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Abstract

Main purpose of this paper is to reconstruct generating function of the Bern-
stein type polynomials. Some properties this generating functions are given.
By applying this generating function, not only derivative of these polynomials
but also recurrence relations of these polynomials are found. Interpolation
function of these polynomials is also constructed via Mellin Transformation.
This function interpolates these polynomials at negative integers which are
given explicitly. Moreover, relations between these polynomials, the general-
ized Stirling numbers, and Bernoulli polynomials of higher order are given.
Furthermore some applications associated with B´ezier curve are given.
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1. Introduction, Definitions and Preliminaries

The Bernstein polynomials, recently, have been defined by many different ways, for exam-
ples in q-series, by complex function and many algorithms. These polynomials are used not
only approximations of functions in various, but also in the other fields such as smoothing
in statistics, numerical analysis, the solution of the differential equations, and constructing
B´ezier curve and in Computer Aided Design cf. ([2], [8], [3], [4], [7], [10], [1]), and see also
the references cited in each of these earlier works.

By the same motivation of Ozden’ [6] paper, which is related to the unification of the
Bernoulli, Euler and Genocchi polynomials, we, in this paper, construct a generating function
of the Bernstein polynomials which unify generating function in [10], [1].

http://arxiv.org/abs/1010.3711v1
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2. Construction generating functions of Bernstein type polynomials

In this section we unify generating function of the Bernstein polynomials. We define

F(t, b, s : x) =
2bxbs

(

t
2

)bs
et(1−x)

(bs)!

where b, s ∈ Z+ := {1, 2, 3, · · · }, t ∈ C and x ∈ [0, 1]. This function is generating function of
the polynomials Sn(bs, x):

F(t, b, s : x) =

∞
∑

n=0

Sn(bs, x)
tn

n!
, (2.1)

where S0(bs, x) = · · · = Sbs−1(bs, x) = 0.
Remark 1. If we set s = 1 in (2.1), we obtain

(xt)b et(1−x)

b!
=

∞
∑

n=0

Bn(b, x)
tn

n!
,

and Sn(b, x) = Bn(b, x), which denotes the Bernstein polynomials cf. ([2], [3], [4], [8], [10],
[1]).

By using Taylor expansion of et in (2.1), we arrive at the following theorem:

Theorem 1. Let x, y ∈ [0, 1]. Let b, n and s be nonnegative integers. If n ≥ bs, then we

have

Sn(bs, x) =

(

n

bs

)

xbs(1− x)n−bs

2b(s−1)
.

Remark 1. Setting s = 1 in Theorem 1, one can see that the polynomials

Sn(b, x) =

(

n

b

)

xb(1− x)n−b,

which give us the Bernstein polynomials cf. ([10], [1]). Consequently, the polynomials
Sn(bs, x) are unification of the Bernstein polynomials.

By using Theorem 1, we easily obtain the following results.

Corollary 1. Let b, n and s be nonnegative integers with n ≥ bs. Then we have
(

n

bs

)

Sn−bs(bs; x) =

(

n+ bs

n

)

Sn(bs; x).

Setting

gn(bs, x) = 2b(s−1)Sn(bs, x),

where, for bs = j,
n
∑

j=0

gn(j, x) = 1.
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Let f be a continuous function on [0, 1]. Then we define unification Bernstein type operator
as follows:

Sn (f(x)) =

n
∑

j=0

f

(

j

n

)

gn(j; x), (2.2)

where x ∈ [0, 1], n is positive integer.
Setting f(x) = x in (2.2), then we have

Sn (x) =
n
∑

j=0

j

n

(

n

j

)

xj(1− x)n−j .

From the above, we get

Sn (x) = x

n
∑

j=0

gn−1(j − 1, x).

3. Fundamental relations of the polynomials Sn(bs, x)

By using generating function of Sn(bs, x), in this section we give derivative of Sn(bs, x)
and recurrence relation of Sn(bs, x).

Theorem 2. Let x ∈ [0, 1]. Let b, n and s be nonnegative integers with n ≥ bs. Then we

have
d

dx
Sn(bs, x) = n (Sn−1(bs− 1, x)−Sn(bs, x)) . (3.1)

Proof. By using the partial derivative of a function in (2.1) with respect to the variable x,
we have

∞
∑

n=0

∂

∂x
(Sn(bs, x))

tn

n!
= t

∞
∑

n=0

Sn(bs− 1, x)
tn

n!
− t

∞
∑

n=0

Sn(bs, x)
tn

n!
.

From the above, we obtain
∞
∑

n=0

(

d

dx
Sn(bs, x)

)

tn

n!
=

∞
∑

n=0

nSn−1(bs− 1, x)
tn

n!
−

∞
∑

n=0

nSn−1(bs, x)
tn

n!
.

�

By using the partial derivative of a function in (2.1) with respect to the variable t, we
arrive at the following theorem:

Theorem 3. Let x ∈ [0, 1]. Let b, n and s be nonnegative integers with n ≥ bs. Then we

have

Sn(bs, x) = xSn−1(bs− 1, x) + (1− x)Sn−1(bs, x). (3.2)

Remark 3. If setting s = 1, then (3.2) reduces to a recursive relation of the Bernstein
polynomials

Bn(b, x) = (1− x)Bn−1(b, x) + xBn−1(b− 1, x)

and (3.1) reduces to derivative of the Bernstein polynomials

d

dx
Bn(j, x) = n (Bn−1(j − 1, x)−Bn−1(j, x)) ,



4 Yilmaz Simsek

respectively.
By the umbral calculus convention in (2.1), we get

2bxbs
(

t
2

)bs

(bs)!
= e(S(bs,x)−(1−x))t,

where Sn(bs; x) is replaced by Sn(bs; x). After some elementary calculation, we arrive at
the following theorem.

