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Abstract

To assess the durability of structures, heat and moisture transport need to be
analyzed. To provide a reliable estimation of heat and moisture distribution
in a certain structure, one needs to include all available information about
the loading conditions and material parameters. Moreover, the informa-
tion should be accompanied by a corresponding evaluation of its credibility.
Here, the Bayesian inference is applied to combine different sources of infor-
mation, so as to provide a more accurate estimation of heat and moisture
fields [1]. The procedure is demonstrated on the probabilistic description of
heterogeneous material where the uncertainties consist of a particular value
of individual material characteristic and spatial fluctuations. As for the heat
and moisture transfer, it is modelled in coupled setting [2].

Keywords: uncertainty updating, Bayesian inference, heterogeneous
materials, Karhunen-Loève expansion, transport processes

1. Introduction

There are many important factors limiting the service life of buildings. An
appropriate reliability analysis needs to take into account uncertainties in the
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environmental conditions as well as in structural properties. Thanks to the
growth of powerful computing resources and technology, recently developed
procedures in the field of stochastic mechanics have become applicable to
realistic engineering systems.

The most common methods quantifying uncertainties are the first- and
second-order reliability methods (FORM/SORM [3]) computing the proba-
bility of failure related to limit states. Nevertheless, modern sophisticated
and highly nonlinear models lead to non-Gaussian higher-order probability
density functions of model parameters and its response. The higher moments
become interesting quantities to be estimated by probabilistic analysis such
as stochastic finite element methods (SFEM), see e.g. [4] for a recent review.
SFEM is a powerful tool in computational stochastic mechanics extending
the classical deterministic finite element method (FEM) to the stochastic
framework involving finite elements whose properties are random.

This paper is focused on the modelling of uncertainties in material pro-
perties and investigates the influence of such uncertainties on structural re-
sponse. When dealing with homogeneous materials, one obtains a simplified
scenario for SFEM, where uncertain material properties are described by ran-
dom variables, which are assumed to be spatially constant. In the field of
heterogeneous materials modelling, a widespread approach is multiscale mo-
delling based on homogenization as presented e.g. in [5, 6, 7]. Nevertheless,
homogenization theories have rigorous foundations for materials with well-
defined geometry and components described by simple constitutive laws as in
the case of regular masonry or composite materials with periodic microstruc-
ture. However, these techniques cannot be efficiently applied to materials
with random microstructure such as in case of quarry masonry, see Fig. 1.

Figure 1: Example of quarry masonry

Another possibility is casting the description of heterogenous material
within the probabilistic framework, where uncertain material properties in
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time and/or space are represented by stochastic processes and fields. The
resulting problem can be then solved by different strategies. The most fa-
mous group involves spectral stochastic finite element methods (SSFEM)
[8]. These methods of uncertainty quantification are focused on propaga-
tion of uncertainty in the system properties through the numerical model
of the system in order to estimate probabilistic quantification of structural
response. It assumes the knowledge of probabilistic formulation of uncertain
system properties. Nevertheless, this uncertainty is usually very high before
the structure is built, but after the construction, practical measurements
can be performed. With these observations, the probabilistic models can be
updated, to give a more accurate and reliable estimate. To this goal, the
appropriate techniques from the field of inverse analysis should be employed.

The following section presents a brief introduction into the inverse ana-
lysis. Section 3 is devoted to Bayesian inference suitable for probabilistic
estimation of model parameters from noisy and limited data. Section 4 is
focused on the probabilistic description of heterogeneous materials proper-
ties where particular material parameters are not spatially constant. Section
5 presents the application of Bayesian inference to model of coupled heat
and moisture transfer in heterogeneous material and the obtained results are
concluded in Section 6.

2. Inverse problems

In computational mechanics one tries to model a real system A, where
system parameters q, a loading f and a system response u are related as

A(u; q) = f . (1)

The goal here is to obtain the response of the system for given parameters
and loading conditions. In the field of inverse analysis, the goal is to find
the values of system parameters q corresponding to given loading conditions
f and experimental observations z. Therefore, one uses the numerical model
of the system A and derives a so-called observation operator Y mapping the
response u given parameters q and loading f to observed quantities z

Y(q, f) = z . (2)

The subject of this work is concerned with the description of heat and
moisture conduction in structural materials and the system parameters q
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are related here to the material behaviour. Material parameters are usually
determined in the context of a chosen experimental setup, where the loading
conditions are fixed, hence, the loading f is assumed to be constant in the
following text.

