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Abstract. Magnetic resonance images which are corrupted by noise and by smooth modulations are
corrected using a variational formulation incorporating a total variation like penalty for the image and a
high order penalty for the modulation. The optimality system is derived and numerically discretized. The
cost functional used is non-convex, but it possesses a bilinear structure which allows the ambiguity among
solutions to be resolved technically by regularization and practically by normalizing the maximum value
of the modulation. Since the cost is convex in each single argument, convex analysis is used to formulate
the optimality condition for the image in terms of a primal-dual system. To solve the optimality system, a
nonlinear Gauss-Seidel outer iteration is used in which the cost is minimized with respect to one variable
after the other using an inner generalized Newton iteration. Favorable computational results are shown
for artificial phantoms as well as for realistic magnetic resonance images. Reported computational times
demonstrate the feasibility of the approach in practice.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a medical imaging method in which radio frequency
coils, such as those shown in Figure 1, are used for both nuclear excitation and for signal
detection in order to measure the hydrogen atom density distribution in the human body.
Displaying this distribution permits visualization of tissues with varying density. For a full
discussion of the principles of MRI, see, e.g., [5]. On the one hand, a large coil such as the
body coil shown in Figure 1a, may be used for the uniform illumination of a volume as shown
in Figure 2a. On the other hand, a smaller surface coil such as those shown in Figure 1b can be
used to resolve local details with greater sensitivity near the coil center but with an illumination
falling off with the distance from the coil center as seen in Figure 2b.

By using an undersampling strategy, surface coils can also be implemented in parallel to
achieve the high temporal resolution necessary for dynamic examinations. However, in this case
the surface coil images are corrupted by aliasing in addition to the modulation effect seen in
Figure 2. The parallel imaging problem is considered in the companion paper [18], while the
present work is focused purely on the correction of surface coil images such as seen in Figure 2.
The accepted model for the corruptions of such images is that the surface coil measurement ũ
may be represented in terms of the underlying uncorrupted image u? according to ũ = σu? + n
where σ is a smooth modulation and n is noise [3].

The estimation of the smooth modulation σ, or bias field inhomogeneity, has been researched
extensively, as can be seen in the review found in [4]. In some approaches it is assumed that, in
addition to the surface image, a body coil image has also been measured, and the modulation is
determined roughly from their quotient; see, e.g., the authors’ previous works [17] and [19] and
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(a) body coil (b) surface coils

Figure 1: (a) Shown on the left is a magnetic resonance body coil in which a reclining patient may be
situated. (Used with permission of GE Medical Systems.) (b) Shown on the right are smaller surface
coils mounted on a head rack. (See [17].)

(a) body coil image u (b) surface coil image ũ≈σ ·u (c) coil sensitivity σ · (u > 0)

Figure 2: (a) Shown on the left is a body coil image u corresponding to the apparatus seen in Figure 1a.
(b) Shown in the middle is a surface coil image ũ corresponding to the apparatus seen in Figure 1b. Here,
the brightest point of the image is nearest to the coil center. (c) Shown on the right is the coil sensitivity
σ associated with the middle image. Here, σ is displayed only on (u > 0), the support of the first image.

the references cited therein. Other methods do not require a reference body coil image. These
involve to represent the modulation in terms of smooth basis functions such as polynomials
[25] or B-splines [20] and to apply a regularization approach based upon low-pass filtering
[27], on statistical measures such as entropy [23] or on spatial derivatives [26]. There are also
multiresolution schemes based upon wavelets [21] or pyramidal schemes [22]. Yet another class
of methods involves to segment the surface coil image while estimating the modulation [24].
The present work is related to that of [24] and [26] in the sense that the regularization used
here involves a segmentation of the estimated image u as well as a high-order penalty for the
modulation σ, but simultaneously the corrected image u is estimated here using total variation
regularization.

The approach proposed here is formulated variationally so that the residual σu− ũ is min-
imized together with regularization which allows the two unknowns σ and u to be determined
simultaneously. A second order derivative penalty is used for the modulation and a total vari-
ation like penalty is used for the reconstructed image. Specifically, the formulation for the
modulation is based upon the authors’ work in [17] and [19], and the total variation formulation
is based upon the authors’ primal-dual formulation in [13], as opposed to others such as [6] or
[14]. As explained below, the computation of the modulation σ is improved by using a segmen-
tation of the estimated image u to account for the edges in the data ũ. Also, the segmentation
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approach used here is based on the use of topological derivatives as in the work of the authors
[15].

With respect to the required minimization, note that the derivative of the residual |σu− ũ|2
is bilinear in the unknowns σ and u. The difference in imposed regularity allows the two
unknowns to be separated but leads to poor scaling in the cost functional gradient components
corresponding to the modulation as opposed to the image [7]. Thus, a pure gradient descent
scheme can be inefficient for the minimization. On the other hand, the non-convexity of the
cost functional makes its Hessian in general indefinite, and thus a pure Newton’s method is not
suitable [7]. In this work a nonlinear Gauss-Seidel outer iteration is used in which the formulated
cost is minimized with respect to one variable after the other using an inner generalized Newton
iteration.

The paper is organized as follows. In Section 2 the variational formulation is presented and
its optimality system is derived in Section 3. Then in Section 4 the numerical discretization
and solution of the optimality system is presented. In Section 5, computational results are
shown for both phantom images and for measured magnetic resonance images. By simulating
the corruptions for which the proposed approach is designed, a measure of accuracy in the
reconstruction is available. Using this measure as well as a visual demonstration, it is shown
that the proposed approach performs very well to reconstruct images corrupted by noise and
smooth modulations.

