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Abstract

In this paper, we deal with one dimensional backward doubly stochastic differential equa-

tions (BDSDEs). We obtain existence theorems and comparison theorems for solutions of

BDSDEs with weak assumptions on the coefficients.
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1 Introduction

Pardoux and Peng [14] introduced the following nonlinear backward stochastic differential equa-

tions (BSDEs):

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds −

∫ T

t

ZsdWs, t ∈ [0, T ].

They obtained the existence and uniqueness of solutions under the Lipschitz condition. Since

then, the theory of BSDEs has been developed by many researchers and there are many works

attempting to weaken the Lipschitz condition in order to obtain the existence and uniqueness

results of BDSDEs (see e.g., Bahlali [1], Briand and Confortola [3], Darling and Pardoux [5],

El Karoui and Huang [6], Hamadène [7], Jia [8], Kobylanski [9], Lepeltier and San Martin [10]

and the references therein). Today the BSDE has become a powerful tool in the study of partial

differential equations, risk measures, mathematical finance, as well as stochastic optimal controls

and stochastic differential games.

After the nonlinear BSDEs were introduced, Pardoux and Peng [15] brought forward BDS-

DEs with two different directions of stochastic integrals, i.e., the equations involve both a stan-

dard stochastic Itô’s integral and a backward stochastic Itô’s integral:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds +

∫ T

t

g(s, Ys, Zs)dBs −

∫ T

t

ZsdWs, t ∈ [0, T ], (1.1)
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the integral with respect to {Bt} is a backward Itô’s integral and the integral with respect to {Wt}

is a standard forward Itô’s integral. By virtue of this kind of BDSDE, Pardoux and Peng [15]

established the connections between certain quasi-linear stochastic partial differential equations

and BDSDEs, and obtained a probabilistic representation for a class of quasi-linear stochastic

partial differential equations. They established the existence and uniqueness results for solutions

of BDSDEs under the Lipschitz condition on the coefficients. This kind of BDSDEs has a

practical background in finance. The extra noise B can be regarded as some extra information,

which can not be detected in the financial market, but is available to the particular investors.

Since the work of Pardoux and Peng [15], there are only several works attempting to relax the

Lipschitz condition to get the existence and uniqueness results for one dimensional BDSDEs. Shi

et al. [16] obtained that one dimensional BDSDE (1.1) has at least one solution if f is continuous

and of linear growth in (y, z), and {f(t, 0, 0)}t∈[0,T ] is bounded. Under the assumptions that

f is bounded, left continuous and non-decreasing in y and Lipschitz in z, Lin [11] established

an existence theorem for one dimensional BDSDE (1.1). Lin [12] proved that one dimensional

BDSDE (1.1) has at least one solution if the coefficient f is left Lipschitz and left continuous in

y, and Lipschitz in z. Lin and Wu [13] obtained a uniqueness result for one dimensional BDSDE

(1.1) under the conditions that f is Lipschitz in y and uniformly continuous in z.

Motivated by the above results, one of the objectives of this paper is to get an existence

theorem for one dimensional BDSDE (1.1), which generalizes the result in Shi et al. [16]

by the condition of the square integrability of {f(t, 0, 0)}t∈[0,T ] instead of the boundedness of

{f(t, 0, 0)}t∈[0,T ]. The other objective of this paper is to generalize the existence result in Lin

[12]. We consider the following BDSDE:

Yt = ξ +

∫ T

t

(

sgn(Ys)Y
2
s +

√

Zs1{Zs≥0}

)

ds+

∫ T

t

g(s, Ys, Zs)dBs −

∫ T

t

ZsdWs, t ∈ [0, T ].

