel strips, and, starting from these, on the construction for any data point of a square neigh-

bourhood containing a convenient number of data points. Then, the well-known modified Shepard’s formula for

surface interpolation is applied with some effective improvements. The proposed algorithm is very fast, owing to the

optimal nearest neighbour searching, and achieves a good accuracy. Computational cost and storage requirements

are analyzed. Moreover, the efficiency and reliability of the algorithm are shown by several numerical tests, also

performed by Renka’s algorithm for a comparison.

Key words: continuous surface modelling, interpolation algorithms, radial basis functions, scattered and track data,

Shepard’s formulas.
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1. Introduction

We consider the problem of interpolating a continuous function f : R
m → R, (m ≥ 1), defined on a finite set

Sn = {xi, i = 1, 2, . . . , n} of data points or nodes, which are situated on a domain D ⊂ R
m. It consists of finding a

real multivariate function F ∈ C1(D) such that, given the xi and the corresponding function values fi, the interpolation

conditions F(xi) = fi, (i = 1, 2, . . . , n), are satisfied.

In particular, we are interested to consider the interpolation of large scattered data sets, a problem which requires

efficient and accurate algorithms. The subject has applications on several areas of the applied sciences, e.g. geophysics

or meteorology. In 1988 Renka [27] proposed an optimized implementation of the modified version of Shepard’s

method, which is still now one of the most powerful tools. Then in 2002, Lazzaro and Montefusco [26] presented

a modification of the local Renka’s algorithm, in which least squares approximants are replaced by nodal functions

based on radial basis functions (RBFs), thus improving accuracy.

As a matter of fact, in several applied problems the function values are known along a number of lines or curves,

as in the case of ocean-depth measurements from a survey ship or meteorological measurements from an aircraft or

an orbiting satellite. These data are affected by measurement errors and, generally, taken near to rather than precisely

on straight or curved tracks, owing to the effects of disturbing agents, such as wind and waves. Several methods (see,

e.g., [7, 8, 12, 16] and references therein) have been proposed to solve the considered problem by using different

approximation techniques (approximation or interpolation, as opposed to approximation) and tools (tensor-product

splines, least squares, radial basis functions, Chebyshev polynomials of the first or second kind, etc.). Nevertheless,

the non-uniformity and anisotropy in the distribution of this kind of data (often called track data), that is, nodes are

very close to each other along the tracks, but widely separated between tracks, cause several difficulties for traditional

scattered data approximation methods. On the contrary, the solution method and the related algorithm we propose in

this paper enable to deal with this setting in a very efficient way.
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In previous works [4, 6] we gave two different approaches for approximating surface data disposed on a family of

(straight) lines or curves on a plane domain. The most interesting case occurs when the lines or curves are parallel.

It is possible that some or all the nodes are not collocated exactly on the lines or curves but close to them, or that

the lines or curves are not parallel in a proper sense but roughly parallel. Although there is a data structure, it is not

required that the node distribution on each line or curve has a special regularity, that is, the nodes can be irregularly

spaced and in different positions on each line or curve. The schemes we presented approximate the data by means of

interpolation or near-interpolation operators, both based on cardinal radial basis functions (CRBFs), whose properties

are widely discussed in [1, 2]. In particular, the scheme in [4] has been widely tested in [13], where some interesting

devices are presented.

Thus, if we suppose to move the parallel lines or curves as close together as the nodes on different lines or curves,

then the track data structure vanishes and the node distribution appears quite irregular on the whole domain D. Con-

versely, if the nodes are scattered, we can think of partitioning the domain into a convenient number of parallel strips,

bounded by parallel lines or curves. Then, we can consider the midlines of the strips as a set of parallel lines or

curves, each one having a certain number of nodes on or close to it. Following this idea, we start considering an

interpolation scheme for track data and then extend it, in a simple and straightforward way, to interpolation of general

sets of scattered data. The outcome is an efficient interpolation algorithm, called strip algorithm, for modelling con-

tinuous surfaces. The particular strip structure gives some advantages, because it allows us to optimize the searching

procedure of nodes and guarantees a high parallelism. In the strip algorithm, first, we partition the domain D into

a finite number of parallel strips, ordering all the nodes on each strip with respect to a given direction, which is the

same for all strips. Then, we consider a strip searching procedure that establishes the minimal number of strips to be

examined, in order to localize a convenient set of neighbour nodes for each strip point (i.e. a node lying on a strip).

Finally, we approximate the unknown function f using a modified Shepard’s interpolant F, which uses moving least

squares approximants or radial basis functions as local functions. Numerical results show that the strip algorithm

is more efficient than Renka’s one (in particular with regard to the execution CPU times), and, at the same time, is

comparable in accuracy.

The paper is organized as follows. In Section 2 we recall some properties of CRBIs, referring particularly to

Shepard’s formula. Section 3 is devoted to briefly remind the well-known local interpolation method, namely the

modified Shepard’s method, and to consider two ways of constructing nodal functions, that is, the least squares

method and the radial basis functions. In Section 4 we describe the strip algorithm, dwelling on the details that allow

the procedure to be accurate and computationally efficient. The analysis is divided in four parts: the strip searching

method, the strip algorithm, the computational complexity of the proposed algorithm, and some numerical results

considering the scattered data interpolation. Section 5 follows a similar subdivision but now track data interpolation

is studied. In particular, numerical comparisons with Renka’s algorithm are presented in both cases. In Section 6 a

subdivision procedure for Shepard’s type interpolants is pointed out, and we sketch a parallel version of the algorithm,

discussing some practical aspects. Section 7 deals with final remarks and future work. Finally, in Appendix A, a brief

recall of Renka’s algorithm is given for greater convenience of the reader and in order to make clearer the comparison

with the strip algorithm.

2. Cardinal radial basis interpolation

Scattered data multivariate approximation and, in particular, radial basis interpolation, are widely studied subjects.

In the literature many results can be found, either about theoretical properties of radial basis functions or about their

computational aspects (see [11, 24, 33, 18]). A different approach enables to obtain cardinal radial basis interpola-

tion operators, which do not require solving large linear systems (possibly, badly conditioned) and enjoy interesting

properties; in particular, they are weighted arithmetic means of the function values [1, 2].

Given a set Sn = {xi, i = 1, 2, . . . , n} of distinct nodes, arbitrarily distributed in a domain D ⊂ R
m, (m ≥ 1), and

a set Fn = { fi, i = 1, 2, . . . , n} of associated real values, to solve the classical interpolation problem, one can consider

basis functions which depend on the nodes and, moreover, are cardinal. A cardinal radial basis interpolant is obtained

selecting continuous cardinal functions gk : D→ R, (k = 1, 2, . . . , n), such that

gk(x) ≥ 0,

n
∑

k=1

gk(x) = 1, gk(xi) = δki, i = 1, 2, . . . , n,
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where δki is the Kronecker delta, and setting up the interpolant F (or F(x; f ,Sn), if appropriate) in the form

F(x) =

n
∑

k=1

fk gk(x).