2 Overview of the Variational Approach

Given simply the image ũ, as in Figure 2b, which satisfies σu ≈ ũ for an image u, as in
Figure 2a, and a modulation σ, as in Figure 2c, the desired unknowns u and σ are determined
here by minimizing the sum of a residual term plus regularization terms:

J(u, σ) =
1
2

∫
Ω
|σu− ũ|2dx+

ν

2

∫
Ω
|∇2σ|2dx+

κ

2

∫
Ω
u2dx+ µ

∫
Ω
φε(|Du|)dx (2.1)

Here Ω = (0, 1)d is the image domain, with d = 2 in the examples of this work, but there is
no fundamental restriction on the dimension. For simplicity, the arguments of J in (2.1) are
assumed to be real-valued5. Furthermore, they are considered to be mappings u, σ : Ω→ [0, 1],
although the restriction of range is not explicitly enforced in (2.1), as would be the case, e.g.,
if barrier functions were added to (2.1). For (2.1), the `2 norm of the nth order derivative is
given by:

|∇nσ|2 = ∇nσ · ∇nσ, ∇nσ1 · ∇nσ2 =
∑
|α|=n

∂ασ1∂
ασ2 (2.2)

The penalty on the second derivative of the modulation σ seen in (2.1) is based upon work
in [17] and [19]. Among the key points is first the fact that the modulation σ is much smoother
than the image u. Also, to avoid that σ have values outside [0, 1], barrier functions have been
considered as seen in [12] and [15], but it is found here in practice that the modulation is non-
negative on the image support, where it can also be scaled to be less than one. The values
of σ outside the support of u are not important except in the way that they influence values
inside the support indirectly through the smoothness of the modulation. In particular, the high
order natural boundary conditions on σ reduce disturbances of the modulation at the domain
boundary and thus indirectly at the boundary of the image support. For example, when a
penalty such as

∫
Ω |∆σ|

2dx is used, then harmonic functions are in the kernel of the penalty
and boundary disturbances appear as seen in [17]. Also, when a spectral penalty is used such as

5While the raw measured data are complex-valued [5], it is assumed here for simplicity that their inverse
Fourier Transform is real-valued and therefore agrees with the magnitude images such as shown in Figure 2.
When this is not the case, real and imaginary parts of the residual σu− ũ may be processed separately as seen
in [17].

3



∑
k(1 + |k|2)2|ω(k)|2, where {ω(k)} are Fourier or trigonometric series coefficients of σ, then σ

is implicitly continued by periodicity outside of Ω, and finite dimensional approximations lead
to boundary disturbances.

The computation of the modulation σ is also improved by using a segmentation of the
estimated image u, as can be seen from the 1D example shown in Figure 3. Here, ũ is shown

(a) χ = 1 (b) χ binary (c) χ piecewise constant (d) χ = u?

Figure 3: J in (2.1) is minimized with respect to σ for fixed u = χ, where 4 different choices for χ are
shown. The solid noisy curve is ũ. The dotted smooth bell-shaped curve is the exact σ?. The dotted
piecewise smooth curve in (d) is the exact u?. The curve χ also appears as the dotted piecewise smooth
curve in each graph. In each case the minimizer σ is the solid noiseless curve.

in each plot as the solid noisy curve. Using these data, the modulation is to be estimated by
minimizing J in (2.1) with respect to σ for fixed u = χ, where 4 different choices for χ are
tested. Each χ is shown in the respective plot as a dotted piecewise smooth curve. The exact
modulation σ? appears in each plot as the dotted smooth bell-shaped curve. The exact image
u? is shown in Figure 3d where it agrees with χ. By neglecting all information about the exact
image u? (or a practical estimation u) Figure 3a shows that using χ = 1 leads to an excessive
smoothing of the estimation σ over the edges of the data. One sees an immediate improvement
in Figure 3b by using only a binary segmentation χ = Sbin(u?). Yet another improvement is
seen in Figure 3c by using a piecewise constant segmentation χ = Spc(u?). Finally, note that by
using χ = u? for Figure 3d, the improvement obtained in relation to Figure 3c is quite marginal.
Also note, as discussed in the previous paragraph, that the estimation errors in the modulation
seen outside the support of χ will not affect the modulation correction once the data are masked
using the segmentation according to ũ← (χ > χmin) · ũ.

To regularize the image u, the function φε in (2.1) is the Gauss-TV penalty used by the
authors in [13] and [16],

φε(s) =
{

s2/(2ε), |s| ≤ ε
|s| − ε/2, |s| ≥ ε (2.3)

which emerges naturally from the duality formulation as shown in [13] and as seen below in
(A.2). For u ∈ BV(Ω), Du in φε(|Du|) is understood as a measure [1], and otherwise J(u, σ)
is unbounded. The L2 regularization in (2.1) is included so that (κ + σ2)−1 exists for (3.11)
below, even when σ becomes very small.

Note that an additive decomposition, ũ→ u+ v, has been accomplished previously through
different regularizations on u and v; see, e.g., [2]. In the present work, as well as in [7] and [18],
the multiplicative decomposition, ũ→ σu, is also accomplished through different regularizations
on σ and u. Note that this structure makes the derivative of the residual in (2.1) bilinear in the
unknown image and modulation. To examine the landscape of the functional in (2.1), consider
the minimization of the following model function:

f(x, y) = 1
2(yx− z)2 + 1

2νy
2 + µ|x| (2.4)

A contour plot of f is shown in Figure 4 along with the vector fields −∇f and −[∇2f ]−1∇f .
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(a) gradient field (b) Newton field

Figure 4: Contour plots of f in (2.4) (with z = 0.5, µ = ν = 0.01) are shown with the vector fields (a)
−∇f on the left and (b) −[∇2f ]−1∇f on the right. The curve yx = z is shown dashed in both plots,
and the minimizer for f is shown as the asterisk near the dashed curve.

Without regularization from µ and ν, the whole curve yx = z would minimize f ; however,
with positive regularization a unique minimizer exists, although it lies in a flat and elongated
region of the landscape. The location of the unique minimizer depends of course entirely on the
regularization. Note that the gradient direction field −∇f points strongly toward yx = z, but
the field is rather weak in a near neighborhood of the curve. On the other hand, the Newton
direction field −[∇2f ]−1∇f actually points away from yx = z unless sufficiently near to the
curve, where the Newton direction field is actually weaker than the gradient direction field.
Thus, it is not surprising that computational experiments using Newton’s method to minimize
functionals such as (2.1) have had limited success; see, e.g., [7] for related investigations. Since
the cost is convex in each single argument, it can be minimized rapidly with respect to one
argument while the other is held fixed; furthermore, employing such a procedure alternately
has performed better than carrying out line searches along gradient directions for the joint
functional. Thus, a nonlinear Gauss-Seidel outer iteration is used in which the formulated cost
is minimized with respect to one variable after the other using an inner generalized Newton
iteration.