Since
√

z1{z≥0} is not Lipschitz in z, then we can not apply the existence result in Lin [12]

to get the existence theorem of the above BDSDE. We shall investigate an existence result for

one dimensional BDSDE (1.1) where f is left Lipschitz and left continuous in y and uniformly

continuous in z, which improves the result in Lin [12]. Since f is uniformly continuous in z, then

we can not apply comparison theorems for solutions of BDSDEs in [16] and [12]. In order to get

the existence theorem for solutions of BDSDEs we shall first establish a comparison theorem for

solutions of BDSDEs when f is Lipschitz in y and uniformly continuous in z, which plays an

important role.

This paper is organized as follows: In section 2, we give some preliminaries and notations,

which will be useful in what follows. In section 3, we obtain an existence theorem for the solutions

of BDSDEs with continuous coefficients. In section 4, we establish an existence theorem and a

comparison theorem for the solutions of a class of BDSDEs with discontinuous coefficients.

2 Preliminaries and Notations

Let T > 0 be a fixed terminal time and (Ω,F ,P) be a probability space. Let {Wt}0≤t≤T and

{Bt}0≤t≤T be two mutually independent standard Brownian motion processes, with values in

R
d and R

l, respectively, defined on (Ω,F ,P). Let N denote the class of P-null sets of F . Then,

we define

Ft
.
= FW

0,t ∨ FB
t,T , t ∈ [0, T ] ,
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where for any process {ηt}, F
η
s,t = σ{ηr − ηs, s ≤ r ≤ t} ∨ N . Let us point out that FW

0,t is

increasing and FB
t,T is decreasing in t, but Ft is neither increasing nor decreasing in t.

Let us introduce the following spaces:

• L2(Ω,FT ,P)
.
=

{

ξ : FT−measurable random variable such that E[|ξ|2] < ∞
}

.

• S2(0, T ;R)
.
=

{

ϕ : ϕ is a continuous process with value in R such that ‖ϕ‖2
S2 =

E[ sup
0≤t≤T

|ϕt|
2] < ∞, and ϕt is Ft−measurable, for all t ∈ [0, T ]

}

.

• M2(0, T ;Rd)
.
=

{

ϕ : ϕ is a jointly measurable process with value in R
d such that ‖ϕ‖2

M2 =

E[
∫ T

0 |ϕt|
2dt] < ∞, and ϕt is Ft−measurable, for all t ∈ [0, T ]

}

.

Let

g : Ω× [0, T ]× R× R
d → R

l.

In this paper, we suppose that ξ ∈ L2(Ω,FT ,P) and g always satisfies the following assump-

tions:

(H1) (Lipschitz condition): There exist constants C > 0 and 0 < α < 1 such that, for all

(t, yi, zi) ∈ [0, T ]× R× R
d, i = 1, 2

|g(t, y1, z1)− g(t, y2, z2)|
2 ≤ C|y1 − y2|

2 + α|z1 − z2|
2.

(H2) For all (y, z) ∈ R× R
d, g(·, y, z) ∈ M2(0, T ;Rl).

Let

f : Ω× [0, T ]× R× R
d → R

be such that, for all (t, y, z) ∈ [0, T ]×R×R
d, f(t, y, z) is Ft−measurable. We make the following

assumptions:

(H3) (Lipschitz condition): There exists a constant C > 0 such that, for all (t, yi, zi) ∈

[0, T ]× R× R
d, i = 1, 2,

|f(t, y1, z1)− f(t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|).

(H4) f(·, 0, 0) ∈ M2(0, T ;R).

(H5) f(t, y, ·) is uniformly continuous and uniformly with respect to (ω, t, y), i.e., there

exists a continuous, sub-additive, non-decreasing function φ : R+ → R
+ with linear growth and

satisfying φ(0) = 0 such that

|f(t, y, z1)− f(t, y, z2)| ≤ φ(|z1 − z2|),

for all (t, y, zi) ∈ [0, T ]×R×R
d, i = 1, 2. Here we denote the constant of linear growth for φ by

C, i.e.,

0 ≤ φ(|x|) ≤ C(1 + |x|),

for all x ∈ R.

