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Abstract

Homogenization of a simultaneous heat and moisture flow in a masonry wall
is presented in this paper. The principle objective is to examine an impact
of the assumed imperfect hydraulic contact on the resulting homogenized
properties. Such a contact is characterized by a certain mismatching resis-
tance allowing us to represent a discontinuous evolution of temperature and
moisture fields across the interface, which is in general attributed to discon-
tinuous capillary pressures caused by different pore size distributions of the
adjacent porous materials. In achieving this, two particular laboratory exper-
iments were performed to provide distributions of temperature and relative
humidity in a sample of the masonry wall, which in turn served to extract
the corresponding jumps and subsequently to obtain the required interface
transition parameters by matching numerical predictions and experimental
results. The results suggest a low importance of accounting for imperfect
hydraulic contact for the derivation of macroscopic homogenized properties.
On the other hand, they strongly support the need for a fully coupled multi-
scale analysis due to significant dependence of the homogenized properties
on actual moisture gradients and corresponding values of both macroscopic
temperature and relative humidity.
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(Michal Šejnoha), sejnoha@fsv.cvut.cz (Jǐŕı Šejnoha)
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1. Introduction

An extensive three-dimensional nonlinear thermo-mechanical analysis of
Charles Bridge in Prague, as a typical representative of historical masonry
structures, identified the year round variation of temperature as one of the
most severe contributors to the growth of damage in the bridge [1]. In sum,
the analysis was carried out in the framework of totally uncoupled multi-
scale solution strategy assuming a macroscopically homogeneous bridge with
material data derived from an independent homogenization study performed
on meso-scale. When limiting attention to a heat transport phenomenon
such a simplification has been supported by calculations presented in [2]
rendering the macroscopic homogenized heat conductivities independent of
macroscopic gradients. On the other hand, the obtained results have shown
a relatively strong dependence of the macroscopic thermal conductivity on
initial values of relative humidity and temperature.

It will be demonstrated that in view of this the uncoupled multi-scale
approach is no longer admissible and the bridging of scales must be un-
derstood in a fully coupled framework. Such an analysis thus accommo-
dates two sources of coupling on both material and structural level. The
latter one is typically presented in the framework of FE2 computational
scheme [3, 4, 5, 6, 7]. Nevertheless, if coupling on a material level is consid-
ered it usually comprises mechanical response and transport of one particu-
lar non-mechanical field, either temperature or moisture. On the other hand,
coupling heat and moisture transport within FE2 scheme appears novel. This
topic, however, goes beyond the present scope and will be considered else-
where. Instead, our attention will concentrate on the following two aspects
of the modeling of masonry structures:

• To assess the influence of possibly imperfect hydraulic contact on macro-
scopic homogenized properties. The notion of imperfect hydraulic con-
tact has been put forward in [8, 9, to cite a few] offering, through
experimental observations, the discontinuity in moisture field to be
caused by discontinuity in capillary pressure at the interface of distinct
porous materials in the case when the corresponding pore size distri-
butions do not sufficiently interpenetrate. Experimental validation of
this assumption is presented in Section 3.
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• To confirm the need for a fully coupled multi-scale analysis.

A crucial point in addressing the first item is the choice of a suitable
constitutive model. Literature offers a variety of such models allowing for
modeling of heat and moisture transport in porous materials. An extensive
overview of various models is available in [10]. Since moisture transport due
to gravity forces can usually be neglected in building structures including
bridges we lump one particular diffusion model proposed by Künzel [11], see
also [12] for additional reference. Because of lucidity, a short overview of
this model is provided in Section 2. The model is utilized in Section 3 to
reproduce the transient transport of heat and moisture induced in the labo-
ratory within a sample of masonry wall for specific climatic conditions. The
desired interface transition parameters are estimated in parallel by matching
numerical results and experimental measurements.