When simulating some real experiment, the model response is usually
not equal to measured data because of experimental errors or imperfection
of numerical model itself. It is often difficult to distinguish these sources of
errors and they are described together in error vector ǫ, so Eq. (2) becomes

Y(q) + ǫ = z . (3)

The most common way of estimating material properties is based on
fitting the response of numerical model to the results of real experiments,
see e.g. [9] for a recent review of parameters identification strategies. This
usually leads to an optimization problem, where the difference between the
model response and measured data is minimized by an appropriate optimiza-
tion algorithm. Nevertheless, the formulation of the suitable error function
is not always trivial [10, 11, 12]. The resulting function is often multimodal,
non-smooth or non-differentiable and some robust optimization algorithm
must be used (see e.g. [13] for an illustrative example of an application of
evolutionary algorithm to solve such problem).

There are only several works on including uncertainties into the curve
fitting-based approach to parameters identification as e.g. in [14]. In general,
these approaches omit related uncertainties in measurements as well as im-
perfections of the numerical model and also the preliminary knowledge about
the material parameters coming from their physical meaning (e.g. Young’s
modulus must be positive, Poisson’s ratio must lay within the −1 and 0.5,
etc).

3. Bayesian updating of uncertainties

Bayesian inference is the statistical inference in which the experimental
observations are not used as the only source of information, but they are used
to update the preliminary probabilistic description of system - the so-called
prior information - to give the posterior distribution [15]. Recall that in re-
alistic applications, observations are noisy, uncertain and limited in number
relative to the dimension or complexity of the model space. Also, the model
of a system may have limitations on its predictive value because of its im-
precision, filtering or smoothing effects. Taking into account all pertinent
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uncertainties, the process of material properties estimation cannot lead to a
single ’optimal’ parameter set, but one has to find a probability distribution
of parameters that represents the knowledge about parameter values. The
Bayesian setting for the inverse problems offers a rigorous foundation for in-
ference from noisy data and uncertain forward models, a natural mechanism
for incorporating prior information, and a quantitative assessment of uncer-
tainty in the inferred results summarizing all available information about the
unknown quantity [1]. In addition, unlike other techniques that aim to regu-
larize the ill-posed inverse problem to achieve a point estimate, the Bayesian
method treats the inverse problem as a well-posed problem in an expanded
stochastic space.

The Bayesian approaches to inverse problems have received much recent
interest, since increasing performance of modern computers and clusters en-
ables exhaustive Monte Carlo computations. Among recent applications one
can cite applications in environmental modelling [16], hydrology [17] or heat
transfer [18]. We review this approach briefly below; for more extensive
introductions, see [1].

The main principle of Bayesian inference is casting the inverse problem in
the probabilistic setting, where material parameters q as well as observations
z and also the response of forward operator Y(·) are considered as random
variables or random fields. Therefore, we introduce the following notation.
We consider a set Ω of random elementary events ω together with σ-algebra
S to which a real number in the interval [0, 1] may be assigned, the proba-
bility of occurrence - mathematically a measure P.

In the Bayesian setting, we assume three sources of information and un-
certainties, which should be taken into account. The first one is our prior
knowledge about the model/material parameters q(ω), which is represented
by defining the prior density function pq(q). Prior models may embody sim-
ple constraints on q, such as a range of feasible values, or may reflect more
detailed knowledge about the parameters, such as correlations or smoothness.

Other source of information comes from measurements, which are vio-
lated by uncertain experimental errors ǫ(ω̄). Last uncertainty arises from
imperfection of the numerical model included in the observation operator
Y(·), when for example our description of the real system A does not include
all important phenomena and therefore the forward operator response Y(·, ¯̄ω)
can be assumed as uncertain. The probabilistic formulation of Eq. (3) now
becomes

z = Y(q(ω), ¯̄ω) + ǫ(ω̄) . (4)
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If modelling uncertainties ¯̄ω cannot be neglected, they can be described
by conditional probability density p(z|q) for predicted data z and given model
parameters q. If these uncertainties can be neglected, only model parameters
q(ω) and observations z(ω̄) remain uncertain. In practise, it is sometimes
difficult to distinguish the imperfection of the system description A from
measurement error ǫ. Hence modelling uncertainties ¯̄ω can be hidden in
measuring error ǫ(ω̄). Finally, for noisy measurements we define the last
probability density pz(z).