(H6) f(t, ·, z) is left continuous and satisfies left Lipschitz condition in y, i.e., for all (t, yi, z) ∈

[0, T ]× R× R
d, i = 1, 2 and y1 ≥ y2,

f(t, y1, z)− f(t, y2, z) ≥ −C(y1 − y2).
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(H7) For all (t, ω) ∈ [0, T ]× Ω, f(ω, t, ·, ·) is continuous.

(H8) There exists a positive constant C such that

|f(ω, t, y, z)| ≤ C(1 + |y|+ |z|), (ω, t, y, z) ∈ Ω× [0, T ]× R× R
d.

(H8′) There exists a constant C > 0 and a positive stochastic process K ∈ M2(0, T ;R) such

that, for all (ω, t, y, z) ∈ Ω× [0, T ] ×R× R
d,

|f(ω, t, y, z)| ≤ C(Kt(ω) + |y|+ |z|).

Remark 2.1 Crandall [4] first used (H5) to study viscosity solutions of partial differential equa-

tions.

Remark 2.2 From (H5) and (H6) we know that, for (t, yi, zi) ∈ [0, T ] × R × R
d, i = 1, 2 and

y1 ≥ y2, we have

f(t, y1, z1)− f(t, y2, z2) ≥ −C(y1 − y2)− φ(|z1 − z2|).

Remark 2.3 If we take φ(x) = Cx, x ≥ 0, in (H5), where C is a positive constant, then

combining (H6) with some conditions Lin [12] obtained that one dimensional BDSDE has at

least one solution.

Remark 2.4 Under the assumptions (H7) and (H8) Shi et al. [16] proved that one dimensional

BDSDE has at least one solution.

Remark 2.5 It is obvious that (H8′) implies (H8).

For n ∈ N , we let

f
n
(t, y, z) = inf

u∈R,v∈Rd

{

f(t, u, v) + n(|y − u|+ |z − v|)
}

and

fn(t, y, z) = sup
u∈R,v∈Rd

{

f(t, u, v)− n(|y − u|+ |z − v|)
}

.

Then, we have the following lemma, which was established by Lepeltier and San Martin [10].

Lemma 2.6 If f satisfies (H7) and (H8), then, for n > C and (t, y, z) ∈ [0, T ] × R × R
d, we

have

(i) −C(|y|+ |z|+ 1) ≤ f
n
(t, y, z) ≤ f(t, y, z) ≤ fn(t, y, z) ≤ C(|y|+ |z|+ 1).

(ii) f
n
(t, y, z) is non-decreasing in n and fn(t, y, z) is non-increasing in n.

(iii) For all (ω, t, yi, zi) ∈ Ω× [0, T ]× R× R
d, i = 1, 2, we have

|f
n
(ω, t, y1, z1)− f

n
(ω, t, y2, z2)| ≤ n(|y1 − y2|+ |z1 − z2|).

The same holds for fn.

(iv) If (yn, zn) → (y, z), as n → ∞, then f
n
(t, yn, zn) → f(t, y, z), as n → ∞. The same

holds for fn.
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Given ξ ∈ L2(Ω,FT ,P), we consider the following BDSDE with data (f, g, T, ξ) :

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds +

∫ T

t

g(s, Ys, Zs)dBs −

∫ T

t

ZsdWs. (2.1)

Definition 2.7 A pair of processes (Y,Z) ∈ R × R
d is called a solution of BDSDE (2.1), if

(Y,Z) ∈ S2(0, T ;R) ×M2(0, T ;Rd) and satisfies BDSDE (2.1).

Pardoux and Peng [15] established the following existence and uniqueness for solutions of

BDSDE (2.1).

Lemma 2.8 Under the assumptions (H1)− (H4), BDSDE (2.1) has a unique solution (Y,Z) ∈

S2(0, T ;R) ×M2(0, T ;Rd).

Finally, we make another assumption, which will be needed in what follows.

