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Abstract. The object of the present paper is to obtain a more general condition for univa-
lence of meromorphic functions in the U*. The significant relationships and relevance with other
results are also given. A number of known univalent conditions would follow upon specializing the

parameters involved in our main results.
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1. INTRODUCTION

We denote by U, the disk {z € C: |z]| < r}, where 0 < r <1, by U= U; the open unit disk
of the complex plane and U* = C\U, where U is closure of U.

Let A denote the class of all analytic functions in the open unit disk U normalized by
f(z)=z+az®+.. (2€0)

and we denote by S the subclass of A consisting of functions which are also univalent in U. Closely

related to S is the class Y of all meromorphic functions in U* by

f(():b<+bo+%1+... (CelU")

and ), stands for all functions from ) with normalization b = 1 and by = 0. These classes have
been one of the important subjects of research in complex analysis especially, Geometric Function

Theory for a long time (see, for details, [12]).

Two of the most important and known univalence criteria for analytic functions defined in
U* were obtained by Becker [I] and Nehari [8]. Some extensions of these two criteria were given
by Lewandowski [5], [6] and Ruscheweyh [I1]. During the time, unlike there were obtained a lot of
univalence criteria by Miazga and Wesolowski [7], Wesolowski [13], Kanas and Srivastava [4] and
Deniz and Orhan [2].

In the present paper we consider a general univalence criterion for functions f belonging to

the class > in terms of the Schwarz derivative defined by

s0=(77) -3 (7).
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2. LOEWNER CHAINS AND RELATED THEOREM

Before proving our main theorem we need a brief summary of the method of Loewner chains.

Let L(2,t) = a1(t)z +az(t)2? + ..., a1(t) # 0, be a function defined on U x [0, 00), where a; ()
is a complex-valued, locally absolutely continuous function on [0,00). £(z,t) is called a Loewner

chain if £(z,t) satisfies the following conditions;

(i) L(z,t) is analytic and univalent in U for all ¢ € [0, c0)
(i) L(z,t) < L(z,s) forall 0 <t < s < o0,

2

where the symbol "< ” stands for subordination. If a;(t) = e’ then we say that £(z,t) is a

standard Loewner chain.

In order to prove our main results we need the following theorem due to Pommerenke [9] (also
see [I0]). This theorem is often used to find out univalency for an analytic function, apart from

the theory of Loewner chains;

Theorem 2.1. Let L(z,t) = a1(t)z + ax(t)z? + ... be analytic in U, for all t € [0,00). Suppose
that;

(i) L(z,t) is a locally absolutely continuous function in the interval [0,00), and locally uni-
formly with respect to U,.

(i) a1(t) is a complex valued continuous function on [0,00) such that ai(t) # 0, |a1(t)] — oo

Gt

forms a normal family of functions in U,.

fort — oo and

(iil) There exists an analytic function p : U x [0,00) — C satisfying Rep(z,t) > 0 for all
z €U, t€[0,00) and
OL(z,t OL(z,t
(2.1) z%zp(z,t)%, z €U, tel0,00).

Then, for each t € [0,00), the function L(z,t) has an analytic and univalent extension to

the whole disk U or the function L(z,t) is a Loewner chain.

The equation ([2.)) is called the generalized Loewner differential equation.

3. UNIVALENCE CRITERION FOR THE FUNCTIONS BELONGING TO THE CLASS Z

In this section, making use of the Theorem 2] we obtain an univalence criterion for mero-
morphic functions. The method of prove is based on Theorem 2.1l and on construction of a suitable

Loewner chain.
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Theorem 3.1. Let f,g € E be locally umvalent functions in U*. If there exists an analytic
function h such that Reh(¢) > 5 and h(¢) =1 —I— 2 + ... for ¢ € U*, and for arbitrary o € C we

—2
have

1=h() .2 B Ch'(C) o
G.1) L0 g - e - [ 70 20

h
Falld = 1°2hc l( -3) (5 (O)2+sf<<>—sg<<>]

¢f"(©)

+(1—20) Cg”(C)}

<1

g'(¢)

for all ¢ € U*, then f is univalent in U*.