To update our prior knowledge about model parameters we must include
measurements with our theoretical knowledge. Bayesian update is based on
the idea of Bayes’ rule defined for probabilities. Definition of Bayes’ rule for
continuous distribution is, however, more problematic and hence [1, Chapter
1.5] derived the posterior state of information π(q, z) as a conjunction of all
information at hand

π(q, z) = κpq(q)pz(z)p(z|q) , (5)

where κ is a normalization constant.
The posterior state of information defined in the space of model param-

eters q is given by the marginal probability density

πq(q) = Eω̄ [π(q, z)] = κpq(q)

∫

Ω̄

p(z|q)pz(z)P(dω̄) = κpq(q)L(q), (6)

where Ω̄ is a set of random elementary events ω̄ and measured data z enters
through the likelihood function L(q), which gives a measure of how good a for-
ward operator Y(q) is in explaining the data z. Here, Eω̄ is the expectation
operator averaging over Ω̄ .

To keep the presentation of different numerical aspects of particular meth-
ods clear and transparent, we focus here on a quite common and simple case,
where modelling-uncertainties are neglected and measurement errors are as-
sumed to be Gaussian. Then the likelihood function takes the form

L(q) = κ exp

(

−1

2
(Y(q)− z)TC−1

obs (Y(q)− z)

)

, (7)

where Cobs is a covariance among measurements z.
The primary computational challenge is extracting information from the

posterior density πq(q) [1]. Most estimates take the form of integrals over
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the posterior, which may be computed with asymptotic methods, determin-
istic methods, or sampling. The deterministic quadrature or cubature may
be attractive alternatives to Monte Carlo simulation at low to moderate di-
mensions, but Markov chain Monte Carlo (MCMC) [19] remains the most
general and flexible method for complex and high-dimensional distributions.

4. Uncertainty in properties of heterogeneous materials

In modelling of heterogeneous material, some material parameters are
not constants, but can be described as random fields. It means that the
uncertainty in the particular material parameter q is modelled by defining
q(x) for each x ∈ G as a random variable q(x) : Ω → R on a suitable
probability space (Ω ,S ,P) in some bounded admissible region G ⊂ R

d. As
a consequence, q : G×Ω → R is a random field and one may identify Ω with
the set of all possible values of q or with the space of all real-valued functions
on G. Alternatively, q(x, ω) can be seen as a collection of real-valued random
variables indexed by x ∈ G.

Assuming the random field q(x, ω) to be Gaussian, it is defined by its
mean

µq(x) = E[q(x, ω)] =

∫

Ω

q(x, ω)P(dω) (8)

and its covariance

Cq(x,x
′) = E[(q(x, ω)− µq(x))(q(x

′, ω)− µq(x
′))]

=

∫

Ω

(q(x, ω)− µq(x))(q(x
′, ω)− µq(x

′))P(dω) . (9)

Some non-Gaussian fields may be synthesized as – usually nonlinear – func-
tions of Gaussian fields [20, 21]. For instance, most of the material param-
eters cannot be negative, hence, the lognormal random field can be more
suitable for their description. Then the lognormal random field q(x, ω) for
each material parameter is obtained by nonlinear transformation of a stan-
dard Gaussian random field qg(x, ω) as, given in [21],

q(x, ω) = exp(µg + σgqg(x, ω)) . (10)

The statistical moments µg and σg can be obtained from statistical moments
µq and σq given for lognormally distributed material property according to

7



following relations:

σ2
g = ln

(

1 +

(

σq

µq

)2
)

, µg = lnµq −
1

2
σ2
g . (11)

In a computational setting, the random field and the numerical model
must be discretized. If the parameter field q(x) can be adequately represented
on a finite collection of points {xn

i=1} ∈ R
2, then we can write both the prior

and posterior densities in terms of q = (q(x1), . . . , q(xn)), where qi = q(xi)
are random variables usually correlated among each other. The vector q,
however, will probably be high-dimensional and it renders MCMC explo-
ration of the posterior more challenging. Therefore, the Karhunen−Loève
expansion (KLE) can be applied to dimensionality reduction [22].