(H9) There exist two BDSDEs with data (fi, g, T, ξ) which have at least one solution (Y i, Zi),

i = 1, 2, respectively. For all (t, y, z) ∈ [0, T ]× R× R
d,

f1(t, y, z) ≤ f(t, y, z) ≤ f2(t, y, z), Y 1
t ≤ Y 2

t , a.s..

Moreover, the processes
{

fi(t, Y
i
t , Z

i
t)
}

t∈[0,T ]
, i = 1, 2, are square integrable.

3 Existence theorem for BDSDEs with general continuous co-

efficients

The objective of this section is to obtain an existence theorem for BDSDEs, which generalizes

the corresponding result of Shi et al. [16].

We first give the following useful lemma. For its proof the reader is referred to [2] and [10].

Lemma 3.1 Let f
n
and fn be introduced in Section 2. If f satisfies (H7) and (H8′), then, for

n > C and (t, y, z) ∈ [0, T ]× R× R
d, we have

(i) −C(|y|+ |z|+Kt) ≤ f
n
(t, y, z) ≤ f(t, y, z) ≤ fn(t, y, z) ≤ C(|y|+ |z|+Kt).

(ii) f
n
(t, y, z) is non-decreasing in n and fn(t, y, z) is non-increasing in n.

(iii) For all (ω, t, yi, zi) ∈ Ω× [0, T ]× R× R
d, i = 1, 2, we have

|f
n
(ω, t, y1, z1)− f

n
(ω, t, y2, z2)| ≤ n(|y1 − y2|+ |z1 − z2|).

The same holds for fn.

(iv) If (yn, zn) → (y, z), as n → ∞, then f
n
(t, yn, zn) → f(t, y, z), as n → ∞. The same

holds for fn.

We also need the following comparison theorem obtained in Lin [12].

Lemma 3.2 Assume BDSDEs (2.1) with data (f1, g, T, ξ1) and (f2, g, T, ξ2) have solutions

(y1, z1) and (y2, z2), respectively. If f1 satisfies (H3) and (H4), ξ1 ≤ ξ2, a.s., f1(t, y2t , z
2
t ) ≤

f2(t, y2t , z
2
t ), dPdt−a.s. (resp. f2 satisfies (H3) and (H4), f1(t, y1t , z

1
t ) ≤ f2(t, y1t , z

1
t ), dPdt−a.s.

), then we have y1t ≤ y2t , a.s., for all t ∈ [0, T ].

We now give the following existence theorem for BDSDEs, which extends the corresponding

result in Shi et al. [16] by eliminating the condition that {Kt}t∈[0,T ] is a bounded process. The

coefficient g in the backward Itô’s integral will bring the extra estimate difficulty.
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Theorem 3.3 Under the assumptions (H7) and (H8′), BDSDE with data (f, g, T, ξ) has a

minimal (resp. maximal) solution (y, z) (resp. (y, z)) of BDSDE with data (f, g, T, ξ), in the

sense that, for any other solution (y, z) of BDSDE with data (f, g, T, ξ), we have y ≤ y (resp.

y ≥ y).

Proof: We only prove that BDSDE (2.1) with data (f, g, T, ξ) has a minimal solution. The

other case can be proved similarly. Let

h(ω, t, y, z) = C(Kt(ω) + |y|+ |z|),

and f
n
be introduced in Section 2. Then, f

n
≤ h, and we consider the following BDSDEs:

ynt = ξ +

∫ T

t

f
n
(s, yns , z

n
s )ds +

∫ T

t

g(s, yns , z
n
s )dBs −

∫ T

t

zns dWs, t ∈ [0, T ], (3.1)

and

Ut = ξ +

∫ T

t

h(s, Us, Vs)ds +

∫ T

t

g(s, Us, Vs)dBs −

∫ T

t

VsdWs, t ∈ [0, T ].