We focus on a wide class of interpolation operators, specified by a constructive procedure suggested by Cheney

[14] (see also [15]).

Definition 2.1. Let α(x, y), with x, y ∈ D, be a continuous real function such that

α(x, y) > 0, if x , y; α(x, x) = 0; ∀x, y ∈ D. (1)

Define the functions g j by

g j(x) =

∏n
k=1,k, j α(x, xk)

∑n
j=1

∏n
k=1,k, j α(x, xk)

,

and the interpolant F by

F(x) =

n
∑

j=1

f j g j(x) =

n
∑

j=1

f j

∏n
k=1,k, j α(x, xk)

∑n
j=1

∏n
k=1,k, j α(x, xk)

, (2)

or, equivalently, by

F(x) =

n
∑

j=1

f j

1/α(x, x j)
∑n

j=1 1/α(x, x j)
, F(xi) = f (xi), i = 1, 2, . . . , n. (3)

Among all possible choices for the function α(x, y), it is natural to identify α(x, y) with a function of a distance

d(x, y) defined on D ⊂ R
m, i.e.,

α(x, y) = φ(d(x, y)).

Since the distance is a nonnegative real number, it is often convenient to consider the univariate function φ : R≥0 → R

associated to φ(d(x, y)). If d(x, y) is the Euclidean metric ‖x − y‖2, then the interpolant F becomes independent of

Euclidean transformations of the data set. As a significant example of distance-weighted interpolation, we consider

Shepard’s formula [32], whose barycentric form is

S (x) =

n
∑

j=1

f j

‖x − x j‖
−p

2
∑n

j=1 ‖x − x j‖
−p

2

, S (xi) = fi, i = 1, 2, . . . , n, (4)

where p > 0. The case p = 2k, (k ∈ N), is remarkable, because the basis functions are infinitely differentiable (see,

for example, [9, 23]). The original formula (4) can be rewritten in the equivalent product form

S (x) =

n
∑

j=1

f j

∏n
k=1,k, j ‖x − xk‖

p

2
∑n

j=1

∏n
k=1,k, j ‖x − xk‖

p

2

,

which is more suitable in order to discuss analytic properties. Shepard’s formula is not only invariant under translations

and rotations, but also scale invariant.

3. Localizing interpolation schemes

The classical Shepard’s formula has two crucial drawbacks, namely the occurrence of flat spots at the nodes (i.e.,

the partial derivatives vanish there) and the dependence of the operator on all the nodes. To avoid these shortcomings,

a modified version of Shepard’s method has been developed by Franke and Nielson [21], and then improved by Renka

[27]. An interesting modification has been suggested by Lazzaro and Montefusco [26].

Here we consider the following definition of the modified Shepard’s method.

3



Definition 3.1. Given a set Sn = {xi, i = 1, 2, . . . , n} of distinct nodes, arbitrarily distributed in a domain D ⊂ R
m,

with the corresponding set Fn = { fi, i = 1, 2, . . . , n} of associated values of an unknown real function f : D → R, the

modified Shepard’s method F̃ : D→ R takes the form

F̃(x) =

n
∑

j=1

L j(x)W̄ j(x). (5)

The nodal functions L j(x), ( j = 1, 2, . . . , n), are local approximants to f at x j, constructed on the nL nodes closest to

x j and satisfying the interpolation conditions L j(x j) = f j. The weight functions W̄ j(x), ( j = 1, 2, . . . , n), are given by

W̄ j(x) =
W j(x)

∑n
k=1 Wk(x)

, j = 1, 2, . . . , n,

where

W j(x) = τ(x, x j)/α(x, x j),

τ(x, x j) being a nonnegative localizing function, and α(x, x j) = ‖x − x j‖
2
2
.

As regard to the choice of nodal functions we consider two possible ways. The former is obtained by solving the

least squares problem at the node x j using weights with reduced compact support, that is,

min
a j

nL
∑

i=1,i, j

[

L j(xi) − fi
]2

wi(x j),

where L j is a quadratic m-variate polynomial with coefficients a j = (a j1, a j2, . . . , a jh)T , h is less than the number nL

of nodes of the considered neighbourhood of x j, and wi(x j) = τ(x j, xi)/α(x j, xi) is a nonnegative weight function.

The latter is the most used interpolant on scattered data (see [11, 33]), and has the form

L j(x) =

nL
∑

i=1

aiϕ(‖x − xi‖2) +

U
∑

k=1

bkπk(x), (6)

where the radial basis functions ϕ(‖x − xi‖2) depend on the nL nodes of the considered neighbourhood of x j, and the

space Pm
v−1

spanned by the (v − 1)-degree polynomials πk(x) has a dimension U = (m + v − 1)!/(m!(v − 1)!) which

must be lower than nL. It is required that L j satisfies the interpolation conditions

L j(x j) = f j, j = 1, 2, . . . , nL,

and the side conditions
nL
∑

i=1

aiπk(xi) = 0, for k = 1, 2, . . . ,U.

Hence, to compute the coefficients a = (a1, a2, . . . , anL
)T and b = (b1, b2, . . . , bU)T in (6), it is required to solve

uniquely the system of linear equations

Ka + Pb = f ,

PT a = 0,

where K = {ϕ(||x j − xi||2)} is a nL × nL matrix, P = {πk(x j)} is a nL × U matrix, f denotes the column vector of the

k-th coordinate of the function values f j corresponding to the x j, and the equation PT a = 0 represents the boundary

conditions.

The most popular choices for ϕ are

ϕ(r) = r2v−m log r, 2v − m ∈ 2N, (generalized thin plate spline)

ϕ(r) = e−βr
2

, (Gaussian)

ϕ(r) = (r2 + γ2)v/2, (generalized multiquadric)
4



where β, γ are positive constants, v is an integer number and r = ||x− xi||2. The Gaussian and the inverse multiquadric

(IMQ), which occurs for v < 0 in the generalized multiquadric function, are positive definite functions, and this

guarantees the existence of a unique solution of the considered system. Otherwise, the thin plate spline (TPS) and

the multiquadric (MQ), i.e. for v > 0 in the generalized multiquadric function, are conditionally positive definite

functions of order v, which require the addition of a polynomial term of order v − 1 together with side conditions in

order to obtain an invertible interpolation matrix.

Since Shepard’s interpolant in (4) depends on all the data, when the number of data is very large, the evaluation

becomes proportionately longer and, eventually, the method will become inefficient or impractical. So for the weights

in (5) we propose the use of different localizing functions τ(x). A first simple but efficient localizing function with

compact support, often called step function, is given by

τ1(x, x j) =

{

1, if x ∈ C(x j; s),

0, otherwise,

where C(x j; s) is a hypercube of centre at x j and side s.