KLE is an extremely useful tool for the concise representation of the
stochastic processes. Based on the spectral decomposition of covariance func-
tion Cq(x,x

′) and the orthogonality of eigenfunctions ψi, the random field
q(x, ω) can be written as

q(x, ω) = µq(x) +

∞
∑

i=0

√
ςiξi(ω)ψi(x), (12)

where ξ(ω) = (. . . , ξi(ω), . . .)
T is a set of uncorrelated random variables of

zero mean and unit variance. The spatial KLE functions ψi(x) are the eigen-
functions of the Fredholm integral equation with the covariance function as
the integral kernel:

∫

G

Cq(x,x
′)ψi(x)dx

′ = ςiψi(x) , (13)

where ςi are positive eigenvalues ordered in a descending order.
Since the covariance is symmetric and positive definite, it can be expanded

in the series

Cq(x,x
′) =

∞
∑

i=1

ςiψi(x)ψi(x
′) . (14)

However, computing the eigenfunctions analytically is usually not feasi-
ble. Therefore, one discretizes the covariance spatially according to chosen
grid points (usually corresponding to a finite element mesh). The resulting
covariance matrix Cq is again symmetric and positive definite and Eq. (13)
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becomes symmetric matrix eigenvalue problem, see [23], where the eigen-
functions ψi(x) are replaced by eigenvectors ψi. The eigenvalue problem is
usually solved by a Krylov subspace method with a sparse matrix approxi-
mation. For large eigenvalue problems, [24] proposes the efficient low-rank
and data sparse hierarchical matrix techniques.

For practical implementation, the series (12) and (14) are truncated after
M terms, yielding the approximations

q̂(ω) ≈ µq +

M
∑

i=1

√
ςiξi(ω)ψi , (15)

Ĉq ≈
M
∑

i=1

ςiψ
T
i ·ψi . (16)

Such spatial semi-discretization is optimal in the sense that the mean square
error resulting from a truncation after the M-th term is minimized.

5. Uncertainty updating in coupled heat and moisture tranfer

This section is devoted to application of previously described techniques
to uncertainty updating in coupled heat and moisture transport in heteroge-
neous material with uncertain structure as quarry masonry. In particular, we
employ the model proposed by Künzel [2] described by the energy balance
equation

dH

dθ

dθ

dt
= ∇

T[λ∇θ] + hv∇
T[δp∇{ϕpsat(θ)}] (17)

and the conservation of mass equation

dw

dϕ

dϕ

dt
= ∇

T[Dϕ∇ϕ] +∇
T[δp∇{ϕpsat(θ)}] , (18)

where θ is the temperature, ϕ stands for the moisture and H , λ, etc are de-
scribed below. The transport coefficients defining the material behaviour are
nonlinear functions of structural responses - the temperature and moisture
fields - and material properties. We briefly recall their particular relations [2]:

• Thermal conductivity [Wm−1K−1]:

λ = λ0

(

1 +
btcswf(b− 1)ϕ

ρs(b− ϕ)

)

. (19)
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• Evaporation enthalpy of water [Jkg−1]:

hv = 2.5008 · 106
(

273.15

θ

)(0.167+3.67·10−4θ)

. (20)

• Water vapour permeability [kgm−1s−1Pa−1]:

δp =
1.9446 · 10−12

µ
· (θ + 273.15)0.81 . (21)

• Water vapour saturation pressure [Pa]:

psat = 611 exp

(

17.08θ

234.18 + θ

)

. (22)

• Liquid conduction coefficient [kgm−1s−1]:

Dϕ = 3.8
a2

wf

· 10
3wf (b−1)ϕ

(b−ϕ)(wf−1) · b(b− 1)

(b− ϕ)2
. (23)

• Total enthalpy of building material [Jm−3]:

H = ρscsθ . (24)

More detailed discussion about transport coefficients can be found in [2, 25].
Some transport coefficients defined by Eqs. (19) - (24) depend on a subset
of the material parameters listed in Tab. 1. The approximation factor b
appearing in Eqs. (19) and (23) can be determined from the relation:

b =
0.8(w80 − wf)

w80 − 0.8wf

, (25)

where w80 is the equilibrium water content at 0.8 [−] relative humidity. There-
fore, b is not considered as a material parameter, while w80 is another material
property to be determined. Finally, there are 8 material parameters listed in
Tab. 1 to be estimated by updating procedure.