The second item moves our attention to the topic of homogenization. In
general, the macro-meso transition of transient heat flow calls for the solu-
tion of the transient problem on both scales. As suggested in [5, 6], this
becomes particularly important for a finite size representation of a sub-scale
problem (RVE - representative volume element) since estimates of distribu-
tions of macroscopic fields may show size dependency due to higher order
terms appearing on the left hand side of macroscopic balance equations.
The authors further showed that a steady state solution is recovered for in-
finitesimally small RVEs. This was an a priori assumption put forward, e.g.
in [3]. Because the problem of macro-scale transient flow is not part of this
contribution, the steady state conditions will also be adopted here to see,
through a parametric study performed solely on the meso-scale, a signifi-
cant dependence of homogenized properties on applied moisture gradients
thus supporting the advocated need for a fully coupled multi-scale analysis
in the solution of real engineering problems. In doing so, we limit our atten-
tion to classical first order homogenization theory as presented for example
in [2, 13, 14]. Individual steps are outlined in Section 4. The most essential
results are then summarized in Section 5.

In the following text, a and A denote a vector and a symmetric second-
order tensor, respectively. The symbol ∇ = {∂/∂x, ∂/∂y, ∂/∂z}T stands for
the gradient representation. All materials are assumed locally isotropic.
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2. Local constitutive and balance equations

Owing to its ability to describe all substantial phenomena of heat and
moisture transport in building materials with numerical predictions reason-
ably close to experimentally obtained data we choose the model developed
by Künzel [11] for studying these transport processes in masonry structures.

He neglected the liquid water and water vapor convection driven by grav-
ity and total pressure as well as enthalpy changes due to liquid flow and
choose relative humidity ϕ as the only moisture potential. The water vapor
diffusion is then described by Fick’s law written as

gv = −δp∇ (ϕpsat) , (1)

where gv is the water vapor flux, δp is the water vapor permeability of a
porous material and psat = psat(θ) is the saturation water vapor pressure
being exponentially dependent on temperature. The transport of liquid water
is assumed in the form of surface diffusion in an absorbed layer and capillary
flow typically represented by Kelvin’s law

gw = −Dϕ∇ϕ, (2)

where gw is the flux of liquid water, Dϕ = Dw (dw/dϕ) is the liquid conduc-
tivity, Dw = Dw (w/wf) is the liquid diffusivity, dw/dϕ is the derivative of
water retention function and w/wf is the water content related to the capil-
lary saturation with wf being the free water saturation. The Fourier law is
then used to express the heat flux q as

q = −λ∇θ, (3)

where λ is the thermal conductivity and θ is the local temperature. Intro-
ducing the above constitutive equations into energy and mass conservation
equations we finally get

• The energy balance equation

dH

dθ

dθ

dt
= ∇

T[λ∇θ] + hv∇
T[δp∇ (ϕpsat)], (4)

• The conservation of mass equation

dw

dϕ

dϕ

dt
= ∇

T[Dϕ∇ϕ] +∇
T[δp∇ (ϕpsat)], (5)
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where H is the enthalpy of moist building material and hv is the evaporation
enthalpy of water. The second term on the right hand side of Eq. (4) rep-
resents the change of enthalpy due to phase transition being considered the
only heat source or sink.

3. Evaluation of interface transition parameters

As foreshadowed in the introductory part, one of the objectives of the
present contribution is to evaluate the influence of imperfect hydraulic con-
tact on the predictions of macroscopic homogenized transport parameters.
Unlike classical definition of a hydraulic contact, which builds upon conti-
nuity of capillary pressure pc resulting in turn into a jump of water content
w across the interface uniquely related to pc = pc(w), an imperfect contact
allows for a discontinuous variation of capillary pressure along the interface
caused by different pore size distributions of the adjacent porous materi-
als [9]. In case of natural contact, assumed henceforth for the brick-mortar
interface, the flux of water vapor is neglected and the flux of liquid water
gw,int becomes

gw,int = −βint(pc2 − pc1), (6)

where βint is the internal interface permeability. The pore size difference is
implicitly introduced through the Kelvin-Laplace equation [11] yielding the
capillary pressure as a function of relative humidity as

pc = −
ρwRθ

Mw

lnϕ, (7)

where Mw is the molar mass of water, ρw is the water intrinsic density and R
is the universal gas constant. Although temperature continuity is typically
assumed for natural [8], we shall expect that the jump in capillary pressure
results in the corresponding jump in temperature. The heat flux across the
interface qint will then attain the form similar to Eq. (6)

qint = −αint(θ2 − θ1), (8)

where αint is the internal heat transfer coefficient. In numerical calculations
Eqs. (6) and (8) are introduced by employing standard interface elements.
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3.1. Experimental measurements

An extensive experimental investigation of the moisture and heat trans-
port through a sample of the masonry wall was carried out to determine
the previously introduced interface transport coefficients. Although their di-
rect measurement is currently not feasible, their estimates are still possible
at least in the context of inverse methods combining available experimental
data and numerical simulations of corresponding laboratory tests. This par-
ticular approach, where model parameters are properly adjusted during re-
peated calculations to match experimental and numerical results, is adopted
thereinafter.