From Lemma 2.8 it follows that the above BDSDEs have unique solutions (yn, zn) ∈ S2(0, T ;R)×

M2(0, T ;Rd), and (U, V ) ∈ S2(0, T ;R) ×M2(0, T ;Rd), respectively.

By a comparison theorem for BDSDEs (see Lemma 3.2 or [16] ) and Lemma 3.1 we have,

for n > C,

yn ≤ yn+1 ≤ U, dPdt− a.s.

Then, there exists a positive constant A independent of n such that

‖ U ‖S2≤ A, ‖ V ‖M2≤ A, and ‖ yn ‖S2≤ A.

Therefore, from the dominated convergence theorem it follows that {yn} converges in S2(0, T ;R).

We shall denote its limit by y ∈ S2(0, T ;R).

By (H1) and Young inequality we get

|g(t, ynt , z
n
t )|

2 ≤ (1 +
1− α

4α
)|g(t, ynt , z

n
t )− g(t, 0, 0)|2 + (1 +

4α

1− α
) | g(t, 0, 0) |2

≤
1 + 3α

4α
C|ynt |

2 +
1 + 3α

4
|znt |

2 +
1 + 3α

1− α
|g(t, 0, 0)|2 .

By virtue of Lemma 3.1 and using Young inequality we have

ynt fn
(t, ynt , z

n
t ) ≤ C|ynt |(Kt + |ynt |+ |znt |)

≤ (
3C

2
+

C2

2− 2α
)|ynt |

2 +
1− α

2
|znt |

2 +
C

2
|Kt|

2.

Consequently, by the above inequalities and applying Itô’s formula to |ynt |
2 and taking mathe-

matical expectation, we obtain

E

∫ T

0
|znt |

2dt = E|ξ|2 − |yn0 |
2 + 2E

∫ T

0
ynt fn

(t, ynt , z
n
t )dt

+E

∫ T

0
|g(t, ynt , z

n
t )|

2dt

6



≤ E|ξ|2 +
3 + α

4
E

∫ T

0
|znt |

2dt+
1 + 3α

1− α
E

∫ T

0
|g(t, 0, 0)|2dt

+
(3C

2
+

C2

2− 2α
+

1 + 3α

4α
C
)

E

∫ T

0
|ynt |

2dt.+
C

2
E

∫ T

0
|Kt|

2dt.

Therefore,

E

∫ T

0
|znt |

2dt ≤
4

1− α
E|ξ|2 +

4 + 12α

(1− α)2
E

∫ T

0
|g(t, 0, 0)|2dt

+
4

1− α

(3C

2
+

C2

2− 2α
+

1 + 3α

4α
C
)

E

∫ T

0
|ynt |

2dt+
2C

1− α
E

∫ T

0
|Kt|

2dt

.
= A,

which is bounded and independent of n.

Using Itô’s formula to | ynt − ymt |2 we obtain

E

∫ T

0
|znt − zmt |2dt+ | yn0 − ym0 |2

= 2E[

∫ T

0
(ynt − ymt )

(

f
n
(t, ynt , z

n
t )− f

m
(t, ymt , zmt )

)

dt]

+E

∫ T

0
| g(t, ynt , z

n
t )− g(t, ymt , zmt ) |2 dt.

From Lemma 3.1, ‖ zn ‖M2≤ A and ‖ yn ‖S2≤ A it follows that there exists a positive constant

C0 independent of n,m such that

E[

∫ T

0
(ynt − ymt )(f

n
(t, ynt , z

n
t )− f

m
(t, ymt , zmt ))dt]

≤ C0(E

∫ T

0
|ynt − ymt |2dt)

1

2 .

Therefore, by virtue of (H1) we get

E

∫ T

0
|znt − zmt |2dt+ | yn0 − ym0 |2

≤ C0

{

E

∫ T

0
|ynt − ymt |2dt

}
1

2

+αE

∫ T

0
|znt − zmt |2dt+ CE

∫ T

0
|ynt − ymt |2dt.