Otherwise, several authors have suggested localizing schemes in such a way as to obtain a weighting function

which is zero outside some disk of suitable radius centred at each node (see [21]). Hence, to localize F(x) one can

multiply the functions 1/α(x, x j) in (3) by the so-called mollifying functions τ2(x, x j), ( j = 1, 2, . . . , n), which are

nonnegative, have local supports in some appropriate sense, and satisfy τ2(x j, x j) = 1, as for example the truncated

power function

τ2(x, x j) =
(

1 − ||x − x j||
2
2/r j

)

+, (7)

where r j is the radius of the circle of support at the node x j.

An interesting alternative to (7) is offered by the function

τ3(t) =

{

−2(3q)t3 + 3 · 2(2q)t2 − 3 · 2qt + 1, if 0 ≤ t ≤ 1/2q,

0, if t > 1/2q,

where t = ‖x−x j‖
2
2
. In fact, we have τ3(0) = 1 and τ3(1/2q) = 0; the function is convex and its tangent plane at t = 1/2q

is horizontal; the localizing effect increases with q. Localizing functions like τ3(t), possibly with different orders of

continuity, may represent an alternative choice to the families of localizing functions based on cutoff functions (see,

for example, [31]).

Among possible choices it is also convenient to localize the method considering a factor τ4(x, x j) rapidly decreas-

ing with distance. The formulas obtained in this way maintain, in general, the analytical and computational properties

of the corresponding original ones. The use of the exponential-type weight function

τ4(x, x j) = exp
(

−γ||x − x j||
2
2

)

, γ ≥ 0,

yields much more accurate results, and the increased computational effort can generally be tolerated.

4. Scattered data interpolation algorithm

In this section, we consider the problem of approximating a function f : D → R, D = [0, 1] × [0, 1] ⊂ R
2, only

known on a set Sn = {(xi, yi), i = 1, 2, . . . , n} of distinct and scattered nodes, which has Fn = { fi, i = 1, 2, . . . , n} as the

set of corresponding function values. The method and the relative algorithm could be extended in a straightforward

way to more general domains D. Our aim is to describe a local interpolation algorithm, called strip algorithm, which is

accurate and, at the same time, computationally efficient if compared with those known in the literature. Therefore, we

propose a comparison between the strip algorithm and Renka’s algorithm [27] (see Appendix A), which is currently

considered as a standard procedure.
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4.1. Strip searching method

In this subsection we extensively explain our searching method, dwelling on the details that allow the procedure

to be accurate and computationally efficient.

The main idea is to construct a suitable family of q strips of equal width (with possible exception of one of them)

on the domain D, and parallel to x-axis, so that the set Sn of nodes is partitioned by the strip structure into q subsets

Snk
, whose elements are (xk1, yk1), (xk2, yk2), . . . , (xknk

, yknk
), (k = 1, 2, . . . , q). Then, the nodes of each Snk

are ordered

with respect to the positive direction of the x-axis, by applying a classical sorting procedure. This phase will be

described in detail in Algorithm 1 in Subsection 4.2 (see Stage 4).

Let us consider now the construction of local neighbourhoods (in general, rectangular or, more simply, square) for

all nodes. These neighbourhoods are to be used in the computation of coefficients in the least squares or RBF nodal

functions L j(x, y), ( j = 1, 2, . . . , n). The choice of each local (square) neighbourhood size is carried out automatically

in relation to the sample dimension n, the parameter value nL, and the positive integer k1, as it is detailed by (9) in

Stage 2. To localize the nodes closest to each strip point, we establish the minimal number of strips to be examined,

because a node belonging to a strip can be closer to nodes in nearby strips than to those in the same strip. The strategy

to define the minimal number of strips is given directly by the neighbourhood half-size δL
y (see Stage 2 and Stage

3).

In practice, the search of the nearby nodes is limited at most to three strips: the strip on which the considered

node lies, the previous and the next strips (see Algorithm 2 in Stage 5 for more details). To satisfy these requests,

we explain, first, a way for choosing a suitable size of the neighbourhood, and then a rule for finding which and how

many strips to examine.

(1) The size of local square neighbourhoods is found so that, supposing a uniform distribution of nodes on the domain

D, each neighbourhood has a prefixed number of nodes. The condition is satisfied, by taking into account the sample

dimension n, the parameter nL (or nW ), and the positive integer k1 (or k2). In particular, the rule (9) (or (10) in Stage

8) estimates for k1 = 1 (or k2 = 1), at least, 4nL (or 4nW ) nodes for each inner neighbourhood. If a node lies on or

close to the boundary, the number of nodes in its neighbourhood may be considerably reduced, because only a little

part of the neighbourhood intersects the domain D (see Fig. 1). However, the approach we propose is completely

automatic, since the procedure locates the minimal positive integer k1 (or k2) meeting the requirement of having a

sufficient number of nodes on each neighbourhood. This implies that the algorithm works successfully even if the

distribution of nodes is not uniform.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

 δ
y

L  

Figure 1: Example of square neighbourhoods with k1 = 1, nL = 4, n = 225.

(2) To identify the strips to be examined in the searching procedure, we adopt the following rule which is composed

of three steps:
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1. The width δs of a strip is chosen equal to the half-size δL
y of the square neighbourhood, i.e. δs ≡ δ

L
y , and the

ratio between these quantities is denoted by

i∗ =
δL

y

δs

.

2. The value i∗ provides the number j∗ of strips to be examined for each node by the rule

j∗ = 2i∗ + 1, (8)

which obviously here gives j∗ = 3.

3. For each strip sk, (k = 1, 2, . . . , q), a strip searching procedure is considered, examining the nodes from strip

sk − i∗ to strip sk + i∗ (see Stage 5).

Note that for the nodes of the “first” and “last” strips, in general, we need to reduce the total number of strips to be

examined, because if sk − i∗ < 1 or sk + i∗ > q it will assign sk − i∗ = 1 and strip sk + i∗ = q, respectively.

4.2. Strip algorithm

The strip algorithm can be described as follows.

INPUT: n, number of data; Sn = {(xi, yi), i = 1, 2, . . . , n}, set of data points; Fn = { fi, i = 1, 2, . . . , n}, set of data

values; s, number of grid points; Gs = {(xi, yi), i = 1, 2, . . . , s}, set of grid points; nL and nW , localization parameters.

OUTPUT:As = {Fi ≡ F(xi, yi), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The nodes in the domain D are ordered with respect to a common direction (e.g. the y-axis), by applying

a quicksorty procedure.

Stage 2. For each node (xi, yi), (i = 1, 2, . . . , n), a local (square) neighbourhood is constructed, whose half-size

depends on the sample dimension n, the considered value nL, and the positive integer k1, i.e.

δL
x = δ

L
y =

√

k1

nL

n
, k1 = 1, 2, . . . (9)

Stage 3. After the number of strips to be considered is found taking

q =

⌈

1

δL
y

⌉

,

the strips are numbered from 1 to q.

