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SHARP BOUNDS FOR HARMONIC NUMBERS

FENG QI AND BAI-NI GUO

Abstract. In the paper, we first survey some results on inequalities for bound-
ing harmonic numbers or Euler-Mascheroni constant, and then we establish a
new sharp double inequality for bounding harmonic numbers as follows: For
n ∈ N, the double inequality

−
1

12n2 + 2(7 − 12γ)/(2γ − 1)
≤ H(n) − lnn−

1

2n
− γ < −

1

12n2 + 6/5

is valid, with equality in the left-hand side only when n = 1, where the scalars
2(7−12γ)

2γ−1
and 6

5
are the best possible.

1. Introduction

The series

1 +
1

2
+

1

3
+ · · ·+

1

n
+ · · · (1)

is called harmonic series. The n-th harmonic number H(n) for n ∈ N, the sum of
the first n terms of the harmonic series, may be given analytically by

H(n) =

n
∑

i=1

1

i
= γ + ψ(n+ 1), (2)

see [1, p. 258, 6.3.2], where γ = 0.57721566 · · · is Euler-Mascheroni constant and

ψ(x) denotes the psi function, the logarithmic derivative Γ′(x)
Γ(x) of the classical Euler

gamma function Γ(x) which may be defined by

Γ(x) =

∫

∞

0

tx−1e−t d t, x > 0. (3)

In [17], the so-called Franel’s inequality in literature was given by

1

2n
−

1

8n2
< H(n)− lnn− γ <

1

2n
, n ∈ N. (4)

In [11, pp. 105–106], by considering

In =

∫ 1

1/n

(

1

x
−
[

1

x

])

dx = lnn−H(n) (5)
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and 0 < In <
1
2 , where [t] denotes the largest integer less tan or equal to t, it was

established that
1

2
< H(n)− lnn < 1, n ∈ N. (6)

In [11, pp. 128–129, Problem 65], it was verified that

1

2
ln(2n+ 1) <

n
∑

k=1

1

2k − 1
< 1 +

1

2
ln(2n− 1), n ∈ N. (7)

In [27], it was obtained that

1

2(n+ 1)
< H(n)− lnn− γ <

1

2n
, n ∈ N. (8)

In [8], it was proved that

1

24(n+ 1)2
< H(n)− ln

(

n+
1

2

)

− γ <
1

24n2
, n ∈ N. (9)

In [21], the following problems were proposed:

(1) Prove that for every positive integer n we have

1

2n+ 2/5
< H(n)− lnn− γ <

1

2n+ 1/3
. (10)

(2) Show that 2
5 can be replaced by a slightly smaller number, but 1

3 cannot
be replaced by a slightly larger number.

In [10], by using

H(n) = lnn+ γ +
1

2n
−

1

12n2
+

εn
120n4

(11)

for 0 < εn < 1, these problems were answered affirmatively. The editorial comment
in [10] said that the number 2

5 in (10) can be replaced by 2γ−1
1−γ and equality holds

only when n = 1. This means that

1

2n+ 1
1−γ − 2

≤ H(n)− lnn− γ <
1

2n+ 1
3

, n ∈ N. (12)

This double inequality was recovered and sharpened in [6, 7] and [18, Theorem 2].
In [26], basing on an improved Euler-Maclaurin summation formula, some general

inequalities for the n-th harmonic number H(n) are established, including recovery
of the inequality (10).

In [25], the problems above-mentioned was solved once again by employing

H(n) = lnn+ γ +
1

2n
−

1

2

q−1
∑

i=1

B2i

in2i
−
∫

∞

n

B2q(x)

x2q
dx (13)

and
∫

∞

n

B2q−1(x)

x2q
dx <

(−1)qB2q

2qn2q
, (14)

where n and q are positive integers, Bi(x) are Bernoulli polynomials and B2i =
B2i(0) denote Bernoulli numbers for i ∈ N. For definitions of Bi(x) and B2i, please
refer to [1, p. 804].