Then, we deduce

(1− α)E

∫ T

0
|znt − zmt |2dt

≤ C0

{

E

∫ T

0
|ynt − ymt |2dt

}
1

2

+ CE

∫ T

0
|ynt − ymt |2dt.

Therefore, {zn}∞n=1 is a Cauchy sequence in M2(0, T ;Rd). Then, there exists z ∈ M2(0, T ;Rd)

such that

lim
n→∞

E[

∫ T

0
|znt − zt|

2dt] = 0.

7



Thanks to (H1) and BDG inequality we know that there exists a positive constant C1 indepen-

dent of n such that

E[ sup
t∈[0,T ]

|

∫ T

t

g(s, y
s
, zs)dBs −

∫ T

t

g(s, yns , z
n
s )dBs|

2]

≤ C1E[

∫ T

0
|g(s, y

s
, zs)− g(s, yns , z

n
s )|

2ds]

≤ C1αE[

∫ T

0
|znt − zt|

2dt] + C1CE[

∫ T

0
|ynt − y

t
|2dt]

→ 0, as n → ∞.

For all N > 0 and (t, y, z) ∈ [0, T ]×R×R
d, from Lemma 3.1 and Dini’s Theorem it follows that

lim
n→∞

sup
|y|+|z|≤N

|f
n
(t, y, z) − f(t, y, z)| = 0, dtdP− a.s.

Therefore, by the dominated convergence theorem we have

lim
n→∞

E

∫ T

0
|f

n
(t, ynt , z

n
t )− f(t, ynt , z

n
t )|1{|ynt |+|zn

t
|≤N}dt = 0.

By virtue of (H7) we know that

E

∫ T

0
|f(t, ynt , z

n
t )− f(t, y

t
, zt)|1{|ynt |+|zn

t
|≤N}dt

converges to 0 at least along a subsequence.

From Lemma 3.1 and (H8′) it follows that

E

∫ T

0
|f

n
(t, ynt , z

n
t )− f(t, y

t
, zt)|(|y

n
t |+ |znt |)dt

.
= C2 < ∞.

Here C2 is a positive constant and independent of n. Consequently,

E

∫ T

0
|f

n
(t, ynt , z

n
t )− f(t, y

t
, zt)|1{|ynt |+|zn

t
|>N}dt ≤

C2

N
.

Combining the above inequalities, passing to a subsequence if necessary, we have

E

∫ T

0
|f

n
(t, ynt , z

n
t )− f(t, y

t
, zt)|dt

≤ E

∫ T

0
|f

n
(t, ynt , z

n
t )− f(t, ynt , z

n
t )|1{|ynt |+|zn

t
|≤N}dt

+E

∫ T

0
|f(t, ynt , z

n
t )− f(t, y

t
, zt)|1{|ynt |+|zn

t
|≤N}dt+

C2

N

→
C2

N
,

as n → ∞. Thus, letting N → ∞, we have

E

∫ T

0
|f

n
(t, ynt , z

n
t )− f(t, yt, zt)|dt → 0,

8



as n → ∞, passing to a subsequence if necessary. We now pass to the limit on both sides of

BDSDE (3.1), passing to a subsequence if necessary, it follows that

y
t
= ξ +

∫ T

t

f(s, y
s
, zs)ds+

∫ T

t

g(s, y
s
, zs)dBs −

∫ T

t

zsdWs.

Consequently, BDSDE with data (f, g, T, ξ) has a solution (y, z).

Let (y′, z′) be any solution of BDSDE with data (f, g, T, ξ). Then, let us consider the

following BDSDEs:

y′t = ξ +

∫ T

t

f(s, y′s, z
′
s)ds+

∫ T

t

g(s, y′s, z
′
s)dBs −

∫ T

t

z′sdWs, t ∈ [0, T ],

and

ynt = ξ +

∫ T

t

f
n
(s, yns , z

n
s )ds +

∫ T

t

g(s, yns , z
n
s )dBs −

∫ T

t

zns dWs, t ∈ [0, T ],

By virtue of Lemma 3.2 we have yn ≤ y′. Consequently, due to the first part of the proof and

taking the limit we have y ≤ y′. The proof is complete. �

If {Kt}t∈[0,T ] is a bounded process, then we have the following corollary, which was obtained

by Shi et al. [16].