Stage 4. The set Sn is partitioned into q subsets Snk
, (k = 1, 2, . . . , q), so that the nodes of Snk

belong to the k-th

strip. Moreover, all the nodes of Snk
, i.e., (xk1, yk1), (xk2, yk2), . . . , (xknk

, yknk
), are ordered with respect to a common

direction (e.g. the x-axis) on all strips by a quicksortx procedure, and at the same time counted. The number of nodes

in the k-th strip is stored in nk (see Algorithm 1).

Stage 5. After defining which and how many strips are to be examined, a strip searching procedure is applied for

each node of Snk
, (k = 1, 2, . . . , q), to determine all nodes belonging to a (local) neighbourhood. The number of nodes

of the neighbourhood centred at (xi, yi) is counted and stored in mi, (i = 1, 2, . . . , n), (see Algorithm 2). Here we check

whether the number of nodes in each neighbourhood is greater or equal to nL, and if this condition is not satisfied we

return back to Stage 2.

Stage 6. All the nodes belonging to a square neighbourhood centred at (xi, yi), (i = 1, 2, . . . , n), are first ordered by

applying a based-distance sorting process, that is a quicksortd procedure, and then reduced to nL.

Stage 7. Taking only the nL nodes closest to the centre (xi, yi), (i = 1, 2, . . . , n), of the neighbourhood, a local

interpolant L j(x, y), ( j = 1, 2, . . . , n), is found for each node.

7



Algorithm 1: sorting procedure.

Step 1 Set count = 0.

Step 2 For k = 1, 2, . . . , q do

Step 3 Set nk = 0;

i = count + 1.

Step 4 While (yi ≤ k · δs ∧ i ≤ n)

set nk = nk + 1;

count = count + 1;

i = i + 1.

Step 5 Set begin stripk = count − nk + 1;

end stripk = count.

Step 6 Compute quicksortx(nk, x, y, f ).

Step 7 OUTPUT(nk, x, y, f ).

Algorithm 2: strip searching procedure.

Step 1 For k = 1, 2, . . . , q do

Step 2 Set begin = k − i∗;

end = k + i∗.

Step 3 If begin < 1

then set begin = 1;

If end > q

then set end = q.

Step 4 For h = begin stripk, . . . , end stripk do

Step 5 Set mh = 0.

Step 6 For i = begin, . . . , end do

Step 7 For j = begin stripi, . . . , end stripi do

Step 8 If (x j, y j) ∈ Ih(δL
x , δ

L
y )

then set mh = mh + 1;

S TOREh,mh
(x j, y j, f j).

Step 9 OUTPUT((x, y, f ) ∈ Ih(δL
x , δ

L
y )).

8



Stage 8. For each grid point (x, y) ∈ Gs, a square neighbourhood is constructed, whose half-size depends on the

sample dimension n, the parameter value nW , and the (positive integer) number k2, that is,

δWx = δ
W
y =

√

k2

nW

n
, k2 = 1, 2, . . . (10)

Stage 9. A searching procedure is applied to determine all nodes belonging to a (local) neighbourhood of centre

(x, y) and half-side δWx . Then, we check if the number of nodes in each neighbourhood is greater or equal to nW ; if the

condition is not satisfied we return back to Stage 8.

Stage 10. The nodes of each neighbourhood are first ordered by applying a based-distance sorting procedure

(quicksortd), and then reduced to nW .

Stage 11. Considering only the nW nodes closest to the grid point (x, y), it is found a local weight function W̄ j(x, y),

( j = 1, 2, . . . , n).

Stage 12. Applying the modified Shepard’s formula (5), the surface can be approximated at any grid point (x, y) ∈

Gs.

4.3. Computational complexity

The computational complexity of the strip algorithm is characterized by the employment of the standard sorting

routine quicksort, which requires on average a time complexity O(M log M), where M is the number of nodes

to be sorted. More precisely, we have a preprocessing phase (i.e., for building the data structure), in which the

computational cost has order: O(n log n) for the first sorting of all n nodes (see Stage 1); O(mi log mi), i = 1, 2, . . . , n,

to sort the nodes in the i − th square neighbourhood (Stage 6) and, since mi ≥ nL, for all neighbourhoods we have
∑n

i=1 O(mi log mi) ≥ n ·O(nL log nL). Moreover, the corresponding n linear systems of dimension nL are solved in order

to compute the coefficients of the local interpolants, thus requiring O(n · n3
L
/6) and O(n · 53/6) arithmetic operations

for computing RBF interpolants and least squares approximants, respectively (see Stage 7). Conversely, in the

evaluation phase we need of a computational cost of order s · O(nW log nW ) (see Stage 9) and O(nW · nL) for each

evaluation point, that is s · O(nW · nL).

We remark that when the data structure is built, no search time is required, since all points are stored in an ordered

sequence. In particular, we point out that in our algorithm the number of nodes needed in each neighbourhood is

prescribed (nL and nW in the two phases), that is the data structure is built in such a way that exactly nL and nW nodes

belong to each neighbourhood.

Finally, in the strip algorithm we used 3 · n · nL and 3 · s · nW storage locations in the building of the data structure

for the localization of nodal functions and Shepard’s interpolant, respectively.

4.4. Numerical results

In this subsection we summarize the extensive and detailed investigation we performed to test and verify the

proposed algorithm, especially in view of comparison with Renka’s one. In order to obtain numerical validation of

the strip algorithm we implemented our procedure in C/C++ language and used MATLAB environment to draw some

pictures. All the numerical results were obtained on a Pentium IV computer (2.8 GHz).

In the various tests we considered n randomly scattered nodes (xi, yi) in the square [0, 1] × [0, 1] ⊂ R
2, and the

corresponding function values fi, for i = 1, 2, . . . , n. The pseudorandom nodes were obtained by using the MATLAB

command rand, which generates uniformly distributed random numbers on the interval (0,1). Since the strip and

Renka’s algorithms are designed to interpolate to large scattered data sets, in an accurate and efficient way, we consid-

ered sets of dimension n = 1000, 2000, 4000, 8000, 16000. However, it is remarkable that, in general, also reducing

considerably (e.g., to a few thousand nodes) the dimension n of the scattered data set, the proposed algorithm holds

its efficiency. In this case a loss of approximation accuracy is unavoidable, but it depends essentially on the reduced

information, that is, the number of nodes. In Fig. 2 the set of n = 1000 nodes is plotted, as an example.

We choose from the literature some well-tried test functions, in order to verify the performance of our algorithm:

Franke’s test functions f1 (see [19, 20, 30, 26]), f2 and f3 (see [30, 26] and [30], respectively), and Nielson’s test

function f4 (see [22]). The analitic expressions of such functions are:
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Figure 2: Plot of a scattered data point set (n = 1000).

f1(x, y) =
3

4
exp

[

−
(9x − 2)2 + (9y − 2)2

4

]

+
3

4
exp

[

−
(9x + 1)2

49
−

9y + 1

10

]

+
1

2
exp

[

−
(9x − 7)2 + (9y − 3)2

4

]

−
1

5
exp
[

−(9x − 4)2 − (9y − 7)2
]

,

f2(x, y) = 2 cos(10x) sin(10y) + sin(10xy),

f3(x, y) = exp

[

−
(5 − 10x)2

2

]

+ 0.75 exp

[

−
(5 − 10y)2

2

]

+ 0.75 exp

[

−
(5 − 10x)2

2

]

exp

[

−
(5 − 10y)2

2

]

,

f4(x, y) =
1

2
y cos4

[

4
(

x2 + y − 1
)]

.

