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NEW APPROACH TO A GENERALIZED FRACTIONAL

INTEGRAL

UDITA KATUGAMPOLA

Abstract. The paper presents a new fractional integration, which gen-
eralizes the Riemann-Liouville and Hadamard fractional integrals into a
single form, which when a parameter fixed at different values, produces
the above integrals as special cases. Conditions are given for such a gen-
eralized fractional integration operator to be bounded in an extended
Lebesgue measurable space. Semigroup property for the above operator
is also proved. Finally, we give a general definition of the Fractional
derivatives and give some examples.

Submitted to : Applied Mathematics and Computation

1. Introduction

History of Fractional Calculus (FC) goes back to seventeenth century, when
in 1695 the derivative of order α = 1/2 was described by Leibnitz. Since then,
the new theory turned out to be very attractive to mathematicians as well as
biologists, chemists, economists, engineers and physicsts. Several books were
written on the theories and developments of FC [8–12]. In [12] Samko, et al,
provides a comprehensive study of the subject. Several different derivatives
were introduced: Riemann-Liouville, Hadamard, Grunwald-Letnikov, Riesz
and Caputo are just a few [8–12].

In fractional calculus, the fractional derivatives are defined by a fractional
integral [8–12]. There are several known forms of the fractional integrals of
which two have been studied extensively for their applications [1–3,6–8,11,12].
The first is the Riemann-Liouville fractional integral defined for parameter
α ∈ R by,

(1.1) aI
α
xf(x) =

1

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ ;α > 0, x > a.
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motivated by the Cauchy integral formula

(1.2)

∫ x

a

dτ1

∫ τ1

a

dτ2 · · ·

∫ τn−1

a

f(τn)dτn =
1

Γ(n)

∫ x

a

(x− τ)n−1f(τ)dτ

well-defined for α ∈ N. The second is the Hadamard Fractional integral in-
troduced by J. Hadamard [5] , and given by,

(1.3) aI
α
xf(x) =

1

Γ(α)

∫ x

a

(

log
x

τ

)α−1

f(τ)
dτ

τ
;α > 0, x > a.

This is based on the generalization of the integral

(1.4)

∫ x

a

dτ1
τ1

∫ τ1

a

dτ2
τ2

· · ·

∫ τn−1

a

f(τn)

τn
dτn =

1

Γ(n)

∫ x

a

(

log
x

τ

)n−1

f(τ)
dτ

τ

Here we want to present the fractional integration, which generalizes both
the Riemann-Liouville and Hadamard fractional integrals into a single form.
New generalization is based on the observation that, for n ∈ N,

∫ x

a

τρ1 dτ1

∫ τ1

a

τρ2 dτ2 · · ·

∫ τn−1

a

τρnf(τn)dτn

=
(ρ+ 1)1−n

(n− 1)!

∫ x

a

(tρ+1 − τρ+1)n−1τρf(τ)dτ(1.5)

which suggests the following fractional version

(1.6) ρ
aI

α
x f(x) =

(ρ+ 1)1−α

Γ(α)

∫ x

a

(xρ+1 − τρ+1)α−1τρf(τ)dτ

where α and ρ 6= −1 are real numbers.
These integrals are called left-sided integrals. Similarly we can define right-

sided integrals [8, 11, 12].
In the subsequent sections, we give conditions for the integration operator

ρ
aI

α
x to be bounded in Xp

c(a, b). We also establish semigroup property for the
generalized fractional integration operator and finally, we give the general
definition of the Fractional derivatives.

2. Generalization of the fractional integration

Consider the space Xp
c(a, b) (c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued

Lebesgue measurable functions f on [a, b] for which ‖f‖Xp
c
< ∞, where the

norm is defined by

(2.1) ‖f‖Xp
c
=

(

∫ b

a

|tcf(t)|p
dt

t

)1/p

< ∞ (1 ≤ p < ∞, c ∈ R)

and for the case p = ∞

(2.2) ‖f‖X∞

c
= ess supa≤t≤b[t

c|f(t)|] (c ∈ R).
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In particular, when c = 1/p (1 ≤ p ≤ ∞), the space Xp
c coincides with the

classical Lp(a, b)-space with

‖f‖p =
(

∫ b

a

|f(t)|p
dt

t

)1/p

< ∞ (1 ≤ p < ∞),(2.3)