(a) (b)

Figure 1: (a) Geometry of the masonry block with positions of sensors, (b) finite element
mesh with applied loading

The experiments were conducted using the NONSTAT measuring system
consisting of two climatic chambers for the simulation of climatic conditions
(relative humidity, temperature), which are connected by a specially devel-
oped tunnel for testing large specimens. Although the specimen dimensions
are therefore close to a real masonry structure, the accuracy of measure-
ments remains the same as for small laboratory samples, see [15, 16] for
further details. To measure temperature and moisture fields, a set of sensors
was attached to the masonry specimen as seen in Fig. 1(a) with the following
accuracy: capacitive relative humidity sensors are applicable in the range of
humidities 0.05-0.98 ± 0.02 [-], temperature sensors provide measurements
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with a deviation of ± 0.4 [◦C] in the temperature range from -20 to 0 [◦C]
and ± 0.1 [◦C] in the range from 0 to 70 [◦C].

(a) (b)

Figure 2: Experiment No. 1: Loading conditions - (a) temperature, (b) relative humidity

(a) (b)

Figure 3: Experiment No. 2: Loading conditions - (a) temperature, (b) relative humidity

Two separate experiments were conducted. In the first experiment, the
heat transport was driven by the temperature gradient, whereas the relative
humidity was maintained at a constant level. In the second experiment,
the relative humidity transport was monitored at approximately constant
temperature. The real climatic conditions generated on both the interior
and exterior part of the wall sample for the first and second experiment
are displayed in Figs. 2 and 3, respectively. Notice that although expected
to be constant around the value of 0.5, the relative humidity in the first
experiment shows considerable fluctuations exceeding the range of 0.2 [-].
Moreover, the measurements in the second experiments were polluted by
two electricity shutdowns clearly visible in Fig. 3 resulting in a severe drop of
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(a) (b)

Figure 4: Experiment No. 1: (a) comparison of experimentally and numerically obtained
temperature jumps along the interface, (b) calculated and measured temperature profile
in chosen sensors corresponding to 11th day

relative humidity on the exterior part of the specimen. It should, however, be
mentioned that despite of that, none of these two complications in the control
of relative humidity are of major concern in the identification of material
parameters since the exact record of boundary conditions, with limitations
to the selected time step, was introduced in all numerical calculations.

3.2. Numerical simulation

The first experiment was focused on the heat transport trough the ma-
sonry block, especially in the area of interface transition zone. On the exterior
side of the specimen, a constant temperature of −9.5 [◦C] and on the inte-
rior side, a constant temperature of 24.5 [◦C] were maintained, see Fig. 2(a).
The experimental measurement lasted 50 days. All experiments were per-
formed considering the moisture in the form of water vapor only. Therefore,
no additional difficulties associated with ice formation in large pores aroused
in numerical simulations. Nevertheless, if this issue becomes important the
present model can be modified, as suggested in [11], allowing us to determine
the amount of movable water for a given temperature.

Distribution of temperature in the selected points close to the interface
served to extract the corresponding jumps and to assess their dependence on
temperature and relative humidity on the one hand and on the other hand
their sensitivity to the direction of flow. The experimentally obtained time
variation of temperature jumps is plotted in Fig. 4 suggesting its invariance
with respect to both temperature and flow direction, at least for the present
experimental setup. An example of variation of temperature is plotted in
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Fig. 4(a) for sensor No. 12. Reproducing these results numerically would
thus allow us to derive the respective interface heat transfer coefficient αint.