The presented table also contains the prior information about material
parameters in terms of the mean values µq and the standard deviations σq.
Their particular values are chosen with regard to values corresponding to
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Parameter µq σq
wf [kgm−3] free water saturation 200 40
w80 [kgm−3] water content at 0.8 [−] relative humidity 100 10
λ0 [Wm−1K−1] thermal conductivity of dry material 0.3 0.1
btcs [−] thermal conductivity supplement 10 2
µ [−] water vapour diffusion resistance factor 12 5
a [kgm−2s−0.5] water absorption coefficient 0.6 0.2
cs [Jkg−1K−1] specific heat capacity 900 100
ρs [kgm−3] bulk density of building material 1650 50

Table 1: Mean values and standard deviations of material parameters

materials used in masonry [26]. Other prior information is that all these
material parameters cannot be negative and hence, they could be considered
as lognormally distributed. To describe the uncertainty about parameters of
heterogeneous material, we choose the covariance kernel of a corresponding
random field. Since the material properties change in the space because of
changes in material components, we assume that the spatial fluctuations of
all parameters are equal. It is probably not the best description of a real ma-
terial. Nevertheless, we are convinced that the full spatial correlation among
material properties is more realistic then full spatial independence. For the
sake of simplicity, we do not study here the case of arbitrarily correlated pa-
rameters. Therefore, we assume the same normalized exponential covariance
kernel for all parameters,

C(x,x′) = exp

(

−
∣

∣

∣

∣

x1 − x′1
lx1

∣

∣

∣

∣

−
∣

∣

∣

∣

x2 − x′2
lx2

∣

∣

∣

∣

)

x = (x1, x2), x
′ = (x′1, x

′
2) ,

(26)
where lx1 and lx2 are covariance lengths. We assume also that the expert is
certain about correlation lengths lx1 = 0.1 [m] and lx2 = 0.04 [m], but he is
not sure about a particular distribution of phases in material. In practise,
the correlation lengths can be determined by the image analysis of a given
material [27], common size of bricks in masonry etc.

Utilizing the covariance kernel (26), we compute particular realizations
of standard Gaussian random field based on Karhunen-Loève expansion

q̂g(ω) ≈
M
∑

i=1

√
ςiξi(ω)ψi . (27)
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Here, the eigenvectors ψi describe the fluctuation of material property within
the studied domain G. Since the fluctuations reflect here the distribution of
phases in material, the random variables ξi are also considered same for all
material parameters. Given the prior mean µq and standard deviation σq
for each material parameter in Tab. 1, corresponding statistical moments µg

and σg can be derived from Eq. (11). These can be then applied to Eq. (10)
in order to obtain a lognormal random field for each material parameter.
Nevertheless, such procedure implies that the expert is also certain about
mean value and relative amplitudes (given by the prior standard deviation)
of respective random fields. That will unlikely happen in practice. To make
the example more realistic, we include the uncertainty in the mean values of
particular random fields by adding one random variable ξq,0 for each material
property and extending the Eq. (10) into

q̂(ω) = exp

(

µg + σgξq,0 + σg

M
∑

i=1

√
ςiξi(ω)ψi

)

. (28)

As a result, the random field corresponding to particular material property
can be now shifted independently to each other. For a sake of simplicity
and to keep the number of random variables in reasonable bounds, we keep
the amplitudes of respective random fields still closely related. The total
number of random variables L to be updated within Bayesian framework
now becomes L =M +W , where M is the number of terms in the truncated
KL expansion and W is the number of material properties.