‖f‖∞ = ess supa≤t≤b|f(t)| (c ∈ R).(2.4)

To derive a formula for the generalized integral, consider for natural n ∈
N = {1, 2, . . .} and real ρ and a ≥ 0, the n-fold integral of the form

(2.5) ρ
aI

α
x f(x) =

∫ x

a

τρ1 dτ1

∫ τ1

a

τρ2 dτ2 · · ·

∫ τn−1

a

τρnf(τn)dτn

First notice that-using the Dirichlet technique (see p. 64 of [11]), we have

∫ x

a

τρ1 dτ1

∫ τ1

a

τρf(τ)dτ =

∫ x

a

τρf(τ)dτ

∫ x

τ

τρ1 dτ1

=
1

ρ+ 1

∫ x

a

(xρ+1 − τρ+1)τρf(τ)dτ

Repeating the above step n− 1 times we arrived at
∫ x

a

τρ1 dτ1

∫ τ1

a

τρ2 dτ2 · · ·

∫ τn−1

a

τρnf(τn)dτn

=
(ρ+ 1)1−n

(n− 1)!

∫ x

a

(xρ+1 − τρ+1)n−1τρf(τ)dτ(2.6)

Fractional version of (2.6) is the following

(2.7) ρ
aI

α
x f(x) =

(ρ+ 1)1−α

Γ(α)

∫ x

a

(xρ+1 − τρ+1)α−1τρf(τ)dτ

where α and ρ 6= −1 are real numbers. When ρ = 0 we arrive at the
standard Riemann-Liouville fractional integral, which is used to define both
the Riemann-Liouville and Caputo fractional derivatives [8, 11, 12]. Using
L’hospital rule, when ρ → −1+, we have

lim
ρ→−1+

(ρ+ 1)1−α

Γ(α)

∫ x

a

(xρ+1 − τρ+1)α−1τρf(τ)dτ

=
1

Γ(α)

∫ x

a

lim
ρ→−1+

(

xρ+1 − τρ+1

ρ+ 1

)α−1

τρf(τ)dτ

=
1

Γ(α)

∫ x

a

(

log
x

τ

)α−1 f(τ)

τ
dτ

This is the famous Hadamard fractional integral (1.3) [1–3,6–8,11]. Hadamard
fractional integral has been extensively studied, especially, Hadamard-type
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fractional calculus [6], composition and semigroup properties [1], Mellin trans-
forms [2], integration by parts formulae [3], and G-transform representa-
tions [7] are just a few.

3. Boundedness in the space Xp
c(a, b)

In this section we show that the generalized fractional integration operator
ρ
aI

α
t is well-defined on Xp

c(a, b) for ρ ≥ c. We have the following theorem

Theorem 3.1. Let α > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and let ρ ∈ R and
c ∈ R be such that ρ ≥ c. Then the operator ρ

aI
α
t is bounded in Xp

c(a, b) and

(3.1) ‖ρaI
α
t f‖Xp

c
≤ K‖f‖Xp

c

where

(3.2) K =
bα(ρ+1)−1

Γ(α)

∫ b
a

1

uc−α(ρ+1)−1
(uρ+1 − 1

ρ+ 1

)α−1

du ; ρ 6= −1

Proof. First consider the case 1 ≤ p ≤ ∞. Since f(t) ∈ Xp
c(a, b), then

tc−1/pf(t) ∈ Lp(a, b) and we can apply the generalized Minkowsky inequality.
We have

‖ρaI
α
t f‖Xp

c
=

(

∫ b

a

xcp

∣

∣

∣

∣

1

(ρ+ 1)α−1Γ(α)

∫ x

a

(

xρ+1 − tρ+1
)α−1

tρf(t)dt

∣

∣

∣

∣

p
dx

x

)
1
p

=
(

∫ b

a

∣

∣

∣

∣

1

Γ(α)