(a) (b)

Figure 5: Experiment No. 1: (a) evolution of temperature obtained from all numerical cal-
culations in sensor No. 12, (b) evolution of temperature obtained numerically for optimal
data and from experiment in sensor No. 12

If material parameters of individual phases were available and assuming
the relative humidity is continuous this would be the only parameter to be
searched for. Unfortunately, no additional experiments were conducted for
this type of material and had to be identified along with the parameter αint.
Although a variety of techniques, typically exploiting the power of genetic
algorithms, are available in the literature, see e.g. [17, 18], a simple ”trial
and error” procedure was adopted here to mine the necessary material data.
To that end, the moisture transport parameters were taken from literature
for a similar type of material [2], while the remaining thermal properties of
brick, mortar and interface transition zone, namely the thermal conductivity
of dry building material λ0 [Wm−1K−1], the thermal conductivity supplement
btcs [-] and the interface heat transfer coefficient αint [Wm−2K−1] were found
by matching the experimental and numerical results in the framework of
least square method applied to a pool of numerical realizations with input
parameters generated by the Latin Hypercube Sampling method assuming
Log-normal distribution of material data to simply avoid possibly negative
values of parameters generated for individual realizations. The mean values
are taken again from [2].

Geometrical model and boundary conditions used in numerical calcula-
tions appear in Fig. 1(b). The finite element mesh consisted of 662 triangular
and 57 interface elements. The calculated curves entering the inverse analy-
sis are plotted in Fig. 5(a). The results representing the temperature in the
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area of interface transition zone (ITZ) are displayed in Fig. 5(b). The nu-
merically predicted temperature jumps are presented in Fig. 4(a) assuming
a single value of parameter αint independent of both temperature and flow
direction. The calculated and measured temperature profiles for optimally
fitted thermal data are compared in Fig. 5(b).

The second experiment simulated a water vapor transport within a steady
state temperature profile. On the exterior side of the wall the relative hu-
midity of 0.3 [-] and on the interior side of 0.95 [-] were prescribed, see Fig. 3.
The temperature varied in the range of 25 to 29 [◦C]. This experiment
lasted 27 days. As before independence of jumps in relative humidity with
respect to the flow direction was again observed. Thus only jumps perti-
nent to brick-mortar transition are presented, see Fig. 6(b). Noticing that
the actual values of these jumps are essentially comparable to the measuring
precision may support the notion of a perfect hydraulic contact. In the next
paragraphs we seek to confirm this via numerical simulations.

As for numerical calculations, a similar generation of material parame-
ters as in the previous numerical example was carried out, see Fig. 7, to
capture the necessary relative humidity input data for both material phases
(free water saturation wf [kgm−3], water content w80[kgm

−3] at 0.8 [-] rela-
tive humidity, water vapor diffusion resistance factor µ [-], water absorption
coefficient A [kgm−2s−0.5] and interface permeability βint [kgm−2s−1Pa−1].
Again, the finite element mesh as seen in Fig. 1(b) was used with the ther-
mal material parameters of mortar and bricks ({λ0,m, λ0,b} = {0.45, 0.25},
{btcs,m, btcs,b} = {9.0, 10.0}, αint = 100000) found from the first identification
problem.

Fig. 7(a) represents a collection of all possible variations of relative humid-
ity, while Fig. 7(b) displays the evolution of moisture for optimally fitted set
of parameters ({wf,m, wf,b} = {160.0, 229.30}, {w80,m, w80,b} = {22.72, 141.68},
{µm, µb} = {9.63, 16.80}, {Am, Ab} = {0.82, 0.51}, βint = 5.25 × 10−9) de-
rived from the ”trial and error” procedure.

The experimentally and numerically obtained results for the interface
transition zone are plotted in Fig. 6 depicting distributions of capillary pres-
sures and jumps in relative humidity in individual phases in the vicinity of
the interface. Note that capillary pressures are not directly measured but
arise from back calculation by introducing the corresponding values of ex-
perimentally measured relative humidities in Kelvin’s equation (7). Their
discontinuous variation further supports our assumption of an imperfect hy-
draulic contact. As seen from both figures the experimental measurement
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(a) (b)

Figure 6: Experiment No. 2: (a) distribution of back calculated capillary pressures along
the interface, (b) comparison of experimentally and numerically obtained relative humidity
jumps along the interface

(a) (b)

Figure 7: Experiment No. 2: (a) evolution of relative humidity obtained from all numerical
calculations in sensor No. 14, (b) evolution of relative humidity obtained numerically for
optimal data and from experiment in sensor No. 14