As an example, we consider two-dimensional rectangular domain dis-
cretized by FE mesh into 80 nodes and 120 elements. Its geometry together
with the specific loading conditions are shown in Fig. 2. The initial temper-
ature is θin = 14 [◦C] and moisture ϕin = 0.5 [-] in the whole domain. One
side of the domain is submitted to exterior loading conditions θext = 5 [◦C]
and ϕext = 0.5 [-], while the opposite side is submitted to interior loading
conditions θint = 24 [◦C] and ϕint = 0.8 [-].

Figure 2: Experimental setup
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In order to reduce the number of random variables to be updated within
the Bayesian inference, one needs to choose the number of eigenmodes M as
small as possible, but high enough for a satisfactory description of parameter
fields. The attention should be paid to the error in description of parameter
fields as well as to the related error in the model response. Fig. 3 presents
a comparison of an arbitrary realization of thermal conductivity field λ0(x)
computed using all 120 eigenmodes and its approximation λ̂0(x) computed
using only first 7 eigenmodes.

(a) (b)

Figure 3: Thermal conductivity field computed using (a) all 120 eigenmodes and (b) only
first 7 eigenmodes

When comparing the corresponding heat and moisture fields, the negli-
gence of higher eigenmodes in description of input parameter fields is reflected
by fluctuations of response fields. These are, however, relatively small com-
paring to absolute values of temperature and moisture (see Fig. 6). For
better understanding, Fig. 4 shows only the fluctuations of response fields,
since we have subtracted the response fields (θ̄(x) and ϕ̄(x)) corresponding
to homogeneous medium. (The particular response fields correspond to time
t = 200 [h].)

One can conclude that the employed Künzel’s model has a smoothing
effect, because negligence of higher eigenmodes induced relatively high er-
ror in the approximation of input parameter fields, while its impact to the
fluctuations of response fields is almost vanishing.

In order to choose an appropriate number of eigenmodes, a relative point-
wise error of input fields averaged over all 120 finite elements and over 100
independent random realizations can be computed according to

E(q, q̂) =
1

100

100
∑

j=1

1

120

120
∑

i=1

|qi(ξj)− q̂
(M)
i (ξj)|

qi(ξj)
. (29)
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(a) (b)

(c) (d)

Figure 4: Fluctuations of response fields: (a) temperature field and (b) moisture field
obtained for complete input parameter fields; (c) temperature field and (d) moisture field
obtained for approximated input fields

A similar error can be also computed in terms of response fields. These errors
as a function of the number of eigenmodes M involved in the description
of input fields computed for three different choices of correlation lengths
are depicted in Fig. 5. It can be seen again that the error in description
of input fields is decreasing slowly, while the error in the response fields
descends much faster due to the smoothing effect of the numerical model.
Owing to the results in Fig. 5, we decided to perform the Bayesian inference
with an approximation of input fields using 7 KLE modes, which provides a
satisfactory accuracy.

According to the formulation of lognormal input fields given in Eq. (28),
we use one random variable for each eigenmode involved (it is M = 7) and
one random variable for each material properties (it is W = 8) in order to
enable their relative shift. Hence, we have L = 15 random variables to be
updated within the Bayesian inference.

Due to the lack of experimental data, we prepared a virtual experiment
based on simulation including all eigenmodes. The values of temperature and
moisture are measured in 14 points shown at Figs. 6 (a) and (c) and at three
distinct times given in Figs. 6 (b) and (d). Hence, the observations d consist
of 84 values. They were then perturbed by Gaussian noise with standard
deviation for temperature σθ = 0.2 [◦C] and for moisture σϕ = 0.02 [−]

14



(a) (b)

Figure 5: Relative mean point-wise error (a) of the input thermal conductivity field and
(b) of the overall responses induced by KLE approximation based on M eigenmodes

(a) (b)

(c) (d)

Figure 6: Virtual observations: (a) and (c) spatial arrangement of probes; (b) and (d)
temporal organization of measurements

and in that way we produced 100 virtual measurements. Based on them we
calculated the observation covariance matrix Cobs appearing in the likelihood
function, which has the Gaussian form shown in the Eq. (7).