∫ x

a

xc− 1
p tρ

(xρ+1 − tρ+1

ρ+ 1

)α−1

f(t)dt

∣

∣

∣

∣

p

dx
)

1
p

=
(

∫ b

a

∣

∣

∣

∣

∣

1

Γ(α)

∫ x

a

xc− 1
p tα(ρ+1)−1

((xt )
ρ+1 − 1

ρ+ 1

)α−1

f(t)dt

∣

∣

∣

∣

∣

p

dx
)

1
p

=
(

∫ b

a

∣

∣

∣

∣

∣

1

Γ(α)

∫ x
a

1

xc− 1
p

(x

u

)α(ρ+1)−1(uρ+1 − 1

ρ+ 1

)α−1

f
(x

u

)

x
du

u2

∣

∣

∣

∣

∣

p

dx
)

1
p

≤

∫ b
a

1

1

Γ(α)

(uρ+1 − 1

ρ+ 1

)α−1

·
1

uα(ρ+1)

(

∫ b

at

xcp
∣

∣f
(x

u

)

∣

∣

p dx

x

)
1
p

du · bα(ρ+1)−1

=

∫ b
a

1

bα(ρ+1)−1

Γ(α)

(uρ+1 − 1

ρ+ 1

)α−1

·
uc

uα(ρ+1)+1

(

∫ b/u

a

∣

∣tcf(t)
∣

∣

p dt

t

)
1
p

du

and hence

‖ρaI
α
t f‖Xp

c
≤ M‖f‖Xp

c

where

(3.3) M =
bα(ρ+1)−1

Γ(α)

∫ b
a

1

uc−α(ρ+1)−1
(uρ+1 − 1

ρ+ 1

)α−1

du ; 1 ≤ p < ∞
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thus, Theorem 3.1 is proved for 1 ≤ p < ∞. For p = ∞, by (4.6) and (2.7) we
have
∣

∣

∣
xc
(

ρ
aI

α
t f

)

(x)
∣

∣

∣
≤

1

(ρ+ 1)α−1Γ(α)

∫ x

a

(xρ+1 − τρ+1)α−1τρ
(x

τ

)c
∣

∣τcf(τ)
∣

∣dτ

=
bα(ρ+1)−1

Γ(α)

∫ b
a

1

uc−α(ρ+1)−1
(uρ+1 − 1

ρ+ 1

)α−1

du

after the substitution u = x/τ . This agrees with (3.3) above. This completes
the proof of the theorem. �

Remark 3.2. Note that this proof is similar to the proof of the Theorem 2.1
in [6].

The following version of the Theorem 3.1 has been proved in [6], for the
special case when ρ → −1+.

Theorem 3.3. Let α > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and let ρ ∈ R and
c ∈ R be such that ρ ≥ c. Then the operator ρ

aI
α
t is bounded in Xp

c(a, b) and

(3.4) ‖ρaJ
α
t f‖Xp

c
≤ K‖f‖Xp

c

where

K =
1

Γ(α+ 1)

(

log
b

a

)α

for ρ = c, while

K =
1

Γ(α)
(ρ− c)−αγ

[

α, (ρ− c) log
( b

a

)]

for ρ > c, where γ(α, β) is the incomplete gamma-function defined by

γ(α, β) =

∫ x

0

tα−1e−t dt

Substituting c = 1/p in Theorem 3.1 and taking (5.1) into account, we
deduce the boundedness of the operator ρ

aI
α
t in the space Lp(a, b).

Corollary 3.4. Let α > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and let ρ ∈ R be such
that ρ ≥ 1/p. Then the operator ρ

aI
α
t is bounded in Lp(a, b) and

(3.5) ‖ρaJ
α
t f‖p ≤ K∞‖f‖p,

where

(3.6) K∞ =
bα(ρ+1)

Γ(α)

∫ b
a

1

u
1
p
−α(ρ+1)−1

(uρ+1 − 1

ρ+ 1

)α−1

du ; ρ 6= −1

Notice that this is Corollary 2.2 of [6]. We now turn to algebraic properties
of the integral operator.
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4. Semigroup property

In this section we give semigroup properties of the integral operator

Theorem 4.1. Let α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and let ρ ∈ R

and c ∈ R be such that ρ ≥ c. Then for f ∈ Xp
c(a, b) the semigroup property

holds. That is,

(4.1) ρ
aI

α
t

ρ
aI

β
t f = ρ

aI
α+β
t f.