This iterative method arrives quickly at the flat elongated region of the landscape. However,
any of the above iterations can stall in such a region, leading numerically to an effective non-
uniqueness in minimizers. To distinguish among such numerical minimizers, iterations may
be guided by additional information. For instance, since the arguments of J are expected to
have range in [0, 1], the modulation is normalized here in each iteration to achieve a value of
1 at the brightest point of the data. Note that a pointwise normalization of the modulation is
more stable than that of the image since the modulation is smoother. Also, on the basis of the
discussion of Figure 3, the modulation is regularized in early iterations by using a segmentation
χ of the image u instead of the image itself. Such projection and regularization techniques have
been found here to perform better, for instance, than treating the nonconvexity of J by starting
iterations with larger and ending with smaller regularization parameters in (2.1).

3 Optimality Conditions

In this work Hk(Ω) denotes the Sobolev space of functions with distributional derivatives up
to order k in L2(Ω); see [10] for further information about these function spaces. As explained
in [17], the optimality condition for (2.1) with respect to σ for fixed u is:

B(u)σ = uũ, σ ∈ H2(Ω) (3.1)
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which in weak form is defined by:∫
Ω

[
ν∇2σ · ∇2σ̄ + u2σσ̄

]
dx =

∫
Ω
σ̄uũdx, ∀σ̄ ∈ H2(Ω). (3.2)

According to [17] there is a unique weak solution σ ∈ H2(Ω) when ũ ∈ L2(Ω) holds and
u ∈ L∞(Ω) has a support with positive measure. The additional regularity σ ∈ H4(Ω) is
shown in [19]. In strong form, B(u) = ν∆2 + u2, and a smooth solution σ satisfies the natural
boundary conditions ∂3

nσ = ∂2
nσ = ∂n∂τσ = 0, ∂Ω, where ∂n and ∂τ are the normal and

tangential derivatives respectively [17].
In initial iterations of the nonlinear Gauss-Seidel method (3.1) is solved by replacing the

image u with a segmentation S(u) based upon [15]. Specifically, the image is approximated by:

S(u) =
M∑
i=1

ciχi (3.3)

where Ω is decomposed into a union of disjoint subdomains {Ωi} with respective characteristic
functions {χi}, and S(u) possesses the grey level ci on Ωi. The subdomains are determined
so that the cost J(Ω1, . . . ,ΩM ) =

∫
Ω[S(u) − u]2dx is minimized and so cannot be reduced by

transferring part of one subdomain to another. The topological derivative Tij(x) measures the
rate of change of J(Ω1, . . . ,ΩM ) when a ball B(x, r) of vanishingly small radius r is transferred
from Ωi to Ωj :

Tij(x) = lim
|B(x,r)|→0

J(Ω1, . . . ,Ωi\B(x, r), . . . ,Ωj ∪B(x, r), . . . ,ΩM )− J(Ω1, . . . ,ΩM )
|B(x, r)|

(3.4)

Here and below, |B| denotes the measure of the set B. The segmentation (3.3) is determined
so that all derivatives Tij are non-negative. As shown in [15] they are given explicitly as:

Ti,j(x) =
{

[cj − u(x)]2 − [ci − u(x)]2, |Ωj | 6= 0
−[ci − u(x)]2, |Ωj | = 0

(3.5)

for x ∈ Ωi, and Ti,j(x) = 0 for x 6∈ Ωi. In order that the topological derivative approach operate
in a more global fashion, a point x is transferred from Ωi to Ωj only when

Ti,j(x) < γ min
y∈Ωj

Ti,j(y) (3.6)

where γ ∈ (0, 1). Given the subdomains, the grey levels {ci} are given by the following:

ci =
1
|Ωi|

∫
Ωi

udx; |Ωi| 6= 0, ci = 0, |Ωi| = 0. (3.7)

See Algorithm 2 for the details of determining S(u).
To establish an optimality condition for (2.1) with respect to u for fixed σ, define the

functionals F : L2(Ω)→ R ∪ {∞},

F(u) =
1
2

∫
Ω
|σu− ũ|2dx+

κ

2

∫
Ω
u2dx (3.8)

and G : L2(Ω)→ R ∪ {∞},
G(u) =

µ

2

∫
Ω
φε(|Du|)dx (3.9)

so that the dependence on u in J is given by F(u) + G(u).6 Note that these operators satisfy
the conditions of the Fenchel Duality Theorem, and the desired optimality condition is thus

6The authors wish to thank Otmar Scherzer for his suggestion that these functionals be defined on L2; see
also the recent book [11].
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given by [9]: 
F(u) + F∗(v) =

∫
Ω
uvdx

G(u) + G∗(−v) = −
∫

Ω
uvdx

(3.10)

where the convex conjugates F∗ and G∗ in (3.10) are given as follows; see Appendix A for the
details. First, F∗ : L2(Ω)→ R ∪ {∞} is given by:

F∗(v) =
1
2

∫
Ω

[
(κ+ σ2)−1(v + σũ)2 − ũ2

]
dx (3.11)

Secondly, G∗ : L2(Ω)→ R ∪ {∞} is given by:

G∗(v) =


ε

2µ

∫
Ω
|p|2dx, if v = ∇ · p, p ∈ Sµ

+∞, else
(3.12)

where

Sµ = {p ∈ H0(div) : |p| ≤ µ, a.e. in Ω} (3.13)

H0(div) = {p ∈ L2(Ω,Rd) : ∇ · p ∈ L2(Ω), n · p = 0, ∂Ω} (3.14)

and n is the outwardly directed unit normal vector at ∂Ω. As seen in Appendix A, the func-
tionals (3.8), (3.9), (3.11) and (3.12) lead to the following formulation of the optimality system
(3.10): {

(κ+ σ2)u−∇ · p = σũ
−µDu+ bDucεp = 0

u ∈ BV(Ω), p ∈ Sµ (3.15)

where bDucε = max{ε, |Du|}.