(a) (b)

Figure 8: Experiment No. 2: Calculated and measured relative humidity profile in chosen
sensors corresponding to: (a) 6th day, (b) 9th day
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was affected by the fault of boundary condition on the exterior side of the
masonry wall due to electricity shutdown so that the identification of jumps
in this time period was rather complicated and therefore, as can be seen from
Fig. 6(b), the agreement between numerical and experimental estimates is
less accurate. It is also worth noting that the jump magnitude in relative
humidity is almost equal to the accuracy of sensors. Therefore, incorpo-
rating the interface elements into numerical calculations will probably have
negligible influence on the predicted results.

The calculated moisture profile and measured relative humidity for the
optimally fitted thermal and moisture material parameters are depicted in
Fig. 8.

4. Homogenization on meso-scale

Once having derived the material parameters of individual phases we may
now proceed to address the two principal objectives, recall the introductory
part, in the light of the first order homogenization theory. To that end,
we consider an RVE in terms of a periodic unit cell (PUC) describing the
geometrical and material details of the meso-scale, see Fig. 9.

Figure 9: Periodic unit cell of brick-mortar composite with assumed boundary conditions

4.1. Fundamentals of 1st order homogenization

Since examining only the coupling effect and influence of interface transi-
tion parameters on the homogenized properties, it is sufficient to consider a
steady state problem and perform a detailed parametric study on meso-scale.
Because only first order homogenization is adopted, it is assumed that macro-
scopic temperature and relative humidity vary only linearly over the PUC.
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This can be achieved by loading the boundary of the PUC by the prescribed
temperature θhom and relative humidity ϕhom derived from uniform macro-
scopic temperature ∇Θ and relative humidity ∇Φ gradients, respectively, as
depicted in Fig. 9.

In such a case, the local temperature and relative humidity admit the
following decomposition

θ(x) = Θ(x0) +
(
x− x0

)T
∇Θ+ θ∗(x) = Θhom + θ∗,

ϕ(x) = Φ(x0) +
(
x− x0

)T
∇Φ + ϕ∗(x) = Φhom + ϕ∗, (9)

where ∇Θ and ∇Φ are the macroscopically uniform temperature and rela-
tive humidity gradients, respectively. Fluctuations of local fields about the
macroscopic ones are denoted by θ∗(x) and ϕ∗(x). Finally, the temperature
Θ(x0) and the relative humidity Φ(x0) at the reference point x0 are intro-
duced to uniquely define the distributions of the corresponding local fields.
The micro-temperature and micro-relative humidity gradients

∇θ(x) = ∇Θ+∇θ∗(x),

∇ϕ(x) = ∇Φ+∇ϕ∗(x), (10)

averaged over the volume |Ω| of the PUC

〈∇θ(x)〉 =
1

|Ω|

∫

Ω

∇θ(x)dΩ(x) = ∇Θ+
1

|Ω|

∫

Ω

∇θ∗(x)dΩ(x),

〈∇ϕ(x)〉 =
1

|Ω|

∫

Ω

∇ϕ(x)dΩ(x) = ∇Φ+
1

|Ω|

∫

Ω

∇ϕ∗(x)dΩ(x), (11)

yield the scale transition relation, see e.g. [3],

〈∇θ∗〉 =
1

|Ω|

∫

Ω

∇θ∗(x)dΩ(x) =
1

|Ω|

∫

Γ

θ∗(x)νdΓ(x) = 0,

〈∇ϕ∗〉 =
1

|Ω|

∫

Ω

∇ϕ∗(x)dΩ(x) =
1

|Ω|

∫

Γ

ϕ∗(x)νdΓ(x) = 0. (12)

The boundary integral disappears providing either the fluctuation parts of
the local fields equal zero (Dirichlet boundary conditions) or the periodic
boundary conditions, i.e. the same values of θ∗ and ϕ∗ on opposite sides of
the rectangular PUC, are enforced on Γ.
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4.2. Discretized form of energy balance equation

Using Eqs. (1) and (3) the heat flux density is given by

q + hvgv = −λ∇θ − hvδp∇(ϕpsat)

= −λ∇θ − hvδppsat∇ϕ− hvδpϕ∇psat. (13)