The graphs of the test functions are presented in Fig. 3 and 4.

Figure 3: Test functions f1(x, y) and f2(x, y).

Renka’s algorithm has been cleaned by all instructions which are unnecessary to the interpolant evaluation (as for

example the evaluation of the interpolant derivatives), thus obtaining an algorithm comparable with the strip one. The

comparison was performed using in the strip algorithm the localizing function τ3. We extensively tested the choice of

the localizing parameters nL and nW , finding good results for nL = 13 and nW = 8. Other choices are possible, since
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Figure 4: Test functions f3(x, y) and f4(x, y).

they depend on the behaviour of the test function, the node distribution and the dimension of the scattered data point

set.

The Root Mean Square Errors (RMSEs) and the Maximum Absolute Errors (MAEs) were computed by evaluating

the interpolants on s = 51 × 51 grid points. In Tables 1, 2, 3, and 4 we summarized the results of the numerical

experiments performed on the four test functions.

n 1000 2000 4000 8000 16000

Renka’s algorithm 7.3734E − 4 1.9363E − 4 5.8998E − 5 2.7634E − 5 8.8848E − 6

1.6781E − 2 3.3557E − 3 7.5528E − 4 5.4467E − 4 1.8245E − 4

Strip algorithm 7.3027E − 4 2.5886E − 4 6.5430E − 5 2.7545E − 5 9.3833E − 6

1.3089E − 2 4.3607E − 3 6.1721E − 4 4.9754E − 4 1.7589E − 4

Table 1: RMSEs and MAEs for the function f1.

n 1000 2000 4000 8000 16000

Renka’s algorithm 7.3097E − 3 3.3367E − 3 1.6086E − 3 4.7726E − 4 2.1094E − 4

4.9833E − 2 3.4978E − 2 3.3807E − 2 6.4474E − 3 5.6340E − 3

Strip algorithm 1.0284E − 2 3.2741E − 3 1.5193E − 3 5.0732E − 4 2.2921E − 4

1.7549E − 1 4.5686E − 2 3.1865E − 2 1.0625E − 2 6.7940E − 3

Table 2: RMSEs and MAEs for the function f2.

It appears that the two methods are comparable in accuracy. This is not astonishing, because the methods are

very similar, both being modifications of Shepard’s method in which nodal functions are given by least squares

approximants. The slight differences we found in errors are given by the different choices of the nearest neighbours:

Renka’s algorithm works with circular neighbourhoods, while the strip one with square neighbourhoods. Moreover,

the strip algorithm uses τ3 for the weights, while Renka’s algorithm employs different localizing functions.

In order to improve accuracy we also considered in the modified Shepard’s formula nodal functions constructed

by radial basis functions. Errors obtained with such interpolation scheme are listed in Tables 5, 6, 7, and 8. The

improvement is considerable, since the errors go down of one or two order of magnitude. This result is given by

the better convergence order achieved by radial basis functions in comparison with least squares approximants. The

11



n 1000 2000 4000 8000 16000

Renka’s algorithm 2.5745E − 3 9.0061E − 4 4.5809E − 4 3.2302E − 4 4.0059E − 5

4.1001E − 2 1.0284E − 2 1.3655E − 2 1.4885E − 2 4.9019E − 4

Strip algorithm 2.4492E − 3 9.7451E − 4 2.8984E − 4 1.2813E − 4 3.5490E − 5

3.6862E − 2 1.5808E − 2 4.7287E − 3 2.5127E − 3 5.0930E − 4

Table 3: RMSEs and MAEs for the function f3.

n 1000 2000 4000 8000 16000

Renka’s algorithm 2.1357E − 3 8.1067E − 4 3.0900E − 4 1.1585E − 4 4.3877E − 5

4.1188E − 2 1.2285E − 2 5.8845E − 3 2.7125E − 3 9.9668E − 4

Strip algorithm 4.1101E − 3 8.3175E − 4 3.0855E − 4 1.1788E − 4 6.3401E − 5

1.5478E − 1 1.6464E − 2 6.1582E − 3 1.8115E − 3 2.1948E − 3

Table 4: RMSEs and MAEs for the function f4.

values of the shape parameters in RBFs were chosen to be v = 2, β = 10, and γ2 = 0.1, and we defined interpolants so

that positive definiteness was guaranteed.

RBF / n 1000 2000 4000 8000 16000

TPS 1.6251E − 3 7.2136E − 4 4.1299E − 4 2.0214E − 4 1.0336E − 4

2.4967E − 2 6.8620E − 3 9.4118E − 3 3.6454E − 3 1.3058E − 3

Gaussian 1.6005E − 4 2.3769E − 5 7.5109E − 6 1.8931E − 6 4.9257E − 7

3.7529E − 3 4.1933E − 4 1.2335E − 4 3.4183E − 5 9.1839E − 6

MQ 1.0290E − 4 2.2912E − 5 5.6799E − 6 1.6311E − 6 4.6664E − 7

2.1801E − 3 4.5492E − 4 9.8712E − 5 3.4742E − 5 8.7795E − 6

IMQ 9.0126E − 5 2.6664E − 5 8.5316E − 6 1.9708E − 6 5.6279E − 7

1.1556E − 3 4.2676E − 4 2.4795E − 4 4.5244E − 5 1.3166E − 5

Table 5: RMSEs and MAEs obtained by the strip algorithm with RBFs as nodal functions for the function f1.

As we already pointed out, the strip algorithm organizes nodes and performs the nearest neighbour procedure in

a way particularly suited for the track data interpolation. However, we found that optimal results are obtained by the

strip algorithm also when it is applied to scattered data. In particular the execution times of the strip algorithm turned

out lower than those of Renka’s algorithm, and this can be explained by the smaller computational effort required by

the former. RMSEs and execution times are shown in Table 9 for Renka’s, strip and IMQ strip algorithms. The plot

in Fig. 5 compares results obtained by setting nL = 13 and nW = 10, chosen via trial and error. For the strip algorithm

we used τ1 as localizing function in the weights. Finally, we note that the execution time is only partially (see Table

10) influenced by the number of evaluations at the grid points.