In [23], the inequality (10) was verified again by calculus.
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In [13], by utilizing Euler-Maclaurin summation formula, the following general
result was obtained:

H(n) = lnn+ γ +
1

2n
−

1

12n2
+

1

2

m
∑

i=3

B2(i−1)

(i− 1)n2(i−1)
+O

(

1

n2m

)

. (15)

See also [15, p. 77]. In fact, this is equivalent to the formula in [1, p. 259, 6.3.18].
In [22], by considering the decreasing monotonicity of the sequence

xn =
1

∣

∣

∑

∞

k=n+1(−1)k−1 1
k

∣

∣

− 2n, (16)

it was shown that the best constants a and b such that

1

2n+ a
≤

∣

∣

∣

∣

∣

∞
∑

k=n+1

(−1)k−1 1

k

∣

∣

∣

∣

∣

<
1

2n+ b
(17)

for n ≥ 1 are a = 1
1−ln 2 − 2 and b = 1.

In [4, Theorem 2.8] and [19], alternative sharp bounds for H(n) were presented:
For n ∈ N,

1 + ln
(√
e − 1

)

− ln
(

e1/(n+1) − 1
)

≤ H(n) < γ − ln
(

e1/(n+1) − 1
)

. (18)

The constants 1 + ln
(√
e − 1

)

and γ in (18) are the best possible. This improves
the result in [3, pp. 386–387].

In [20], it was established that

ln

(

n+
1

2

)

+ γ < H(n) ≤ ln
(

n+ e1−γ − 1
)

+ γ, n ∈ N. (19)

In [5], it was obtained that

1

24
{

n+ 1/2
√

6[1− γ − ln(3/2)]
}2 ≤ H(n)− ln

(

n+
1

2

)

−γ <
1

24(n+ 1/2)2
(20)

for n ∈ N, where the constants

1

2
√

6[1− γ − ln(3/2)]

and 1
2 are the best possible.

For more information on estimates of harmonic numbers H(n), please refer to
[9, 24], [14, pp. 68–86], [15, pp. 75–79] and closely-related references therein.

The aim of this paper is to establish a double inequality for bounding harmonic
numbers, which is sharp and refines those inequalities above-mentioned.

Theorem 1. For n ∈ N, the double inequality

−
1

12n2 + 2(7− 12γ)/(2γ − 1)
≤ H(n)− lnn−

1

2n
− γ < −

1

12n2 + 6/5
(21)

is valid, with equality in the left-hand side of (21) only when n = 1, where the

scalars
2(7−12γ)

2γ−1 and 6
5 in (21) are the best possible.

Remark 1. When n ≥ 2, the double inequality (21) refines (20) and those mentioned
before it.
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2. Proof of Theorem 1

We now are in a position to prove Theorem 1.
Let

f(x) =
1

lnx+ 1/2x− ψ(x+ 1)
− 12x2 (22)

for x ∈ (0,∞). An easy computation gives

f ′(x) =
4x2ψ′(x+ 1)− 4x+ 2

[2x lnx− 2xψ(x+ 1) + 1]2
− 24x =

4x2g(x)

[2x lnx− 2xψ(x + 1) + 1]2
,

where

g(x) = ψ′(x+ 1)−
1

x
+

1

2x2
− 24x

[

ψ(x+ 1)− lnx−
1

2x

]2

. (23)

In [2, Theorem 8], the functions

Fn(x) = ln Γ(x)−
(

x−
1

2

)

lnx+ x−
1

2
ln(2π)−

2n
∑

j=1

B2j

2j(2j − 1)x2j−1
(24)

and

Gn(x) = − ln Γ(x) +

(

x−
1

2

)

lnx− x+
1

2
ln(2π) +

2n+1
∑

j=1

B2j

2j(2j − 1)x2j−1
(25)

for n ≥ 0 were proved to be completely monotonic on (0,∞). This generalizes [16,
Theorem 1] which states that the functions Fn(x) and Gn(x) are convex on (0,∞).
The complete monotonicity of Fn(x) and Gn(x) was proved in [12, Theorem 2] once
again. In particular, the functions

