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SHARP BOUNDS FOR HARMONIC NUMBERS

FENG QI AND BAI-NI GUO

ABSTRACT. In the paper, we first survey some results on inequalities for bound-
ing harmonic numbers or Euler-Mascheroni constant, and then we establish a
new sharp double inequality for bounding harmonic numbers as follows: For
n € N, the double inequality
1 1
— <Hn)-lhn—- — —v< ——5——
oz 120 =12y 1) = 1 m S T 12n216/5

is valid, with equality in the left-hand side only when n = 1, where the scalars
2(7—127)
2y—1

and % are the best possible.

1. INTRODUCTION

The series

1 1 1
R R E N E 1
totgtoto (1)
is called harmonic series. The n-th harmonic number H(n) for n € N, the sum of

the first n terms of the harmonic series, may be given analytically by
1
:Z;—wwnﬂ) (2)

see [1, p. 258, 6.3.2], where v = 0.57721566 - - - is Euler-Mascheroni constant and

1(x) denotes the psi function, the logarithmic derivative F((z)) of the classical Euler

gamma function I'(x) which may be defined by

I(z) = / t*te7tdt, x>0. (3)
0
In [17], the so-called Franel’s inequality in literature was given by
1 1 1
— ——= < H(n)—Inn— — N. 4
5n T 82 < (n) —Inn V<g. NE 4)

In [11, pp. 105-106], by considering

In_/ljne_ H)dx_mn—H(n) 5)
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and 0 < I,, < 1 5, where [t] denotes the largest integer less tan or equal to ¢, it was
established that

1
§<H(n)—1nn<1, n € N. (6)
In [11, pp. 128-129, Problem 65], it was verified that
- 1
1n2n—|—1 ; c<ltg@n—1), neN (7)
In [27], it was obtained that
1 1
—— < H(n)—Inn - — N. 8
2(n+1)< (n) —Inn V<g- NE (8)
In [8], it was proved that
! < H(n)-1 + L < ! eN (9)
—_ n)—In({n+=)— ——, nel.
24(n + 1) 2) S 2ap?

In [21], the following problems were proposed:
(1) Prove that for every positive integer n we have

1

1

2n+1/3

(2) Show that % can be replaced by a slightly smaller number, but % cannot
be replaced by a slightly larger number.
n [10], by using
1 1 En

H(n)=1 — -t —
() =In 9+ 20 = 52 T 1208
for 0 < €, < 1, these problems were answered aﬁirmatwely T he editorial comment

(11)

in [10] said that the number 2 in (10) can be replaced by ! and equality holds
only when n = 1. This means that
1 1
— < H Inn—v< —, eN. 12
s S o< g (12)

This double inequality was recovered and sharpened in [6, 7] and [18, Theorem 2].
In [26], basing on an improved Euler-Maclaurin summation formula, some general
inequalities for the n-th harmonic number H (n) are established, including recovery
of the inequality (10).
In [25], the problems above-mentioned was solved once again by employing

1 BgZ e ng(:v)
H(n) = lnn+7+2——— nzl_/n 5 dx (13)
and
™ Byg-1() (=1)"Baq
/n =y dz < YT (14)

where n and ¢ are positive integers, B;(x) are Bernoulli polynomials and Bg; =
Bsi(0) denote Bernoulli numbers for ¢ € N. For definitions of B;(x) and Bs;, please
refer to [1, p. 804].

In [23], the inequality (10) was verified again by calculus.
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In [13], by utilizing Euler-Maclaurin summation formula, the following general
result was obtained:

m

1 1 1 Bo(i-1) 1
H =1 — - —— 4 = 4+ 0| — . 15
(n) nn+y+ m 12n2 + 2 ; (’L _ 1)n2(zfl) + n2m ( )

See also [15, p. 77]. In fact, this is equivalent to the formula in [1, p. 259, 6.3.18].
In [22], by considering the decreasing monotonicity of the sequence

1
S DR

it was shown that the best constants a and b such that

2n, (16)

1 > 1 1
—1)k1z 17
eS| 2 VT <Tm (17)
k=n+1
forn>larea=-—-—2andb=1.

1-In2
In [4, Theorem 2.8] and [19], alternative sharp bounds for H(n) were presented:

Forn € N,
1+In(ve —1) —In(e/" ™) —1) < H(n) <y —In(e’/H —1).  (18)

The constants 1 + ln(\/E — 1) and 7y in (18) are the best possible. This improves
the result in [3, pp. 386-387].
In [20], it was established that

1
1n<n—|—§)+7<H(n)§ln(n+el_v—1)+”y, n e N. (19)

In [5], it was obtained that
1 1
24{n+1/21/6[1 — v —In(3/2)] }2 = Hm) _1n(n+ 5) s 24(n +1/2)? (20)

for n € N, where the constants

1
2,/6[1 — v —In(3/2)]

and % are the best possible.