The Bayesian update was performed using Metropolis-Hasting algorithm
and 80, 000 samples were generated in order to sample the posterior density
(5) over variables ξ = (ξ1 . . . ξ15). Then, one realization of parameter fields
was computed for each sample vector ξ. The mean computed over all pos-
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terior fields of thermal conductivity E[λ̂0,posterior] depicted in Fig. 7 (a) can
be compared with the reference field in Fig. 3 (a) utilized for preparation
of virtual experiment. Since the mean is not a sufficient descriptor of the

(a) (b)

Figure 7: A posteriori fields of the thermal conductivity (a) mean over 80, 000 samples
and (b) cut along the axis x at y = 0.03 [m] of a subset of 200 posterior (light grey) and
200 prior samples (dark grey) and the reference field (bold black)

a posteriori distribution, Fig. 7 (b) shows a cut of a subset of 200 posterior
samples (light grey lines). The cut is driven along the axis x at y = 0.03 [m].
These posterior samples can be compared with the same number of fields
computed for samples drawn from the a priori distribution (dark grey lines)
and the cut through the reference field of λ0 (bold black line). One can see
that the a posteriori samples much better encompass the reference field than
the a priori ones.

During the updating process, the model responses obtained for the a pos-
teriori samples were stored. Fig. 8 shows the difference between the reference
response fields and the mean computed over posterior response fields, both
at time t = 200 [h]. Comparing the differences in Fig. 8 with size of fluctu-
ations of corresponding fields in Figs. 4 (a) and (b), one can conclude that
the differences are relatively small.

Finally, the a posteriori and the a priori distributions of the responses
can be compared with the reference response at Fig. 9. The figure shows the
evolution of the temperature (a) and the moisture (b) in time at the FE node
no. 4. It is evident from the figures that the a posteriori samples (light grey)
are distributed in the very vicinity of the reference response (bold black),
while the dispersion of responses computed for 200 samples drawn from the
a priori distribution is very large.
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(a) (b)

Figure 8: Difference between reference field and the mean over the a posteriori samples
(a) for temperature field and (b) for moisture field

(a)

(b)

Figure 9: Temperature (a) and moisture (b) evolution in time at FE node 4: comparison
of a priori samples (dark grey), a posteriori samples (light grey) and reference response
(bold black)

6. Conclusions

The presented paper deals with the Bayesian updating of uncertainty in
properties of heterogeneous materials. The process starts with the a priori
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highly uncertain information given by an expert about material properties,
which enters as input into the chosen material model. The model employed
here is the Künzel’s model of coupled heat and moisture transfer, which
assumes highly nonlinear relation between 8 material parameters and the
structural response as given in Eqs. (19) – (24). Beside the prior uncertainty
in the value of material characteristic itself, another uncertainty arises when
describing heterogeneous material with spatial fluctuations of such property.
In order to describe the fluctuations, one random field is assigned to each
material property. For a sake of simplicity, the fully correlated random fields
are assumed, but one random variable is added into the description of each
parameter so as to allow their mutual shift. To limit the number of ran-
dom variables describing the material, the random fields are approximated
by Karhunen-Loève expansion with 7 eigenmodes. Finally, to grasp all men-
tioned uncertainties, 15 random variables are considered.

Beside the prior information, the virtual experiment is prepared to sub-
stitute real experimental observations. The Metropolis-Hastings algorithm
is then employed to sample the posterior distributions of random variables
combining the prior knowledge and the information obtained from measure-
ments. Figs. 7 and 9 present the results of the Bayesian inference verification.
It is shown that even for highly nonlinear model, the updating process leads
to much more precise prediction of the material properties as well as model
responses.

The drawback of the described procedure is the high computational cost.
One simulation of the presented experiment takes 3.8 [s] at Intel Core Duo
Processor T9600 with 4GB RAM. Hence, the whole sampling lasted almost
90 [h]. Therefore, our future work will be focussed on the acceleration of sam-
pling procedure via approximation of the structural response (see e.g. [28]) or
approximation of the posterior density [29] by polynomial chaos expansion.
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[6] R. Valenta, M. Šejnoha, J. Zeman, Macroscopic constitutive law for
mastic asphalt mixtures from multiscale modeling, International Journal
for Multiscale Computational Engineering 8 (1) (2010) 131–149.
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