5. Track data interpolation algorithm

Let Sn = {(xi, yi), i = 1, 2, . . . , n} be a set of track data points in a domain D = [0, 1] × [0, 1] ⊂ R
2, and Fn =

{ fi, i = 1, 2, . . . , n} a set of associated values of an unknown function f : D→ R. For track data points here we intend
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RBF / n 1000 2000 4000 8000 16000

TPS 2.0644E − 2 1.1248E − 2 5.9736E − 3 2.7319E − 3 1.4534E − 3

3.0006E − 1 1.6491E − 1 8.3108E − 2 3.0512E − 2 2.5735E − 2

Gaussian 1.1426E − 3 2.8395E − 4 7.0030E − 5 1.5861E − 5 4.7930E − 6

2.5813E − 2 5.0265E − 3 1.3189E − 3 3.8814E − 4 7.8783E − 5

MQ 1.4829E − 3 2.9807E − 4 7.5994E − 5 1.4639E − 5 8.3343E − 6

3.2994E − 2 4.5790E − 3 1.6226E − 3 1.9987E − 4 2.6484E − 4

IMQ 1.5250E − 3 3.2177E − 4 8.1428E − 5 1.6359E − 5 7.4154E − 6

2.7541E − 2 5.5880E − 3 1.9071E − 3 2.2348E − 4 2.3591E − 4

Table 6: RMSEs and MAEs obtained by the strip algorithm with RBFs as nodal functions for the function f2.

RBF / n 1000 2000 4000 8000 16000

TPS 5.2636E − 3 2.2818E − 3 1.0894E − 3 6.5611E − 4 2.6804E − 4

6.8544E − 2 3.1592E − 2 1.3144E − 2 1.1422E − 2 3.8364E − 3

Gaussian 4.3050E − 4 1.0003E − 4 2.5752E − 5 6.7225E − 6 1.7877E − 6

6.3983E − 3 1.4928E − 3 2.6237E − 4 8.1370E − 5 3.5539E − 5

M 3.2219E − 4 9.0324E − 5 2.2263E − 5 6.9405E − 6 2.6136E − 6

3.4521E − 3 1.2618E − 3 3.5140E − 4 1.5780E − 4 1.0098E − 4

IMQ 3.2810E − 4 9.1078E − 5 2.3711E − 5 7.9225E − 6 2.2765E − 6

3.5300E − 3 1.0568E − 3 4.9285E − 4 2.2975E − 4 8.6457E − 5

Table 7: RMSEs and MAEs obtained by the strip algorithm with RBFs as nodal functions for the function f3.

RBF / n 1000 2000 4000 8000 16000

TPS 3.6520E − 3 1.6672E − 3 8.9783E − 4 4.4469E − 4 2.5006E − 4

7.8715E − 2 3.6660E − 2 1.9060E − 2 7.0091E − 3 5.9320E − 3

Gaussian 1.3327E − 3 2.1284E − 4 4.4078E − 5 1.5738E − 5 7.8294E − 6

4.7980E − 2 6.6150E − 3 1.0495E − 3 3.4930E − 4 2.3427E − 4

MQ 1.4504E − 3 1.7017E − 4 3.6401E − 5 1.1848E − 5 5.0412E − 6

5.3337E − 2 4.7333E − 3 8.4462E − 4 2.4779E − 4 1.5073E − 4

IMQ 1.2840E − 3 1.5253E − 4 3.4068E − 5 1.0756E − 5 4.2042E − 6

4.6630E − 2 3.8991E − 3 6.9967E − 4 2.0219E − 4 1.3245E − 4

Table 8: RMSEs and MAEs obtained by the strip algorithm with RBFs as nodal functions for the function f4.
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Renka’s algorithm Strip algorithm Strip algorithm IMQ

n RMSE tsec RMSE tsec RMSE tsec

1000 7.2619E − 4 1.157 8.1573E − 4 0.313 8.8547E − 5 1.000

2000 1.8668E − 4 1.548 2.8286E − 4 0.390 2.7122E − 5 1.172

4000 5.6301E − 5 2.346 7.0714E − 5 0.594 8.7839E − 6 1.438

8000 2.5499E − 5 3.957 3.0269E − 5 1.281 1.9411E − 6 1.985

16000 8.3375E − 6 7.226 1.0297E − 5 2.500 6.6912E − 7 3.781

Table 9: RMSEs and execution times (in seconds) obtained by Renka’s algorithm and the strip algorithm using the localizing function τ1 with

nL = 13 and nW = 10 for f1 (scattered data).
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Figure 5: Execution times (left) and RMSEs (right) obtained by Renka’s algorithm and the strip algorithm using the localizing function τ1 with

nL = 13 and nW = 10 for f1 (scattered data).

that nodes may be irregularly spaced and collocated on each line or curve in different positions. Moreover, a feature

of this kind of data is that two adjacent nodes along a given line or curve are much closer together than nodes on

different lines or curves. A few papers were devoted to the study of approximating schemes for track data (see, e.g.,

[7, 8, 12, 16]. We suppose that the only available information is represented by the data, that is, no model for the

underlying physical phenomenon is considered, as it is done in [25].

In this section we describe the strip searching method and the relative algorithm for track data, focusing only on

the parts which differ from those relative to the scattered data interpolation.

5.1. Strip searching method for track data

This process uses a different strategy to construct the strip structure. In the strip searching method for scattered

data the strip size derives from the neighbourhood half-size to optimize the searching procedure of the nearby nodes.

Conversely, the strip searching method for track data depends on the number of tracks. Therefore, in general, the ratio

δL
y /δs is not equal to one, and accordingly the search of the nearest nodes involves more than three strips.

To find the strips to be examined in the searching procedure of nodes, we consider the following computational

rule that consists of three steps:
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Grid points tsec – Renka’s algorithm tsec – Strip algorithm

11 × 11 = 121 6.484 1.516

21 × 21 = 441 6.640 1.656

31 × 31 = 961 6.671 1.875

41 × 41 = 1681 7.091 2.141

51 × 51 = 2601 7.226 2.500

Table 10: Execution times (in seconds) obtained by Renka’s algorithm and the strip algorithm for interpolating n = 16000 scattered data by varying

the number of grid points.

1. Computation of the ratio between the semi-size δL
y of square neighbourhood and the strip size δs, namely

k∗ =
δL

y

δs

= qδL
y = i,

where q indicates the number of strips in the domain D.

2. Taking the smallest integer greater than i, i.e. i∗ =⌈i⌉, i ∈ R
+, we find from (8) the number j∗ of strips to be

examined for each node.

3. Referring to the strip sk, (k = 1, 2, . . . , q), a strip searching procedure is applied, to examine the nodes from

strip sk − i∗ to strip sk + i∗.

As we have previously seen, in general, we need to reduce the total number of strips to be examined for the nodes of

the “first”and “last”strips. Thus, if sk − i∗ < 1 or sk + i∗ > q it will be convenient to set sk − i∗ = 1 and strip sk + i∗ = q,

respectively.

5.2. Strip algorithm for track data

The strip algorithm for track data differs from that for scattered data only in some details. These allow to optimize

the searching procedure of the nearby nodes, and accordingly to minimize the computational cost. Hence, as regard

to the algorithm described in Subsection 4.2, the following change is required:

Stage 3. After determining the strip size

δs =
1

q
, (11)

the strips are numbered from 1 to q.