Proof. Without loss of generality we can consider the functions of the form

f(<)=<+%+... and ¢(¢) = c+b<1+

since the Schwarzian derivative is invariant under Mobius transformations. Consider the functions
defined by

g’(C)r vy N
70 _1+<2+..., eC

where we choose this branch of the power (-)*, which for { — oo has value 1, and

(3.3) u(€) = F(Ou(Q) = ¢+ % + o

The functions u and v are meromorphic in U* since f and g do not have multiple poles and f’ and

(32) w0 = |

g’ are different from zero.

For all ¢t € [0,00) and % = z € U the function f : U, x [0,00) — C defined formally by

_ [elE) et =enin(2) (z)
o e e @ e D)
= ez V(e P2, p=1,2,.

is analytic in U since ¥(e™P!, 22) is analytic function in U for each fixed ¢ € [0,00) and p = 1,2, ....
From (B.4) we have a1(t) = e* and

lim |ay ()] = lim e’ = oo.

t—o0 t—o00
After simple calculation we obtain, for each z € U,

t
lim M = lim {z + \Il(ef(erl)t,zz)} = 2.
t—o0 e t—o0

The limit function k(z) = z belongs to the family {f(z,t), /e’ : ¢t € [0,00)}; then, there exists a
number ry (0 < 79 < 1) that in every closed disk U,,, there exists a constant Ky > 0, such that

[z 1)

‘ < Ko, z€U,, te0,00)
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uniformly in this disk, provided that ¢ is sufficiently large. Thus, by Montel’s Theorem, { f(z,t) et}

forms a normal family in each disk U,,.

Since the function W(e~?, 22) is analytic in U, U(F) (e 7% 22) k € Ny = {0,1,2...} is continuous
on the compact set, so ¥ (e=Pt 22) k € Ny is bounded function. Thus for all fixed T' > 0, we can
write e/ < el and we obtain that for all fixed numbers ¢ € [0, 7] C [0,00), there exists a constant
K7 > 0 such that

‘%‘ <K, V2eU,, tel0,T].

Therefore, the function f(z,t) is locally absolutely continuous in [0, 00); locally uniformly with

respect to Uy, .

After simple calculations from (4] we obtain

(3.5) afé’z’t)
= %%t {(1 +(e7? 1) [h (%) + %th’ (?tﬂ) (u'v — v'u)
(e - 1)%h <%t> (W0 — v'"u) + (e — 1)262—2;h2 (%t) ("o — v”u’)}
« F2(2, 1)) [v (%t) et - et)%h (%) v (%)F
and
(3.6) 8f§;t’ )
= —%t {(1 — (e +1)h (%) + (e + 1)%th’ (%)) (u'v —v'u)
() e e (L) )
« F2(2, 1)) [v (%t) et - et)%h (%) v (%)T
where
(3.7) W' —v'u = f’ (%>2a, aeC
(3.8) W' —v"u= (1 - 2a)f" (j{—j)m +2ag" (%)QQI , aeC

I\ 2« " "
IR R O [T 9 e

t
and u,v,u’,v’,u",v" are calculated at <.



Consider the function p : U, x [0,00) — C for 0 < r < rg and ¢ € [0,00) , defined by
0f(zt) 0f(z1)
=z :

t) =
p(z,1) 9 5
From 1) to (B9), we can easily see that the function p(z,t) is analytic in U,, 0 < r < rg. If the
function
20 f(z,t) af(z,t)
)—1 2= ofet)
(3.10) wiz,ty = PED 1 o o1

- T 20f(zt) | 9f(it)
p(z,t) +1 Mz 9f(zh)

is analytic in U x [0,00) and |w(z,t)| < 1, for all z € U and ¢t € [0,00), then p(z,t) has an analytic
extension with positive real part (Rep(z,t) > 0) in U, for all ¢ € [0, 00).