Proof. Using Fubinis Theorem, for ”sufficiently good” function f , we have

ρ
aI

α
t

ρ
aI

β
t f(x) =

1

(ρ+ 1)α−1Γ(α)

∫ x

a

(xρ+1 − τρ+1)α−1τρdτ

×
1

(ρ+ 1)β−1Γ(β)

∫ τ

a

(τρ+1 − tρ+1)β−1tρf(t)dτ

=
1

(ρ+ 1)α+β−2Γ(α)Γ(β)

∫ x

a

tρf(t)

×

∫ x

t

(

xρ+1 − τρ+1
)α−1(

τρ+1 − tρ+1
)β−1

τρ dτ dt(4.2)

The inner integral is evaluated by the change of variable y = (τρ+1−tρ+1)/(xρ+1−
tρ+1) :
∫ x

t

(

xρ+1 − τρ+1
)α−1(

τρ+1 − tρ+1
)β−1

τρ dτ dt

=
(xρ+1 − tρ+1)

ρ+ 1

∫ 1

0

(1 − y)α−1yβ−1dy,

=
(xρ+1 − tρ+1)

ρ+ 1
B(α, β)

=
(xρ+1 − tρ+1)

ρ+ 1
·
Γ(α)Γ(β)

Γ(α + β)
(4.3)

according to the known formulae for the beta function [4, 8, 11]. Substituting
(4.3) into (4.2) we obtain

ρ
aI

α
t

ρ
aI

β
t f(x) =

(ρ+ 1)1−α−β

Γ(α+ β)

∫ x

a

(xρ+1 − tρ+1)α+β−1tρf(t)dt,

= ρ
aI

α+β
t f(x),(4.4)

and thus, (4.1) is proved for ’sufficiently good’ functions f . If ρ ≥ c then by

Theorem 3.1 the operators ρ
aI

α
t ,

ρ
aI

β
t and ρ

aI
α+β
t are bunded in Xp

c(a, b), hence
the realation (4.1) is true for f ∈ Xp

c(a, b). This completes the proof of the
theorem 4.1. �
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We have the following corollary.

Corollary 4.2. Let α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and let ρ ∈ R

be such that ρ ≥ 1/p. Then for f ∈ Lp(a, b) the semigroup property (4.1)
holds.

We can extend (2.7) to an arbitrary complex order α ∈ C and can also
define right-sided generalized fractional integrals.

Definition 4.3. Let Ω = [a, b] (−∞ < a < b < ∞) be a finite interval on the
real axis R. The generalized fractional integral ρIαa+f of order α ∈ C (Re(α) >
0) is defined by

(4.5)
(

ρIαa+f
)

(x) =
(ρ+ 1)1−α

Γ(α)

∫ x

a

tρf(t)

(xρ+1 − tρ+1)1−α
dt

for x > a and Re(α) > 0. This integral is called the left-sided fractional
integral. Similarly we can define the right-sided fractional integral ρIαb−f by

(4.6)
(

ρIαb−f
)

(x) =
(ρ+ 1)1−α

Γ(α)

∫ b

x

tρf(t)

(tρ+1 − xρ+1)1−α
dt

for x < b and Re(α) > 0.

In the next section we will define generalized fractional derivatives for an
arbitrary complex order α ∈ C (Re(α) > 0) for Riemann-Liouville type (R-G)
and similarly, we can define generalized fractional derivatives for Caputo-type
(L-G).

5. Generalized fractional derivatives

The integrals (4.5) and (4.6) allow one to define the corresponding gen-
eralized fractional derivatives. Here we only define Riemann-Liouville type
derivatives. For ρ → −1+, we will also get the corresponding Hadamard-type
derivatives as a natural generalization to the standard Hadamard fractional
derivatives. The Caputo-type derivatives can be defined similarly.