5.3. Numerical results

In order to test the strip algorithm for track data, we generated some track data point sets of dimensions n = 1000,

2000, 4000, 8000, 16000. An example is given in Fig. 6, which shows a set of 1000 track data points.

In the comparison with Renka’s algorithm, the strip algorithm for track data make use of τ3 as localizing function,

while the localizing parameters we used are nL = 13 and nW = 8 for both algorithms.

Tables 11, 12, 13, and 14 show the errors obtained by running Renka’s algorithm and the strip algorithm on the

four test functions presented in Subsection 4.3. Errors are comparable when a least squares approximant as nodal

function is used, while the strip algorithm achieves better accuracy if inverse multiquadric is employed.

In Table 15 RMSEs and execution times for the three algorithms are listed, and in Fig. 7 are plotted. For the

strip algorithm we used τ1 as localizing function in the weights. We choose the localizing parameters as nL = 13 and

nW = 10. Note that the execution times of the strip algorithm are much lower than those obtained using the Renka’s

algorithm. The reason is that the data structure employed in the strip algorithm is suitable for a very fast and efficient

nearest neighbour search.
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Figure 6: Plot of a track data point set (n = 1000).

n 1000 2000 4000 8000 16000

Renka’s algorithm 3.6136E − 4 1.0363E − 4 4.7247E − 5 1.5379E − 5 5.4384E − 6

5.3868E − 3 1.2528E − 3 7.6312E − 4 2.0570E − 4 9.9957E − 5

Strip algorithm 4.5837E − 4 1.3966E − 4 4.8517E − 5 1.5662E − 5 5.9763E − 6

5.8467E − 3 1.3175E − 3 5.2584E − 4 1.8865E − 4 7.1485E − 5

Strip algorithm 6.0195E − 5 1.9160E − 5 5.3223E − 6 1.3245E − 6 2.6896E − 7

IMQ 8.5119E − 4 5.4292E − 4 1.3898E − 4 1.8309E − 5 4.7704E − 6

Table 11: RMSEs and MAEs obtained by Renka’s algorithm and the strip algorithm either with least squares or inverse multiquadric function as

nodal function for the function f1.

n 1000 2000 4000 8000 16000

Renka’s algorithm 4.8687E − 3 1.6902E − 3 9.3309E − 4 2.4749E − 4 8.5918E − 5

4.9131E − 2 2.2466E − 2 1.4329E − 2 3.9565E − 3 1.5992E − 3

Strip algorithm 6.6890E − 3 2.4470E − 3 1.0451E − 3 2.8643E − 4 9.9225E − 5

1.1157E − 1 6.5274E − 2 1.6349E − 2 5.9115E − 3 1.7236E − 3

Strip algorithm 6.9901E − 4 1.8903E − 4 4.9248E − 5 1.5553E − 5 2.3111E − 6

IMQ 7.2506E − 3 2.9117E − 3 1.1772E − 3 4.8850E − 4 2.8893E − 5

Table 12: RMSEs and MAEs obtained by Renka’s algorithm and the strip algorithm either with least squares or inverse multiquadric function as

nodal function for the function f2.
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n 1000 2000 4000 8000 16000

Renka’s algorithm 2.4595E − 3 6.3990E − 4 5.2097E − 4 9.3484E − 5 3.8863E − 5

2.4941E − 2 8.9470E − 3 1.1832E − 2 1.2963E − 3 5.8299E − 4

Strip algorithm 2.4415E − 3 6.0235E − 4 4.3469E − 4 6.6895E − 5 3.8891E − 5

3.1233E − 2 7.1965E − 3 8.9015E − 3 7.3296E − 4 7.4650E − 4

Strip algorithm 2.0806E − 4 4.5709E − 5 1.2407E − 5 3.8863E − 6 7.3300E − 7

IMQ 2.2564E − 3 4.7039E − 4 8.4037E − 5 3.7584E − 5 8.4982E − 6

Table 13: RMSEs and MAEs obtained by Renka’s algorithm and the strip algorithm either with least squares or inverse multiquadric function as

nodal function for the function f3.

n 1000 2000 4000 8000 16000

Renka’s algorithm 1.8620E − 3 8.5732E − 4 2.8142E − 4 9.1837E − 5 2.8901E − 5

4.4156E − 2 2.5727E − 2 6.7194E − 3 2.2599E − 3 7.6237E − 4

Strip algorithm 3.4486E − 3 6.5429E − 4 2.7522E − 4 1.0017E − 4 3.5563E − 5

9.3219E − 2 2.0524E − 2 5.6436E − 3 3.4568E − 3 8.5366E − 4

Strip algorithm 3.0229E − 4 6.8442E − 5 1.6652E − 5 1.3570E − 5 1.6744E − 6

IMQ 5.2565E − 3 1.4817E − 3 2.7202E − 3 5.7315E − 4 7.1047E − 5

Table 14: RMSEs and MAEs obtained by Renka’s algorithm and the strip algorithm either with least squares or inverse multiquadric function as

nodal function for the function f4.

Renka’s algorithm Strip algorithm Strip algorithm IMQ

n RMSE tsec RMSE tsec RMSE tsec

1000 3.4343E − 4 1.235 4.4996E − 4 0.219 6.0801E − 5 0.484

2000 1.0231E − 4 1.751 1.4960E − 4 0.281 1.9333E − 5 0.594

4000 4.5699E − 5 2.706 4.6879E − 5 0.422 5.5826E − 6 0.797

8000 1.4988E − 5 4.864 1.6810E − 5 0.719 1.3595E − 6 1.266

16000 5.2563E − 6 8.759 5.7719E − 6 1.313 2.7681E − 7 2.157

Table 15: RMSEs and execution times (in seconds) obtained by Renka’s algorithm and the strip algorithm using the localizing function τ1 with

nL = 13 and nW = 10 for f1 (track data).
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Figure 7: Execution times (left) and RMSEs (right) obtained by Renka’s algorithm and the strip algorithm using the localizing function τ1 with

nL = 13 and nW = 10 for f1 (track data).

6. Parallel algorithm

Shepard’s type interpolants enjoy many useful properties, which can be successfully applied, such as a subdivision

technique, multistage and iterative procedures (see, e.g., [1, 2, 3]). They are particularly suitable for parallel compu-

tation, achieving the maximum speed-up (see [10, 5]). Moreover, they have a wide field of applications. We recall

here the most interesting property for our purposes:

Property 6.1 (Subdivision Technique). Let us make a partition of the set Sn of nodes on the domain D ⊂ R
2 into q

subsets Sn j
, so that the j-th subset, ( j = 1, 2, . . . , q), consists of the nodes x j1, x j2, . . . , x jn j

, with n1 + n2 + · · ·+ nq = n,

and the values f jk j
, ( j = 1, 2, . . . , q; k j = 1, 2, . . . , n j), correspond to the nodes x jk j

. The indexing of the nodes in the

subsets may not depend on the indexing in the set, provided the one-to-one correspondence is saved. Then, being

Sn = Sn1
∪ Sn2

· · · ∪ Snq
and Snp

∩ Snr
= ∅ for p , r, the Shepard’s interpolant can be rewritten in the form

F(x; f ,Sn) =

q
∑

j=1

F(x; f ,Sn j
)

A j
∑q

j=1
A j

, (12)

where

A j =

n j
∑

k j=1

1

α(x, x jk j
)
.