4 Numerical Methods

The discretization of the optimality conditions in Subsection 3 begins with a division of
Ω into Nd = 2pd (dimension d = 2) cells, each with unit aspect ratio and width h = 2−p.
Specifically, with the integer-component multi-indices  = (1, 2, . . . ), 0 = (0, 0, . . . ), and 1 =
(1, 1, . . . ), the cell centroids are x = (− 1

2)h, 1 ≤  ≤ N · 1. Then, U ≈ u(x) and U denotes
the vector of values {U} according to the lexicographic ordering in which 1 increments first
from 1 to N , then 2, and so on. Also, let D(U) denote the diagonal matrix with the values
{U} situated along the diagonal according to the lexicographic ordering.

Following [17], (3.1) is discretized by B(u) ≈ νBh + D(U)2, where Bh is a finite difference
approximation to the biharmonic operator with natural boundary conditions. Specifically, the
stencil values (weights for neighboring cells) for Bh are given explicitly (for d = 2) as follows
for the cells with centroids {x : 1 ≤  ≤ 3 · 1}, where stencil weights are obtained by dividing
the following by 2800h4:

0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208
0 0 −592 −2176 848 0 −2176 −3920 −4352 848 848 −4352 −4512 −4352 848
0 0 4368 −2256 768 0 −2256 20400 −4512 768 768 −4512 24768 −4512 768
0 0 −592 −2176 848 0 −2176 −3920 −4352 848 848 −4352 −4512 −4352 848
0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208

0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208
0 0 −592 −2176 848 0 −2176 −3920 −4352 848 848 −4352 −4512 −4352 848
0 0 3440 −1960 920 0 −1960 16960 −3920 920 920 −3920 20400 −3920 920
0 0 −296 −1088 424 0 −1088 −1960 −2176 424 424 −2176 −2256 −2176 424
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −152 424 208 0 424 920 848 208 208 848 768 848 208
0 0 −296 −1088 424 0 −1088 −1960 −2176 424 424 −2176 −2256 −2176 424
0 0 928 −296 −152 0 −296 3440 −592 −152 −152 −592 4368 −592 −152
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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For given u and ũ set U = {u(x)} and Ũ = {ũ(x)}. Then the numerical solution to (3.1) is
given as S = {S}, S ≈ σ(x) which solves:

[νBh +D(U)2]S = D(U)Ũ (4.1)

The matrix on the left side can be stored in sparse format, and the equation is solved in GNU
Octave* in the present work using backslash. As shown in the authors’ work [19], a multigrid
approach can be used advantageously for large images.

The segmentation computations in (3.3) - (3.7) are carried out by evaluating each function
at the cell centroids x = x. See Algorithm 2 for the details of determining S(U). Note that
this algorithm was implemented in C++ using the associated GNU Octave interface.

The optimality system (3.15) is solved using a generalized Newton method. The system,[
(κ+ σ2) −∇·

[−µI + (|∇u|>ε)
b∇ucε ∇up

T]∇ b∇ucε

] [
δu
δp

]
= −

[
(κ+ σ2)u−∇ · p− σũ
−µ∇u+ b∇ucεp

]
(4.2)

is simplified by first eliminating the second equation to obtain:{
(κ+ σ2)−∇ ·

[
1

b∇ucε

(
µI − (|∇u| > ε)

2b∇ucε
[∇upT + p∇uT]

)]
∇
}
δu =

−(κ+ σ2)u+ σũ+ µ∇ ·
(
∇u
b∇ucε

)
(4.3)

and the eliminated equation becomes:

δp =
1

b∇ucε

(
µI − (|∇u| > ε)

2b∇ucε
[∇upT + p∇uT]

)
∇δu+ µ

∇u
b∇ucε

− p (4.4)

Note that the term ∇upT has been symmetrized in (4.3) and (4.4) with [∇upT + p∇uT]/2.
To discretize (4.3) and (4.4) the discrete derivative matrices ∇(xi)

h are formed using forward
differences, where Neumann boundary conditions are implemented implicitly by setting the
stencil weights of ∇(xi)

h to zero at cells adjacent to the boundary where xi = 1. In R2 the
gradient and divergence are then approximated by:

∇ ≈ ∇h =

(
∇(x1)
h

∇(x2)
h

)
, ∇· ≈ −∇T

h (4.5)

Also, functions of ∇hU are defined according to:

|∇hU | =
{

[(∇(1)
h U)2

 + (∇(2)
h U)2

 ]
1
2

}
(|∇hU | > ε) = {(|∇hU |) > ε}

1
b∇hUcε

=
{

1
max{(|∇hU |), ε}

}
(|∇hU | > ε)
b∇hUcε

= D(|∇hU | > ε)
1

b∇hUcε
(4.6)

and P = (P 1;P 2) is understood below as a column vector of column vectors P 1 and P 2. Thus,
(4.3) is discretized as:{

κI +D(S)2 +

∇T
h

[
D

(
1

b∇hUcε

)(
µI −D

(
(|∇hU | > ε)

2b∇hUcε

)[
∇hUPT

µ + P µ∇hUT
])]
∇h
}
δU =

−
[
κI +D(S)2

]
U +D(S)Ũ − µ∇T

h

[
D

(
1

b∇hUcε

)
∇hU

]
(4.7)

*See http://www.gnu.org/software/octave/
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Algorithm 1 Surface Coil Image Correction

1: Input: Ũ , ε, δ, κ, µ, ν, k1, k2, M , γ
2: Output: U , S

3: Initialization:
4: segment Ũ to obtain S(Ũ) from Algorithm 2, using 3M instead of M
5: mask the data according to Ũ ← Ũ · (S(Ũ) > min(S(Ũ)))
6: starting image: U = Ũ
7: starting modulation: S = 1
8: for m = 1, 2 do . (m = 1⇒ purely L2, m = 2⇒ with TV)
9: Outer Iteration: start with t0 = ‖U‖, t = 2δ · t0, k = 0