Next, substituting for local fields θ and ϕ from Eq. (10) into (13) and after
some manipulations we get

q + hvgv = −[λ + hvδp
dpsat
dθ

ϕ](∇Θ+∇θ∗)− hvδppsat(∇Φ +∇ϕ∗). (14)

The stepping stone in the estimation of macroscopic response is the Hill-
Mandel lemma suggesting equality of the work of local fields averaged over
the solution domain and the work of their macroscopic counterparts. Owing
to the nonlinear nature of underlying material models, the formulation must
be written in an incremental form. To that end, assume an equilibrium
state at the end of the i-th time step and consider a small increment of the
macroscopic temperature gradient d(∇Θ) resulting in an incremental change
of local and macroscopic fluxes so that

〈
−δ(∇θ)Td(q + hvgv)

〉
= −δ(∇Θ)Td(qM + hM

v g
M
v ), (15)

where the symbol 〈·〉 = 1
|Ω|

∫

Ω
·dΩ represents the volume averaging. Pro-

viding we admit only the Dirichlet boundary conditions in the form of the
prescribed gradient of macroscopic temperature the term on the right hand
side would disappear (δ(∇Θ) = 0). For the calculation purposes this condi-
tion is considered to determine the unknown fluctuation fields. Nevertheless,
for the derivation of instantaneous macroscopic conductivity matrix it will
prove useful to keep the full generality of the mathematical formulation.

To proceed, consider the numerical solution in the framework of the finite
element method and introduce the standard geometric matrix B storing the
spatial derivatives of the finite element shape functions to get the discretized
form of the local fields as

∇θ = ∇Θ+ Br∗
θ, ∇ϕ = ∇Φ+ Br∗

ϕ, (16)

and
δ(∇θ) = δ(∇Θ) + Bδr∗

θ, δ(∇ϕ) = δ(∇Φ) + Bδr∗
ϕ. (17)
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Substituting Eqs. (14), (16) and (17) into Eq. (15) provides

δ(∇Θ)T{d(qM + hM
v g

M
v ) +

+

〈

λ+ hvδp
dpsat
dθ

Φ̂hom

〉

︸ ︷︷ ︸

K
m

θθ

d(∇Θ) + 〈hvδppsat〉
︸ ︷︷ ︸

K
m

θϕ

d(∇Φ) +

+

〈

[λ+ hvδp
dpsat
dθ

Φ̂hom]B

〉

︸ ︷︷ ︸

Lθθ

dr∗
θ + 〈hvδppsatB〉

︸ ︷︷ ︸

Lθϕ

dr∗
ϕ}+

+δ(r∗
θ)

T{

〈

B
T[λ+ hvδp

dpsat
dθ

Φ̂hom]

〉

︸ ︷︷ ︸

L
T

θθ

d(∇Θ) +
〈
B

Thvδppsat
〉

︸ ︷︷ ︸

L
T

θϕ

d(∇Φ) +

+

〈

B
T[λ + hvδp

dpsat
dθ

Φ̂hom]B

〉

︸ ︷︷ ︸

Kθθ

dr∗
θ +

〈
B

ThvδppsatB
〉

︸ ︷︷ ︸

Kθϕ

dr∗
ϕ} = 0, (18)

where the notation Φ̂hom = Φhom + ϕ̂∗ is introduced to identify ϕ̂∗ with the
fluctuation of relative humidity at the end of the previous iteration step.
Because of the independence of variations δ(∇Θ) and δr∗

θ, Eq. (18) splits
into two equalities. Noting that the change of the macroscopic flux can be
expressed in the form

d(qM + hM
v dg

M
v ) = −K

M
θθd(∇Θ)−K

M
θϕd(∇Φ), (19)

we write the first equality as

(−K
M
θθ +K

m
θθ)d(∇Θ) + (−K

M
θϕ +K

m
θϕ)d(∇Φ) + Lθθdr

∗
θ + Lθϕdr

∗
ϕ = 0. (20)

The second equality is then provided by

L
T

θθd(∇Θ) + L
T

θϕd(∇Φ) +Kθθdr
∗
θ +Kθϕdr

∗
Φ = 0. (21)

4.3. Discretized form of mass balance equation

Similar to Eq. (15)) the variational form of the Hill-Mandel lemma for
moisture transport reads