The strip algorithm discussed above, both for scattered and track data, is very suitable for parallel computations,

on account of the data structures. In this section we sketch the related parallel algorithm, which will be completely

explained and analyzed in a forthcoming paper.

We suppose to have q = kp strips, where p is the number of available processors. Let the first k strips be assigned

to the first processor, the second k strips to the second processor, and so on up to the last processor. There is shown in

[5] that under condition of well-balanced workload the speed-up factor of the parallel computation is approximately

equal to the number of processors. The proposed parallel algorithm consists of three stages:

Stage 1. Data distribution. When the node set Sn has been partitioned into q strips and the nodes in each

strip have been ordered by the master processor, the data organized in k strips are sent to slave processors for the
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localization phase (see Stage 5 of sequential algorithm). This data distribution allows the load balancing and the

reduction of communication among processors. Each slave processor has to storage approximately k · n/p nodes.

Stage 2. Local interpolation problem resolution. On each slave processor h, (h = 1, 2, . . . , p), after

finding the nL nodes nearest to xk, a local interpolant is constructed for xk, (k = 1, 2, . . . , nh), where nh is the number

of nodes assigned to the h-th processor.

Stage 3. Evaluation phase. In this stage each slave processor computes the partial sum

nh
∑

k=1

Lk(x)W̄k(x), h = 1, 2, . . . , p,

where x is here an evaluation point. Then the master processor collects the partial results, and using the Property 6.1

accumulates them.

7. Final remarks

In this paper we presented a new efficient interpolation algorithm, which works well also when the number of

scattered or track data is very large, and achieves a good accuracy. An optimized implementation of the modified

version of Shepard’s method is mainly obtained by means of a strip nearest neighbour searching procedure. Moreover,

the algorithm is flexible (indeed, different choices for weights and local approximants are allowable), and completely

automatic since it works succesfully even when the distribution of nodes is not uniform. Numerical tests have shown

that the strip algorithm is comparable with Renka’s algorithm with regard to accuracy, and is generally better for

execution time. The strip algorithm is easily and efficiently parallelizable, but this topic deserves careful investigation.

Some other extensions are possible and, at the moment, under investigation: first, the modelling of discontinuous

surfaces only known on scattered or track data; then, the extension to the spherical setting, for which a modified

Shepard’s method using zonal basis functions was proposed [17]. Moreover, we remark that a well-known drawback

of local interpolation methods is the need of a manual determination of the local parameters nL and nW ; hence an

automatic choice would be desirable.

Finally, as research and work in progress we will expect to refine the algorithm, presented here in a first version,

by adopting suitable data structures like the kd-trees. However, we note that the current version allows to dynamically

handle data sets, increasing or decreasing their sizes according to advisability through the Property 6.1 presented in

Section 6 (see [4] for further details).

A. Appendix: Renka’s algorithm

Among local methods the modified version of Shepard’s method given in [21, 27] shows the characteristics of

accuracy and efficiency. Renka in [28, 29] gave an optimized implementation of the method in Fortran language,

which is still now one of the most powerful tools of the available mathematical software for multivariate interpolation

of large scattered data sets. Here we briefly recall this implementation in the 2D case, since the scope is to compare it

with the strip algorithm.

The Renka’s algorithm can be divided in two parts: a preprocessing phase and an evaluation phase.

(a) In the preprocessing phase the 5n coefficients of the nodal functions and the n squared radii RW associated with the

weights W̄k, are computed and stored. In order to determine the ordered sequence of nearest neighbours of each node,

a cell-based search method is applied, which requires to store nodal indexes in a data structure (see Algorithm 3). It

starts partitioning the smallest rectangle [XMIN, XMAX] × [Y MIN,Y MAX] containing the nodes into an NR × NR

uniform grid of cells, while the indexes of the nodes contained in each cells are stored in arrays. The cell number is

NR2 and the average number of nodes per cell is C = n/NR2. A recommended choice for C is C = 3, therefore the

number of cells is at most n/3. The cells dimensions are DX = (XMAX−XMIN)/NR and DY = (Y MAX−Y MIN)/NR.

The data structure consists of two arrays containing nodal indexes: LCELL is an NR × NR array, where LCELL(I, J)

contains the index of the node with smallest index in cell (I, J), or 0 if the cell is empty; LNEXT is an array of length

n with LNEXT (K) = L, where L is the next node in the cell containing K, or L = K if K is the node with largest index

in the cell.
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Algorithm 3.

Step 1 For I = 1, 2, . . . ,NR do

Step 2 For J = 1, 2, . . . ,NR do

LCELL(I, J) = 0.

Step 3 For K = n, n − 1, . . . , 1 do

Step 4 Set I = min{NR, ⌊(X(K) − XMIN)/DX⌋ + 1};

J = min{NR, ⌊(Y(K) − Y MIN)/DY⌋ + 1};

L = LCELL(I, J).

Step 5 If L = 0

then set LNEXT (K) = K;

else set LNEXT (K) = L.

Step 6 LCELL(I, J) = K.

A nearest neighbour searching is performed so many times as to determine the sequence of nL nearest neigh-

bours to some node K, excluding from the search the nodes already in the sequence. A node L to be excluded is

marked by setting LNEXT (L) to −LNEXT (L). The search begins in the cell containing K and proceeds outward

in rectangular layers until all cells that contain nodes within distance R from K have been searched, where R is the

distance from K to the first unmarked node encountered (node L such that LNEXT (L) > 0). Thus, once R has

been determined, the region to be searched is characterized by (I, J) ∈ [IMIN, IMAX] × [JMIN, JMAX], where

IMIN = max{1, ⌊(X(K) − R − XMIN)/DX⌋+ 1} and IMAX = min{NR, ⌊(X(K) + R −XMIN)/DX⌋+ 1}, with similar

expressions for JMIN and JMAX. When the nL nearest neighbours of each node are determined, a least squares

system is solved for the coefficients of the nodal functions, which are then stored.

(b) The evaluation routines require a loop through the set of nodes whose radii RW include a node (XP,YP). The cells

that must be searched are those intersected by a disk centred at (XP,YP) and having radius R, where R is the largest

of the RW values, and is computed in the preprocessing phase. The region to be searched is defined as above with

(XP,YP) in place of (X(K),Y(K)) in the expressions for IMIN, IMAX and JMIN, JMAX, respectively.

The two previously described procedures require inner loops on nodes in a cell. Algorithm 4 describes these loops.

Algorithm 4.

Step 1 Set LN = LCELL(I, J).

Step 2 If LN = 0

then break.

Step 3 While (LN < L)

set L = LN;

LN = LNEXT (L).
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