Definition 5.1. ( R-G Type )
The corresponding Riemann-type fractinal derivatives ρDα

a+f and ρDα
b−f

of order α ∈ C, Re(α) > 0, are defined by

(5.1)
(

ρDα
a+f

)

(x) =
(ρ+ 1)α−n+1

Γ(n− α)

dn

dxn

∫ x

a

tρf(t)

(xρ+1 − tρ+1)α−n+1
dt,

for x > a and

(5.2)
(

ρDα
b−f

)

(x) =
(ρ+ 1)α−n+1

Γ(n− α)
(−1)n

dn

dxn

∫ b

x

tρf(t)

(tρ+1 − xρ+1)α−n+1
dt

for x < b, where n = ⌈Re(α)⌉.
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If 0 < Re(α) < 1, then

(5.3)
(

ρDα
a+f

)

(x) =
(ρ+ 1)α−⌊Re(α)⌋

Γ(1 − α)

d

dx

∫ x

a

tρf(t)

(xρ+1 − tρ+1)α−⌊Re(α)⌋
dt,

for x > a and

(5.4)
(

ρDα
b−f

)

(x) = −
(ρ+ 1)α−⌊Re(α)⌋

Γ(1 − α)

d

dx

∫ b

x

tρf(t)

(tρ+1 − xρ+1)α−⌊Re(α)⌋
dt

for x < b.
When α ∈ R+, formulars (5.1) and (5.2) take the following forms,

(5.5)
(

ρDα
a+f

)

(x) =
(ρ+ 1)α−n+1

Γ(n− α)

dn

dxn

∫ x

a

tρf(t)

(xρ+1 − tρ+1)α−n+1
dt,

for x > a and

(5.6)
(

ρDα
b−f

)

(x) =
(ρ+ 1)α−n+1

Γ(n− α)
(−1)n

dn

dxn

∫ b

x

tρf(t)

(tρ+1 − xρ+1)α−n+1
dt

for x < b, where n = ⌈α⌉, while formulars (5.3) and (5.4) are given by

(5.7)
(

ρDα
a+f

)

(x) =
(ρ+ 1)α

Γ(1− α)

d

dx

∫ x

a

tρf(t)

(xρ+1 − tρ+1)α
dt,

for x > a and

(5.8)
(

ρDα
b−f

)

(x) = −
(ρ+ 1)α

Γ(1− α)

d

dx

∫ b

x

tρf(t)

(tρ+1 − xρ+1)α
dt

for x < b.
If Re(α) = 0 (α 6= 0), then (5.3) and (5.4) give generalized fractional deriva-

tives of a purely imaginary order,

(5.9)
(

ρDiθ
a+f

)

(x) =
(ρ+ 1)iθ

Γ(1− iθ)

d

dx

∫ x

a

tρf(t)

(xρ+1 − tρ+1)iθ
dt,

for x > a and

(5.10)
(

ρDiθ
b−f

)

(x) = −
(ρ+ 1)iθ

Γ(1− iθ)

d

dx

∫ b

x

tρf(t)

(tρ+1 − xρ+1)iθ
dt ;x < b.

where θ ∈ R.
Secondly, we give the definition for the genaralize fractional derivative for

Caputo-type.

Definition 5.2. ( C-G Type )
Let α ∈ C, Re(α) > 0 and n = ⌈α⌉. The generalised Caputo-type deriva-

tive of arbitrary order α of f(x) is defined by

(5.11) ρDα
a+f(x) =

(ρ+ 1)α−n+1

Γ(n− α)

∫ x

a

(xρ+1 − τρ+1)n−α−1τρf (n)(τ)dτ
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for x > a, and

(5.12) ρDα
b−f(x) = (−1)n

(ρ+ 1)α−n+1

Γ(n− α)

∫ b

x

(τρ+1 − xρ+1)n−α−1τρf (n)(τ)dτ

for x < b, if the right-hand-sides exist.