For more information on estimates of harmonic numbers H(n), please refer to
[9, 24], [14, pp. 68-86], [15, pp. 75-79] and closely-related references therein.

The aim of this paper is to establish a double inequality for bounding harmonic
numbers, which is sharp and refines those inequalities above-mentioned.

Theorem 1. For n € N, the double inequality
1

12n2 4+ 2(7—12v)/(2y - 1)

is valid, with equality in the left-hand side of (21) only when n = 1, where the

2(7—12~)
2y—1

1
<H(n)—lhn———-—v9<

o (21)

1
1202 +6/5

scalars and & in (21) are the best possible.

Remark 1. When n > 2, the double inequality (21) refines (20) and those mentioned
before it.
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2. PROOF OF THEOREM 1

We now are in a position to prove Theorem 1.

Let )
= — 1222
/(@) Inz+1/2x — (x4 1) *
for z € (0,00). An easy computation gives
422’ 1) —4x +2 422
o V@) 2 () |
2zlnz — 2z¢(x + 1) + 1]2 2zInz — 2z(x + 1) + 1]2
where

) 11 11°
9(55):¢(95"‘1)_;4‘——24:6[2/1(96—1-1)—11190—2—] .

2x2 x
In [2, Theorem 8], the functions
2n

B 1 1 Baj
F,(z) =InT(z) (w 2) Inx+z 3 In(2m) ]2 2j(2j — 1)a2i1
and
2n+1
1 1 Baj
Gn(z) = —InT(z) + <x — 5) Inz —z+ 5111(277) + ; 2j(2j — 1)z2i 1

(23)

(24)

(25)

for n > 0 were proved to be completely monotonic on (0, 00). This generalizes [16,
Theorem 1] which states that the functions F,(x) and Gy, (z) are convex on (0, 00).
The complete monotonicity of F,,(x) and G, (z) was proved in [12, Theorem 2] once

again. In particular, the functions

Fy(z) =InT(z) — (w - %) Inz+z— %1n(27r)

1 1 1 1

122 T 36025 126025 T 168027

and
1 1
Gi(z) = —InT(x) + (:17 - 5) Inz —z+ B In(27)

n 1 1 n 1
12z 36022 1260z
are completely monotonic on (0, 00). Therefore, we have

12602° + 210z* — 2122 + 10 <

Inz — 552020 Y(z)
! 252027 + 42025 — 422 + 2022 — 21
e 50402
and
21028 + 10527 + 3526 — 7% + 522 — 7 ,
21029 <¥(@)
21028 + 1052° + 352% — 722 + 5
< 21027

n (0,00). From this, it follows that

(26)

(29)
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1 1
lnac—i—% —z/J(x—l—l)—ln:v—% —(x)
- 12602° 4 2102* — 2122410 1 10 — 2122 + 210z*

252026 2 252026 (30)
and
11 1 10 — 2122 + 210z4)°
9(2) > V(@) = 5=t gm - ( 264600211 :
- 21028 4+ 10527 + 3525 — T2* + 522 — 7 11
21029 2
1 (10— 2122 + 2102%)°

to2 264600211
~ 16592* — 840022 — 100
- 264600211

1659(x — 3)* 4 19908(z — 3)3 + 81186(z — 3)2 + 128772(x — 3) + 58679

26460011
Hence, the function g(z) is positive on [3,00). So the derivative f/'(z) > 0 on [3, 00),
that is, the function f(z) is strictly increasing on [3, 00).
It is easy to obtain

2(7 — 127)
)==22"""1 _ 09507
oy = 2= ,
A(487 +481n2 — 61)
2) = =1.1
@) 5—4y —41n2 090---,
3(108y + 1081n3 — 181)
3) = =1.1549---.
1) 5—3vy—3In3

This means that the sequence f(n) for n € N is strictly increasing.
Employing the inequality (30) yields

25202° 122%(212* —10) 6
— 1222 = - =
1@) > oz o002 T 0212 591047 5
as ¢ — oo. Utilizing the right-hand side inequality in (28) leads to
f@) = 1207
T) = — 12z
Inx —1/22 —(x)
1 2
— 12

< (252027 + 42026 — 4224 + 2022 — 21) /504028 — 1/2x
12z%(422" — 2027 + 21)
T 42026 — 4224 + 2022 — 21

6

— =
)

as © — 0o. As a result, it follows that lim, o f(z) = g. Therefore, it is derived
that f(1) < f(n) < & for n € N, equivalently,

27 — 127) 1 2§
2y—1 ~“lnn+1/2n—¢(n+1) 5
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which can be rearranged as

L >1nn+i—¢(n+1)>;
12n2 4+ 2(7—12v)/(2y - 1) — 2n 12n2+6/5

Combining this with (2) yields (21). The proof of Theorem 1 is proved.
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