10: while (t > δ · t0) and (k < km) do
11: save Û = U
12: segment U to obtain S(U) from Algorithm 2,
13: in the first iteration with 2 grey levels, increasing incrementally to M
14: solve (4.1) for S where U is replaced by the segmentation S(U)
15: normalize S = S/Sı where Ũı = max{Ũ}
16: if m = 1 then
17: set U = SŨ/(κ+ S2)
18: else if m = 2 then
19: Inner Iteration: start with s0 = ‖U‖, s = 2δ · s0, P = 0
20: while (s > δ · s0) do
21: solve (4.7) for δU and set U = U + δU
22: set δP with (4.9), set P = P + δP and set P µ according to (4.8)
23: update s = ‖δU‖
24: end while
25: end if
26: update t = ‖U − Û‖
27: end while
28: end for

where, following [13], P µ is a projection of P truncated to have a cellwise magnitude not more
than µ:

P µ = (D(|P | < µ)P 1;D(|P | < µ)P 2)
+ µ(D(|P | ≥ µ)D(|P |)−1P 1;D(|P | ≥ µ)D(|P |)−1P 2),

|P | = {
√

(P 1)2
 + (P 2)2

}

(4.8)

As shown in [13], using the truncation P µ in (4.7) guarantees that δU provides a descent
direction for the cost functional with fixed modulation. The matrix on the left in (4.7) can
be stored in sparse format and the system is solved in GNU Octave in the present work using
backslash. The update for P itself is given by a discretization of (4.4):

δP = D

(
1

b∇Ucε

)(
µI −D

(
(|∇U | > ε)

2b∇Ucε

)[
∇hUPT

µ + P µ∇hUT
])
∇hδU

+µD
(

1
b∇Ucε

)
∇hU − P

(4.9)

The above numerical formulations are applied algorithmically as shown in Algorithm 1 which
calls Algorithm 2 for segmentation. Computational results using these algorithms are shown in
the next subsection.
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Algorithm 2 Image Segmentation
1: Input: U , M , γ, δ
2: Output: Ωi, ci, i = 1, . . . ,M

3: Initialization:
4: starting subdomains: χ1 = 1, χj = 0 for j 6= 1
5: starting grey levels: cj determined from (3.7)
6: starting topological derivatives:
7: for j = 2, . . . ,M do
8: for i = 1, . . . , (j − 1) do
9: set Ti,j according to (3.5) with |Ωj | = 0

10: transfer {x ∈ Ωi : (3.6) holds} from Ωi to Ωj

11: update ci and cj with (3.7)
12: end for
13: end for

14: Iteration: start with t0 = 1 +
∑M

i,j ‖Ti,j‖, t = 2δ · t0
15: while (t > δ · t0) do
16: for i = 1, . . . ,M do
17: set Ti,j for i 6= j = 1, . . . ,M with (3.5) if |Ωi| 6= 0 and otherwise Ti,j = 0
18: project Ti,j(x) = min{Ti,j(x), 0}
19: define Ti(x) = min1≤j≤M Ti,j(x)
20: transfer {x ∈ Ωi : Ti,j(x) = Ti(x) and Ti(x) < γ ·miny∈Ωi Ti(y)}
21: from Ωi to Ωj , i 6= j = 1, . . . ,M
22: update cj , j = 1, . . . ,M , with (3.7)
23: end for
24: update t =

∑M
i,j ‖Ti,j‖

25: end while

5 Computational Results

In this section, given images are artificially corrupted with noise and with a smooth modu-
lation, and Algorithm 1 is used to correct for these corruptions. A reconstruction can thereby
be compared to a known desired result.

For the example of Figure 5, the exact image of Figure 2a was used. To obtain this image,
a fully sampled T2 weighted Turbo Spin Echo Scan of the brain of a multiple sclerosis patient
was acquired on a clinical 1.5T scanner. Written informed consent was obtained prior to the
examination. Sequence parameters were repetition time TR = 3845ms, echo time TE = 80ms,
turbo factor 13, 2 signal averages, matrix size (x, y, z) = 512×512, 24 slices with a slice thickness
of 5mm and an in-plane resolution of 0.44mm×0.44mm. The data set was exported and resized
to 128× 128 for ease of computational experimentation.

Based upon the authors’ considerations in [12] of appropriate sensitivity parameterizations
founded on the Biot-Savart Law, functions of the following form are used for artificial modula-
tions:

σ(x) =
1

[1 + α‖x− x0‖2]
3
2

(5.1)

For the example of Figure 5, a modulation (5.1) was used with parameters,

x0 = (1
2 ,

1
2) + r(cos(θ), sin(θ)), r = 3

4

√
2

2 , θ = π
2 , α = 5 (5.2)

This modulation S∗ is shown in Figure 5c. The exact image U∗ appears in Figure 5a for
comparison purposes. The product of U∗ and S∗, denoted by Ũ , is shown in Figure 5b.
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(a) U∗ (b) Ũ (c) S∗

(d) U (0% noise) (e) ∆U (f) ∆S

(g) U (10% noise) (h) ∆U (i) ∆S

(j) U (10% noise, µ = 0) (k) ∆U (l) ∆S

Figure 5: The top row shows the exact image U∗ and the exact modulation S∗ whose product forms
the data Ũ . In the subsequent rows, the reconstruction U is shown in the first column for the indicated
conditions, and the corresponding error images ∆U and ∆S are shown respectively in the second and
third columns. Reconstructed images are shown on the scale [0, 1] while error images are shown on the
scale [−1, 1].
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(a) U∗ (b) Ũ (c) S∗

(d) U (0% noise) (e) ∆U (f) ∆S

(g) U (10% noise) (h) ∆U (i) ∆S

(j) U (10% noise, µ = 0) (k) ∆U (l) ∆S

Figure 6: The top row shows the exact image U∗ and the exact modulation S∗ whose product forms
the data Ũ . In the subsequent rows, the reconstruction U is shown in the first column for the indicated
conditions, and the corresponding error images ∆U and ∆S are shown respectively in the second and
third columns. Reconstructed images are shown on the scale [0, 1] while error images are shown on the
scale [−1, 1].
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The data image Ũ was used as input for Algorithm 1 along with the empirically optimal
parameters ε = 10−3, κ = 10−5, µ = 10−4, ν = 102, M = 5, γ = 0.5 and δ = 10−3. (Also, k1

and k2 are chosen sufficiently large so that the δ-tolerance must be met for termination.) The
dimension of the images is N = 128, but the domain is normalized to (1, N)2 so that h = 1.
The reconstruction U is shown in Figure 5d with intensity scale [0, 1], where lower intensities
are shown darker while higher intensities are shown brighter. To avoid the effect of an error in
intensity scale, the reconstruction error is measured with the metrics,

d2(U ,U∗) =
1
N

min
s∈R
‖sU −U∗‖`2 =

1
N
‖s∗U −U∗‖`2 , s∗ = U ·U∗/‖U‖2`2

d∞(U ,U∗) = ‖∆U‖`∞ , ∆U = s∗U −U∗
(5.3)