F2(x) = ln Γ(x) −
(

x−
1

2

)

lnx+ x−
1

2
ln(2π)

−
1

12x
+

1

360x3
−

1

1260x5
+

1

1680x7

(26)

and

G1(x) = − ln Γ(x) +

(

x−
1

2

)

lnx− x+
1

2
ln(2π)

+
1

12x
−

1

360x3
+

1

1260x5

(27)

are completely monotonic on (0,∞). Therefore, we have

lnx−
1260x5 + 210x4 − 21x2 + 10

2520x6
< ψ(x)

< lnx−
2520x7 + 420x6 − 42x4 + 20x2 − 21

5040x8
(28)

and

210x8 + 105x7 + 35x6 − 7x4 + 5x2 − 7

210x9
< ψ′(x)

<
210x6 + 105x5 + 35x4 − 7x2 + 5

210x7
(29)

on (0,∞). From this, it follows that



SHARP BOUNDS FOR HARMONIC NUMBERS 5

lnx+
1

2x
− ψ(x+ 1) = lnx−

1

2x
− ψ(x)

<
1260x5 + 210x4 − 21x2 + 10

2520x6
−

1

2x
=

10− 21x2 + 210x4

2520x6
(30)

and

g(x) > ψ′(x)−
1

x2
−

1

x
+

1

2x2
−

(

10− 21x2 + 210x4
)2

264600x11

>
210x8 + 105x7 + 35x6 − 7x4 + 5x2 − 7

210x9
−

1

x2
−

1

x

+
1

2x2
−

(

10− 21x2 + 210x4
)2

264600x11

=
1659x4 − 8400x2 − 100

264600x11

=
1659(x− 3)4 + 19908(x− 3)3 + 81186(x− 3)2 + 128772(x− 3) + 58679

264600x11
.

Hence, the function g(x) is positive on [3,∞). So the derivative f ′(x) > 0 on [3,∞),
that is, the function f(x) is strictly increasing on [3,∞).

It is easy to obtain

f(1) =
2(7− 12γ)

2γ − 1
= 0.9507 · · · ,

f(2) =
4(48γ + 48 ln 2− 61)

5− 4γ − 4 ln 2
= 1.1090 · · · ,

f(3) =
3(108γ + 108 ln3− 181)

5− 3γ − 3 ln 3
= 1.1549 · · · .

This means that the sequence f(n) for n ∈ N is strictly increasing.
Employing the inequality (30) yields

f(x) >
2520x6

10− 21x2 + 210x4
− 12x2 =

12x2
(

21x2 − 10
)

10− 21x2 + 210x4
→

6

5

as x→ ∞. Utilizing the right-hand side inequality in (28) leads to

f(x) =
1

lnx− 1/2x− ψ(x)
− 12x2

<
1

(2520x7 + 420x6 − 42x4 + 20x2 − 21)/5040x8 − 1/2x
− 12x2

=
12x2

(

42x4 − 20x2 + 21
)

420x6 − 42x4 + 20x2 − 21

→
6

5

as x → ∞. As a result, it follows that limx→∞ f(x) = 6
5 . Therefore, it is derived

that f(1) ≤ f(n) < 6
5 for n ∈ N, equivalently,

2(7− 12γ)

2γ − 1
≤

1

lnn+ 1/2n− ψ(n+ 1)
− 12n2 <

6

5
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which can be rearranged as

1

12n2 + 2(7− 12γ)/(2γ − 1)
≥ lnn+

1

2n
− ψ(n+ 1) >

1

12n2 + 6/5
.

Combining this with (2) yields (21). The proof of Theorem 1 is proved.
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