〈
−δ(∇ϕ)T[d(gv + gw)]

〉
= −δ(∇Φ)T[gM

v d(g
M
v + gM

w )], (22)
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where the moisture flux density is given by

gv + gw = −(Dϕ + δppsat)(∇Φ +∇ϕ∗)− δp
dpsat
dθ

ϕ(∇Θ+∇θ∗). (23)

Introducing Eq. (23) together with Eqs. (16) and (17) into Eq. (22) yields

δ(∇Φ)T{d(gM
v + gM

w ) +

+

〈

δp
dpsat
dθ

Φ̂hom

〉

︸ ︷︷ ︸

K
m

ϕθ

d(∇Θ) + 〈Dϕ + δppsat〉
︸ ︷︷ ︸

K
m

ϕϕ

d(∇Φ) +

+

〈

[δp
dpsat
dθ

Φ̂hom]B

〉

︸ ︷︷ ︸

Lϕθ

dr∗
θ + 〈[Dϕ + δppsat]B〉

︸ ︷︷ ︸

Lϕϕ

dr∗
ϕ}+

+δ(r∗
ϕ)

T{

〈

B
T[δp

dpsat
dθ

Φ̂hom]

〉

︸ ︷︷ ︸

L
T

ϕθ

d(∇Θ) +
〈
B

T[Dϕ + δppsat]
〉

︸ ︷︷ ︸

L
T

ϕϕ

d(∇Φ) +

+

〈

B
T[δp

dpsat
dθ

Φ̂hom]B

〉

︸ ︷︷ ︸

Kϕθ

dr∗
θ +

〈
B

T[Dϕ + δppsat]B
〉

︸ ︷︷ ︸

Kϕϕ

dr∗
ϕ} = 0. (24)

Since (compare with (19))

d(gM
v + gM

w ) = −K
M
ϕθd(∇Θ)−K

M
ϕϕd(∇Φ), (25)

the Hill-Mandel lemma for moisture transport (compare with Eq. (20)) be-
comes

(−K
M
ϕθ +K

m
ϕθ)d(∇Θ)+ (−K

M
ϕϕ +K

m
ϕϕ)d(∇Φ)+ Lϕθdr

∗
θ + Lϕϕdr

∗
ϕ = 0, (26)

together with (recall Eg. (21))

L
T

ϕθd(∇Θ) + L
T

ϕϕd(∇Φ) +Kϕθdr
∗
θ +Kϕϕdr

∗
ϕ = 0. (27)
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4.4. Macroscopic conductivity matrices

Assuming that the heat and moisture balance is reached at the end of
the i-th step at the mesostructural level and the nodal unbalanced forces are
equal to zero, we obtain from the system of equations (21) and (27)

{
dr∗

θ

dr∗
ϕ

}

= −

[
Kθθ Kθϕ

Kϕθ Kϕϕ

]−1 [
L
T

θθ L
T

θϕ

L
T

ϕθ L
T

ϕϕ

]{
d(∇Θ)
d(∇Φ)

}

. (28)

The system of equations (20) and (22) can be rewritten with help of Eq. (28)
as

[
K

M
θθ K

M
θϕ

K
M
ϕθ K

M
ϕϕ

]{
d(∇Θ)
d(∇Φ)

}

=

=

([
K

m
θθ K

m
θϕ

K
m
ϕθ K

m
ϕϕ

]

−

[
Lθθ Lθϕ

Lϕθ Lϕϕ

] [
Kθθ Kθϕ

Kϕθ Kϕϕ

]−1 [
L
T

θθ L
T

θϕ

L
T

ϕθ L
T

ϕϕ

]){
d(∇Θ)
d(∇Φ)

}

,

to finally arrive at the macroscopic conductivity matrix in the form

[
K

M
θθ K

M
θϕ

K
M
ϕθ K

M
ϕϕ

]

=

[
K

m
θθ K

m
θϕ

K
m
ϕθ K

m
ϕϕ

]

−

[
Lθθ Lθϕ

Lϕθ Lϕϕ

] [
Kθθ Kθϕ

Kϕθ Kϕϕ

]−1 [
L
T

θθ L
T

θϕ

L
T

ϕθ L
T

ϕϕ

]

.