The error images ∆U = s∗U−U∗ and ∆S = s∗S−S∗ are shown respectively in Figures 5e and
5f, each with the intensity scale [−1, 1]. The quantitative errors, dp(U ,U∗) and dp(Ŝ, Ŝ

∗
), are

relatively small in this case, and they are listed in line 1 of Table 1. Also shown in Table 1 is the
elapsed computational time, the number of purely L2 iterations and the number of additional
TV iterations. Note that the computations were performed on an Intel Core 2 Q9400 (four
cores) with 4GB RAM, and the code was implemented in Octave as noted in Section 4. The
simulation was then repeated with 10% noise added as follows with n = 0.10:

FFT(Ũ)→ Û , Û +
n

N
‖Û‖2X → Û , <FFT−1(Û)→ Ũ (5.4)

whereX is N×N with elements normally distributed around mean 0 with variance 1. With this
noise added, µ = 10−3 was used on input. The resulting reconstruction is shown in Figure 5g,
and the error images ∆U and ∆S are shown respectively in Figures 5h and 5i. The quantitative
errors in this case are listed in line 2 of Table 1 along with the computational costs. Note that
the image reconstruction error is higher than in the previous case although the quality of the
reconstructed image is quite acceptable. Notice however that the modulation reconstruction
error is comparable to that in the previous case, owing necessarily to the smoothness of the
modulation. The computational costs shown in Table 1 follow the expected trends, and these
are all acceptable. The simulation was finally repeated with 10% noise added but without using
TV regularization. The resulting reconstruction is shown in Figure 5j, and the error images
∆U and ∆S are shown respectively in Figures 5k and 5l. The quantitative errors in this
case are listed in line 3 of Table 1 along with the computational costs. Notice again that the
modulation reconstruction error is comparable to that in the previous case, owing necessarily
to the smoothness of the modulation. The reconstructed image shown in Figure 5j is accurately
demodulated but evidently noisier than the result shown in Figure 5g, particularly in the region
where the modulation intensity is low. Thus, it can be argued that the L2 type metrics of (5.3)
are not adequate for measuring image reconstruction quality.

Simulations with phantoms are next considered to demonstrate how the method performs
on images with a very different histogram than that of Figure 5. In the following example, the
exact image U∗ is that shown in Figure 6a. The exact modulation is shown in Figure 6c. The
product of these two images, denoted by Ũ , is shown in Figure 6b. The data image Ũ was
used as input for Algorithm 1, and other input parameters were the same as with Figure 5.
The reconstruction U is shown in Figure 6d, and the error images ∆U and ∆S are shown
respectively in Figures 6e and 6f. The quantitative errors are relatively small in this case, and
they are listed along with computational costs in line 1 of Table 2. Note that the computational
costs for this simple noise-free phantom example are considerably higher than in any other cases,
owing indeed perhaps to the simplicity itself. The simulation was then repeated with 10% noise
added to the image in Figure 6a. The resulting reconstruction is shown in Figure 6g and the
error images ∆U and ∆S are shown respectively in Figures 6h and 6i. The quantitative errors
in this case are listed in line 2 of Table 2 along with the computational costs. Note that the
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Figure 5 row d2(U ,U∗) d∞(U ,U∗) d2(Ŝ, Ŝ
∗
) d∞(Ŝ, Ŝ

∗
) time L2 TV

2 0.029 0.27 0.011 0.069 6.64 11 4
3 0.050 0.49 0.013 0.064 17.8 19 15
4 0.052 0.96 0.010 0.064 8.30 19 −

Table 1: Shown for each case of Figure 5 are the quantitative errors, measured in the metrics of (5.3),
as well as the computational time in seconds, the number of purely L2 iterations and the number of
additional TV iterations. Here, Ŝ = S · (U∗ > 0) and Ŝ

∗
= S∗ · (U∗ > 0).

Figure 6 row d2(U ,U∗) d∞(U ,U∗) d2(Ŝ, Ŝ
∗
) d∞(Ŝ, Ŝ

∗
) time L2 TV

2 0.0027 0.034 0.0023 0.018 59.2 135 11
3 0.11 0.72 0.083 0.39 44.7 61 15
4 0.11 0.55 0.084 0.39 33.6 61 −

Table 2: Shown for each case of Figure 6 are the quantitative errors, measured in the metrics of (5.3),
as well as the computational time in seconds, the number of purely L2 iterations and the number of
additional TV iterations. Here, Ŝ = S · (U∗ > 0) and Ŝ

∗
= S∗ · (U∗ > 0).

accuracy of modulation reconstruction for this simple phantom example is conspicuously less
than that seen for the realistic example of Figure 5, owing indeed perhaps to the simplicity of the
phantom image. The simulation was finally repeated with 10% noise added but without using
TV regularization. The resulting reconstruction is shown in Figure 6j and the error images ∆U
and ∆S are shown respectively in Figures 6k and 6l. The quantitative errors in this case are
listed in line 3 of Table 2 along with the computational costs. Again, the reconstructed image
shown in Figure 6j is accurately demodulated but evidently noisier than the result shown in
Figure 6g, particularly in the region where the modulation intensity is low. Here again, it can
be argued that the L2 type metrics of (5.3) are not adequate for measuring image reconstruction
quality.