To show this we write B3] and (3] in the equation (BI0), then we obtain

(3.11) w(z,t)
2% {(1 —h (e—;) + (e72 — 1)%h’ (e—:)) (v'v —v'u)

26*%%}1 (%t) (u'v —v'u)

+ 2e—2tep (%) (w'v — v'u)
_ 2 1_h(%> (1 2t)e_t h/(%> +UHU—U”u
hE) @ e

and from B.7)-39) for all z € U and ¢ € [0, 00)
(3.12)  w(z,t)

1-n(%) ac
e2t 4 (1 _ 6215)_

h('
h(%) 2\ h(%)

N (e 1)262—22th (%t) ((Sf(%t) - Sg(%t)> + <a B %) <§/:§:§; - ggl’l((;é))>> '

The right hand side of the equation (812) is equal to
1—-h(1)

h(z)
for t = 0. Thus, from hypothesis of theorem for % = ( € U* we have
‘ 1-h(C)
h(C)

> |e!| > 1for all 2 € U and ¢ > 0, we find that w(z,t) is an analytic function in U. Then

Z‘ = ¢! for |z| = 1, from ([BI2)) by assumption (3.I)) replacing ¢ by

w(z,0) =

<1

t
: €
Since | &

putting %t =CeU, (= (e,




¢ we have

e (2RO ey (R L O 6"
el = [i* (Sa) - e - ) (s + - 20 00K
2t

ralld® = 12500 (5500 = 8,600 + (o 5) (L) -

< L

Therefore |w(z,t)| <1 for all z € Uand ¢ € [0, 00).

Since all the conditions of Theorem [2.1] are satisfied, we obtain that the function f(z,t) is
a Loewner chain or has an analytic and univalent extension to the whole unit disk U, for all
t€10,00).

From (32)-@4) it follows in particular that

v(1) 1
fen =22 s
u(z)  f(2)
and for % = ¢ € U* we say that f(¢) is univalent in U*. Thus the proof is completed. O

For a = 0 in Theorem [3.T] we obtain following new result:

Corollary 3.2. Let f € be locally univalent function in U*. If there exists an analytic function
h with Reh(¢) > 5 in U* and h(¢) = 1+ % + ... such that

KO | ()
o TR H<1

1= h(C)
h(¢)

for all ¢ € U*, then f is univalent in U*.

(3.13) 1" = (¢I* = 1)

For a = % in Theorem B.1] we obtain univalence criterion given by Miazga and Wesolowski

.

Corollary 3.3. Let f,g € Y. be locally univalent functions in U*. If there exists an analytic
function h with Reh(¢) > 3 in U* and h(¢) =1+ % + ... such that

800|050
#5067 = D220 [55(0) - 8,(0)]| <1

for all ¢ € U*, then f is univalent in U*.

For h(¢) =1 and a = % in Theorem Bl we obtain sufficient condition of Epstein type [3] on

the exterior of the unit disk obtained earlier by Wesolowski [13].



Corollary 3.4. Let f,g €. be locally univalent functions in U*. If the following inequality

L 0l e o e ')
210" = D?21(S(6) = 84(O] = lel* - D2 <1

is satisfied for all ¢ € U*, then f is univalent in U*.

(3.15)

For f(¢) = g(¢), h(¢) = 1 and & = } in Theorem 3T we obtain well-known Becker’s univalence

criterion [I] in U*.
Corollary 3.5. Let f €. be locally univalent function in U*. If the following inequality
¢ Q)
3.16 <2—1’
(3.16) (I =1) 70

is satisfied for all ¢ € U*, then f is univalent in U*.

<1

For g(¢) = ¢, h(¢) =1 and a = $ in Theorem B.I] we obtain Nehari type univalence criterion
[8] in U*.

Corollary 3.6. Let f € be locally univalent function in U*. If the following inequality

2
. S ——
(3.17) 5501 < g

is satisfied for all ¢ € U*, then f is univalent in U*.
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