If 0 < α < 1, (5.11) reduces to

(5.13) ρDα
a+f(x) =

(ρ+ 1)α

Γ(1− α)

∫ x

a

τρ

(xρ+1 − τρ+1)α
f

′

(τ)dτ

To demonstrate the use of the new derivative, we will obtain generalized
fractional derivative of the power function for a special case. For simplicity
assume α ∈ R+, 0 < α < 1 and a = 0, and use the following version of the
derivative

(

ρDα
0+f

)

(x) =
(ρ+ 1)α

Γ(1− α)

d

dx

∫ x

0

tρ

(xρ+1 − tρ+1)α
f(t)dt(5.14)

Example 5.3. We find the generalized derivative of the function f(x) = xν ,
where ν ∈ R. The formula (5.14) yields

ρDα
0+x

ν =
(ρ+ 1)α

Γ(1− α)

d

dx

∫ x

0

tρ

(xρ+1 − tρ+1)α
tν dt(5.15)

To evaluate the inner integral, we use the substitution u = tρ+1/xρ+1 to
obtain,

∫ x

0

tρ

(xρ+1 − tρ+1)α
tν dt =

x(ρ+1)(1−α)+ν

ρ+ 1

∫ 1

0

u
ν

1+ρ

(1 − u)α
du

=
x(ρ+1)(1−α)+ν

ρ+ 1

∫ 1

0

u
ν+ρ+1

ρ+1
−1(1− u)(1−α)−1 du

=
x(ρ+1)(1−α)+ν

ρ+ 1
B
(

1− α,
ν + ρ+ 1

ρ+ 1

)

(5.16)

where B(. , .) is the Beta function. Combining (5.16) with (5.15), we obtain,

ρDα
0+x

ν =
(ρ+ 1)α−1

Γ(1− α)

d

dx
x(ρ+1)(1−α)+ν B

(

1− α,
ν + ρ+ 1

ρ+ 1

)

=
(ρ+ 1)α−1Γ

(

ν
ρ+1 + 1

)

Γ
(

ν
ρ+1 + 1− α

) xν+(ρ+1)(1−α)−1(5.17)

for ρ > −1, after using the properties of the Beta function [4] and the relation
Γ(z + 1) = z Γ(z). When ρ = 0 we obtain the Riemann-Liouville fractional
derivative of the power function given by [8, 11, 12],

(5.18) Dα
0+x

ν =
Γ
(

ν + 1
)

Γ
(

ν + 1− α
) xν−α
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To compare results, we plot (5.17) for several values of ρ. We also consider
different values of ν to see the effect on the degree of the power function. The
results are summaries in figure 1 and figure 2:
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Figure 1. Generalized fractional derivative of the power
function xν for ρ = −0.4, 0.0, 0.4 and ν = 1.0, 2.0

We conclude the paper with the following open problem.

Open Problem 5.4. Find an exact formula for the left-sided generalized
fractional derivative of the power function, (x − a)ω with ω ∈ R, that is,
evaluate the following integral,

(5.19) ρDα
a+(x− a)ω =

(ρ+ 1)α−n+1

Γ(n− α)

dn

dxn

∫ x

a

tρ(t− a)ω

(xρ+1 − tρ+1)α−n+1
dt,

for x > a where α ∈ C, n = ⌈Re(α)⌉ and ρ 6= −1.

Conclusion 5.5. According to the figure 1 and figure 2, we notice that the
characteristics of the fractional derivative is highle affected by the value of ρ,
thus it provides a new direction for the control applications.

The paper presents a new fractional integration, which generalizes the
Riemann-Liouville and Hadamard fractional integrals into a single form, which
when a parameter fixed at different values, produces the above integrals as
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Figure 2. Generalized fractional derivative of the power
function xν for ρ = −0.4, 0.0, 0.4 and ν = 0.5, 1.5

special cases. Conditions are given for such a generalized fractional inte-
gration operator to be bounded in an extended Lebesgue measurable space.
Semigroup property for the above operator is also proved. We also gave a
general definition of the Fractional derivatives and gave some examples.

In a future paper, we will derive formulae for the Laplace, Fourier and
Mellin transforms for the generalized fractional integral. We already know
that we can deduce Hadamard and Riemann-Liouville integrals for the special
cases of ρ. We want to further investigate the effect on the new parameter ρ.
We will also study the generalize fractional derivatives and their properties.
Those results will appear elsewhere.
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