These results can be summarized as follows. Reconstructions are generally more accurate for
realistic images than for artificial images, except when an artificial image is piecewise constant
and noise-free. The quality of image reconstruction is naturally higher where the intensity of
the modulation is higher. Image quality is clearly improved with use of TV regularization,
although this improvement is not dramatically quantified with the use of L2 type metrics. The
quality of the modulation reconstruction for realistic images seems nearly independent of the
variance of normally distributed noise, owing evidently to the smoothness of the modulation.
The computational costs of the methods developed are not excessive, and these permit the
approach to be used in a practical environment.
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A Derivation of Primal-Dual Optimality System

For completeness, the Fenchel Duality Theorem is stated as follows; see [9] for the details. Let
J(u) = F(Λu) +G(u) be a decomposition of the cost J , where the operators F : Y → R∪{∞},
G : V → R ∪ {∞} and Λ : V → Y satisfy the following. First Λ is a bounded linear operator
from V into Y . Also F and G are convex, lower semicontinuous functionals on Y and V , and
there exists a u0 ∈ V such that J(u0) < ∞, and F is continuous in Y at Λu0. Then the
minimization of J is characterized by infu∈V [F(Λu) + G(u)] = supp∈Y ∗ [−F∗(−p) − G∗(Λ∗p)]
where F∗ and G∗ are the convex conjugates defined by F∗(q) = supp∈Y [〈p, q〉Y,Y ∗ − F(p)] and
G∗(v) = supu∈V [〈u, v〉V,V ∗ − G(u)]. Also, Λ∗ is the adjoint of Λ. Furthermore, the optimality
system for this problem is given by F(Λu) + F∗(−p) = −〈Λu, p〉Y,Y ∗ and G(u) + G∗(Λ∗p) =
〈u,Λ∗p〉V,V ∗ .

As opposed to the structure used in [13] and [14], for instance, in the present work V = Y =
L2(Ω) and Λ = I are used. So the pairings 〈·, ·〉Y,Y ∗ and 〈·, ·〉V,V ∗ are both the inner product
on L2(Ω). It is shown below that G in (3.9) and F (3.8) as well as their conjugates are convex
and lower semicontinuous on L2(Ω). For u0 = 0 the cost satisfies J(u0) <∞, and the residual
F is continuous in L2(Ω) at u0. For these claims it is noted that if H a functional defined on
a Banach space where it is convex, lower semicontinuous and proper (H(h) > −∞, ∀h, and ∃h
where H(h) < +∞), then H∗ is also convex, lower semicontinuous and proper and H∗∗ = H [9].

The convex conjugate of F in (3.8) is given as follows:

F∗(v) = sup
u∈L2(Ω)

∫
Ω

[
uv − 1

2
|σu− ũ|2 − κ

2
u2

]
dx

The directional derivative of the integral with respect to u for a perturbation ū is
∫

Ω[v−σ(σu−
ũ) − κu]dx. Since κ > 0, the critical function is given by u∗ = (v + σũ)/(κ + σ2). Inserting
this u∗ above gives the maximum as seen in (3.11). Note that F is quadratic and continuous
on L2(Ω), and so F is convex and lower semicontinuous. Also, F is clearly proper and thus F∗
is convex, lower semicontinuous and proper, and F∗∗ = F holds.
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Next, define the functional on L2(Ω),

G̃(v) =


ε

2µ

∫
Ω
|p|2dx, if v = ∇ · p, p ∈ Sµ

+∞, else
(A.1)

which agrees with the formula in (3.12) where Sµ is defined by (3.13). It will be shown that G̃
is convex, lower semicontinuous and proper on L2(Ω), so that G̃∗∗ = G̃ holds. Once it is shown
that G̃∗ = G in (3.9), it follows that G∗ = G̃∗∗ = G̃ in (A.1) and (3.12). Clearly, G̃ is convex
and proper. To show the lower semicontinuity of G̃, let {vk} be a sequence converging in L2(Ω)
to v. For the nontrivial case, suppose vk = ∇ · pk where pk ∈ Sµ, ∀k. Since {pk} is bounded
in L∞(Ω,Rd) according to |pk| ≤ µ, there is a subsequence converging in a weak-? sense to
p ∈ L∞(Ω,Rd) which necessarily satisfies |p| ≤ µ. Let the subsequence be denoted again by
{pk}. As a consequence of the L2(Ω) strong convergence of {vk} and the L∞(Ω,Rd) weak-?
convergence of {pk},∫

Ω
vψdx = lim

k→∞

∫
Ω
vkψdx = lim

k→∞
−
∫

Ω
pk · ∇ψdx = −

∫
Ω
p · ∇ψdx, ∀ψ ∈ C∞(Ω̄)

where the second equality follows with vk = ∇ · pk and no boundary term emerges since
pk ∈ H0(div) as defined in (3.14). Thus, p ∈ L∞(Ω,Rd) ⊂ L2(Ω,Rd) and ∇ · p = v ∈ L2(Ω).
Combining the left and right sides of the last equation gives:∫

∂Ω
ψp · ndx =

∫
Ω
p · ∇ψdx+

∫
Ω
ψvdx = 0, ∀ψ ∈ C∞(Ω̄)

Thus, p ∈ H0(div). It follows that v = ∇ · p with p ∈ Sµ. As a consequence of the L∞(Ω,Rd)
weak-? convergence of {pk},∫

Ω
|p|2dx = lim

k→∞

∫
Ω
p · pkdx ≤ ‖p‖L2(Ω,Rd) lim

k→∞
‖pk‖L2(Ω,Rd)

where p, {pk} ⊂ L∞(Ω,Rd) ⊂ L1(Ω,Rd). Dividing both sides of the above inequality by
‖p‖L2(Ω,Rd) shows finally that G̃(v) ≤ G̃(vk) and thus G̃ is lower semicontinuous.