(29)

4.5. Numerical results

Recall the introductory part posting two particular issues to be investi-
gated. First, we were interested in assessing the influence of interface tran-
sition parameters on the homogenized response. For this purpose, the PUC
displayed in Fig. 9 was loaded by a set of prescribed macroscopic temperature
∇Θ and relative humidity ∇Φ gradients. The initial values of temperature
and relative humidity were set equal to Θ(x0) = 20 [◦C] and Φ(x0) = 0.5 [-],
respectively. The model parameters were found using equations listed in [12]
together with phase material data derived in Section 3. To see the sensitivity
of the homogenized properties on interface parameters, we assumed a set of
constant values of parameters αint and βint slightly varying about the optimal
ones αint = 105 [Wm−2K−1] and βint = 5.25× 10−9 [kgm−2s−1Pa−1].

The results are plotted in Fig. 10 showing variation of the selected diag-
onal terms of the homogenized conductivity matrix, recall Eq. (29). Clearly,
while we may notice dependence of homogenized terms on macroscopic gra-
dients, the impact of variation of αint and βint is almost imperceptible. These
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results together with experimental observations presented in Section 3 may
suggest that the introduction of interface transition zone at the mesostruc-
tural level is essentially negligible for the prediction of effective properties,
at least for the present material system and applied range of temperatures
and relative humidities.

(a) (b)

Figure 10: Variation of the effective parameters (KM
θθ,(1,1) and KM

ϕϕ,(1,1)) as a function of
the interface transfer coefficients for various values of relative humidity gradients

Second, to capture the influence of macroscopic loading conditions on ef-
fective parameters we assumed, in view of the previous results, a perfect
hydraulic contact and loaded the PUC again by several different macro-
scopic temperature and relative humidity gradients. In addition, the macro-
scopic/initial temperature and macroscopic/initial relative humidity also var-
ied.

The distributions of the same macroscopic terms as in the first exam-
ple appear in Fig. 11. It is evident that the predicted effective parameters
are considerably dependent on both the initial and loading conditions. De-
spite it, one may suggest that homogenization analysis performed for various
values of water content w and certain referenced initial values of tempera-
ture and relative humidity can be exploited to construct the homogenized
macro-scale retention curves providing the analysis is independent of the
applied macroscopic gradients. Such curves would be then used in an inde-
pendent macroscopic study. While this seems acceptable for effective thermal
conductivities, this approach evidently fails for effective moisture transport
coefficients, which strongly depend on the current temperature and rela-
tive humidity gradients. Therefore, studying the coupled heat and moisture
transport in masonry structures must be envisioned in a full-fledged coupled
multi-scale framework (FE2 problem). On the other hand, this offers the
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possibility of including the mesostructural morphology and mesostructural
material behavior in the macro-level, where typical structures are analyzed,
without the need for assigning the fine-scale details to the entire structure.

(a) (b)

Figure 11: Variation of the effective parameters (KM
θθ,(1,1) and KM

ϕϕ,(1,1)) as a function of
initial conditions for various values of relative humidity gradients

5. Conclusions

A coupled heat and moisture transport was studied with reference to
the first order homogenization of masonry walls. First, a specific experi-
mental program was executed to infer the local phase material parameters
and interface transition coefficients from experimentally observed jumps in
temperature and relative humidity fields. The notion of a negligible effect
of considering an imperfect hydraulic contact put forward already by experi-
mental results was further supported numerically by a parametric meso-scale
homogenization study of a stationary problem.

Admitting only a perfect hydraulic contact proves useful in the light of
the second set of results promoting the need for fully coupled multi-scale
analysis when transport of moisture becomes appreciable, such as the case
of historic masonry structures, especially bridges.

Acknowledgment

This outcome has been achieved with the financial support of the Ministry
of Education, Youth and Sports, project No. 1M0579, within activities of
the CIDEAS research centre. In this undertaking, theoretical results gained
in the project 103/08/1531 were partially exploited. The experimental work

19



performed at the Department of materials and chemistry of the Czech Tech-
nical University in Prague, Faculty of Civil Engineering under the leadership
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hygrothermal performance of multi-layered building envelopes, Journal
of Thermal Envelope and Building Science 25 (2002) 239–249.
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