Theorem 4. If n = bs, then we have

2b(1−s)xbs =

bs
∑

j=0

(

bs

j

)

(−1)bs−j (1− x)bs−j
Sj(bs, x).

If n > bs, then we have

n
∑

j=bs+1

(

n

j

)

(−1)n−j (1− x)n−j
Sj(bs, x) = 0.

Relations between the polynomials the polynomial Sn(bs, x), Bernoulli polynomial of
higher order and Stirling numbers of second kind is given by the following theorem:

Theorem 5. Let b, n and s be nonnegative integers with n ≥ bs. Then we have

Sn(bs, x) = 2b(1−s)xbs

n
∑

j=0

(

n

j

)

S(j, bs)B
(bs)
n−j(1− x),

where B
(v)
n (x) and S(n, j) denote Bernoulli polynomial of higher order and Stirling numbers

of second kind, which are given by means of the following generating function, respectively

tvext

(et − 1)v
=

∞
∑

n=0

B(v)
n (x)

tn

n!
, (|t| < 2π)

and

(−1)v
(1− et)

v

v!
=

∞
∑

n=0

S(n, v)
tn

n!
.

Proof. By (2.1), we have

2b(1−s)xbs

(

(−1)bs(et − 1)bs

(bs)!

)

(

tbse(1−x)t

(et − 1)bs

)

=
∞
∑

n=0

Sn(bs, x)
tn

n!
.

From the above, we have

∞
∑

n=0

Sn(bs, x)
tn

n!
= 2b(1−s)xbs

(

∞
∑

n=0

B(bs)
n (1− x)

tn

n!

)(

∞
∑

n=0

S(n, k)
tn

n!

)

.

By Cauchy product in the above, after some calculation, we find the desired result. �
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By using same method of Lopez and Temme’ [5], we give contour integral representation
of Sn(bs, x) as follows:

Sn(bs, x) =
Γ(m+ 1)

Γ(k + 1)

1

2πi

∫

C

F(t, b, s : x)
dz

zm+1
,

where C is a circle around the origin and the integration is in positive direction.

4. Interpolation Function of the polynomials Sn(bs, x)

In this section, we construct meromorphic function. This function interpolates Sn(bs; x)
at negative integers. These values are given explicitly in Theorem 6.

For z ∈ C, by applying the Mellin transformation to (2.1), we obtain

B(z, bs; x) =
1

Γ(z)

∫

∞

0

tz−1F(−t, b, s : x)dt,

where Γ(z) is Euler gamma function. From the above, we define the following interpolation
function.

Definition 1. Let z ∈ C with ℜ(z) > 0 and x 6= 1. Let b and s be nonnegative integers.

Then we define

B(z, bs; x) = (−1)bs
Γ(z + bs)

Γ(bs + 1)Γ(z)

2b(1−s)xbs

(1− x)z+bs
, (4.1)

Remark 4. By the well-known identity Γ(bs+ 1) = bsΓ(bs), for ℜ(z) > 0 we have

B(z, k; x) =
(−1)bs2b(1−s)xbs

bsB(z, k) (1− x)z+bs
,

where B(z, k) denotes the beta function. Observe that if x = 1, then

B(z, bs, 1) = ∞.

Theorem 6. Let b, n and s be nonnegative integers with n ≥ bs and x ∈ [0, 1]. Then we

have

B(−n, bs; x) = Sn(bs, x).

Proof. Let n and b, and s be positive integers with bs ≤ n. Γ(z) has simple poles at
z = −n = 0,−1,−2,−3, · · · . The residue of Γ(z) is

Res(Γ(z),−n) =
(−1)n

n!
.

Taking z → −n into (4.1) and using the above relations, the desired result can be obtained.
�

Observe that if we set s = 1 in Theorem 6, we arrive at

B(−n, b; x) = Bn(b, x).
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5. Further Remarks on B´ezier curves

The Bernstein polynomials are used to construct B´ezier curves. B´ezier was an engineer
with the Renault car company and set out in the early 1960’s to develop a curve formulation
which would lend itself to shape design. Engineers may find it most understandable to think
of B´ezier curves in terms of the center of mass of a set of point masses cf. [13], for example,
consider the four masses m0, m1, m2, and m3 located at points P0, P1, P2, P3. The center
of mass of these four point masses is given by the equation

P =
m0P0 +m1P1 +m2P2 +m3P3

m0 +m1 +m2 +m3
.

Next, imagine that instead of being fixed, constant values, each mass varies as a function of
some parameter x. In specific case, let m0 = (1− x)3, m1 = 3t(1− x)2, m2 = 3t2(1− x) and
m3 = x3. The values of these masses are a function of x. For each value of x, the masses
assume different weights and their center of mass changes continuously. As x varies between
0 and 1, a curve is swept out by the center of masses. This curve is a cubic B´ezier curve.
For any value of x, this B´ezier curve is

P = m0P0 +m1P1 +m2P2 +m3P3,

where m0 + m1 + m2 + m3 ≡ 1. These variable masses mi are normally called blending

functions and their locations Pi are known as control points or B´ezier points. The blending
functions, in the case of B´ezier curves, are known as Bernstein polynomials. This curve is
used in computer graphics and related fields and also in the time domain, particularly in
animation and interface design cf. ([3], [4], [13]).

The B´ezier curve of degree n can be generalized as follows. Given points P0, P1, P2,· · · ,
Pn the B´ezier curve is

B(x) =
n
∑

k=0

PkBn(k, x), (5.1)

where x ∈ [0, 1] and Bn(k, t) denotes Bernstein polynomials.
We now unify the B´ezier curve in (5.1) by the polynomials gn(bs, x) as follows

Bn(x, y) =
n
∑

k=0

Pkgn(k; x),

with control points Pk.
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