Now the convex conjugate of G̃ is given by:

G̃∗(u) = sup
−v=∇·p
p∈Sµ

−
∫

Ω

[
u∇ · p+

ε

2µ
|p|2

]
dx = sup

−v=∇·p
p∈Sµ

∫
Ω

[
p ·Du− ε

2µ
|p|2

]
dx

Now define ϕ(ξ) = µφε(|ξ|). A straightforward calculation shows that ϕ∗(η) = ε|η|2/(2µ)
for |η| ≤ µ and otherwise ϕ∗(η) = +∞. Then the convex function ϕ of the measure Du is
characterized by [8]:∫

Ω
µφε(|Du|) =

∫
Ω
ϕ(Du) = sup

p∈Dϕ∗ (X)

∫
Ω
p ·Du−

∫
Ω
ϕ∗(p)dx

where Dϕ∗(X) = {p ∈ X : ϕ∗◦p ∈ L1(Ω)} and X may be taken indifferently as X = C∞0 (Ω,Rd)
or L1(Ω,Rd). Since C∞0 (Ω,Rd) ⊂ H0(div) ⊂ L1(Ω,Rd), the supremum may be taken over
X = H0(div). Then the last two equations show that

G̃∗(u) =
∫

Ω
µφε(|Du|) = G(u)

Thus, G∗(v) = G̃∗∗(v) = G̃(v) is given according to (A.1) and (3.12).
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With these convex conjugates the primal problem is related to the dual problem as follows:

inf
u∈L2(Ω)

{
1
2

∫
Ω
|σu− ũ|2dx+

κ

2

∫
Ω
u2dx+

µ

2

∫
Ω
φε(|∇u|)dx

}
= inf

u∈L2(Ω)
[F(u) + G(u)] = sup

v∈L2(Ω)

[−F∗(−v)− G∗(v)] =

sup
v=∇·p
p∈Sµ

{
1
2

∫
Ω

{
(v + σũ)2/(κ+ σ2)− ũ2

}
dx+

ε

2µ

∫
Ω
|p|2dx

} (A.2)

Here it can be seen from the last term that ε > 0 in (2.3) provides a regularization in the dual
problem, which motivates its use in [13].

The optimality system (3.10) is obtained with the constructions above. For F in (3.8) and
F∗ in (3.11) the equation F(u) + F∗(v) =

∫
Ω uvdx can be written as follows:

0 =
1
2

∫
Ω

{
[σu− ũ]2 + κu2 + (v + σũ)2/(κ+ σ2)− ũ2 − 2uv

}
dx

=
1
2

∫
Ω

[(κ+ σ2)u− v − σũ]2/(κ+ σ2)dx

which is equivalent to the first equation in (3.15) with v = ∇ · p.
For the next optimality condition let Du = ∇udx+Dus denote the Lebesque decomposition

of the measure Du, where ∇udx and Dus, respectively, are absolutely continuous and singular
with respect to Lebesque measure. For G in (3.9) and G∗ in (3.12) the equation G(u)+G∗(−v) =
−
∫

Ω uvdx can be written as follows in terms of v = ∇ · p ∈ Sµ:

0 =
∫

Ω
µφε(|Du|) +

∫
Ω

[
ε

2µ
|p|2 + u∇ · p

]
dx

=
∫
|∇u|<ε

[
µ

2ε
|∇u|2 +

ε

2µ
|p|2 −∇u · p

]
dx−

∫
Ω
Dus · p

+
∫
|∇u|≥ε

[
µ|∇u| − µε

2
+

ε

2µ
|p|2 −∇u · p

]
dx+

∫
Ω
µ|Dus|

=
∫
|∇u|<ε

ε

2µ

∣∣∣p− µ

ε
∇u
∣∣∣2 dx ( ≥ 0) (A.3)

+
∫
|∇u|≥ε

[
ε

2µ

∣∣∣p− µ

ε
∇u
∣∣∣2 − µ

2ε
(|∇u| − ε)2

]
dx ( ≥ 0) (A.4)

+
∫

Ω
[µ|Dus| −Dus · p] ( ≥ 0) (A.5)

The non-negativity of (A.3) is evident. The non-negativity of (A.5) follows since Dus · p ≤
|Dus||p| ≤ |Dus|µ. The non-negativity of (A.4) can be seen from the following estimate:∫

|∇u|≥ε

[
ε

2µ

∣∣∣p− µ

ε
∇u
∣∣∣2 − µ

2ε
(|∇u| − ε)2

]
dx (A.6)

≥
∫
|∇u|≥ε

µ

2ε

[(
ε

µ
|p| − |∇u|

)2

− (|∇u| − ε)2

]
dx (A.7)

=
∫
|∇u|≥ε

(µ− |p|)
[
ε

2µ
(µ− |p|) + (|∇u| − ε)

]
dx ≥ 0 (A.8)
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Since each integrand in (A.3) and (A.4) is non-negative and the sum is zero, each integrand
must be pointwise zero. That the integrand in (A.8) must vanish means that |p| = µ must hold
when |∇u| ≥ ε holds. That the two integrals in (A.6) and (A.7) are zero implies, after removing
identical terms in each, that

0 =
∫
|∇u|≥ε

[|∇u||p| − ∇u · p]dx

where the integrand is non-negative. Thus, ∇u · p = |∇u||p| holds, i.e., ∇u/|∇u| and p/|p| are
parallel unit vectors, so |∇u|p = |p|∇u = µ∇u holds when |∇u| ≥ ε holds. That the integrand
in (A.3) is non-negative means that εp = µ∇u holds when |∇u| < ε holds, and it follows that
ε|p| = µ|∇u| < εµ or |p| < µ holds. These conditions can be summarized as follows:

(|∇u| ≥ ε⇒) |p| = µ, |∇u|p = µ∇u
(|∇u| < ε⇒) |p| < µ, εp = µ∇u

or:
max{ε, |∇u|}p = µ∇u (A.9)

Since (A.5) is zero, µ|Dus| = Dus · p ≤ |Dus||p| implies that |p| = µ on the support of Dus.
Thus, on this support, Dus/|Dus| and p/µ = p/|p| are parallel unit vectors where

|Dus|p = |p|Dus = µDus (A.10)

Finally define the function ψ(ξ) = max{ε, |ξ|}, and according to [8], the convex function ψ of
the measure Du is defined by ψ(Du) = ψ(∇u)dx + ψ∞(Dus) = max{ε, |∇u|}dx + |Dus| since
ψ∞(ξ) = limt→∞ ψ(tξ)/t = |ξ|. Thus, combining (A.9) and (A.10) gives max{ε, |Du|}p = µDu
as seen in the second equation of (3.15).
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