Corollary 3.4 Under the assumptions (H7) and (H8), BDSDE with data (f, g, T, ξ) has the

minimal solution (y
t
, zt)0≤t≤T (resp. maximal solution (yt, zt)0≤t≤T ). Moreover, for all t ∈

[0, T ],

yn
t
≤ yn+1

t
≤ y

t
≤ yt ≤ yn+1

t ≤ ynt .

And (yn, zn) → (y, z) and (yn, zn) → (y, z) both in S2(0, T ;R) × M2(0, T ;Rd), as n → ∞,

where (yn, zn) is the unique solution of BDSDE with data (f
n
, g, T, ξ) and (yn, zn) is the unique

solution of BDSDE with data (fn, g, T, ξ).

4 Existence theorem and comparison theorems for BDSDEs

with discontinuous coefficients

The objective of this section is to investigate an existence theorem and a comparison theorem

for solutions of BDSDEs with discontinuous coefficients.

We shall give a comparison theorem for BDSDEs (2.1) under the conditions that f is Lipschitz

in y and uniformly continuous in z, i.e.,

(H10) There exists a positive constant C such that, for all (t, yi, zi) ∈ [0, T ]×R×R
d, i = 1, 2,

|f(t, y1, z1)− f(t, y2, z2)| ≤ C|y1 − y2|+ φ(|z1 − z2|),

where φ is introduced in (H5).

We need the following existence theorem and uniqueness theorem for BDSDEs, which was

established in [13].

Lemma 4.1 Under the assumptions (H4) and (H10), BDSDE (2.1) has a unique solution

(Y,Z) ∈ S2(0, T ;R) ×M2(0, T ;Rd).

9



Since φ is uniformly continuous, then we can not apply comparison theorems for solutions

of BDSDEs in [16] and [12] to the proofs of Lemma 4.3 and Theorem 4.4. We now establish a

comparison theorem of BDSDEs when f satisfies the condition (H10), which plays an important

role in the proofs of Lemma 4.3 and Theorem 4.4.

Theorem 4.2 Suppose that BDSDEs with data (f1, g, T, ξ1) and (f2, g, T, ξ2) have solutions

(y1, z1) and (y2, z2), respectively. If f1 satisfies (H4) and (H10), ξ1 ≤ ξ2, a.s., f1(t, y2t , z
2
t ) ≤

f2(t, y2t , z
2
t ), dPdt− a.s. (resp. f2 satisfies (H4) and (H10), f1(t, y1t , z

1
t ) ≤ f2(t, y1t , z

1
t ), dPdt−

a.s.), then we have y1t ≤ y2t , a.s., for all t ∈ [0, T ].

Proof: We only prove the first case, the other case can be proved similarly. For n ∈

N, (t, y, z) ∈ [0, T ]× R× R
d, we let

f1
n(t, y, z) = inf

v∈Rd

{

f1(t, y, v) + n|z − v|
}

.

Then, since f1(t, y2t , z
2
t ) ≤ f2(t, y2t , z

2
t ), a.s., we have f1

n(t, y
2
t , z

2
t ) ≤ f1(t, y2t .z

2
t ) ≤ f2(t, y2t , z

2
t ),

a.s.

From Lemma 2.6 and (H10) it follows that, for all (t, yi, zi) ∈ [0, T ] × R× R
d, i = 1, 2,

|f1
n(t, y1, z1)− f1

n(t, y2, z2)| ≤ C|y1 − y2|+ n|z1 − z2|,

and we consider the following BDSDE:

yn
t
= ξ1 +

∫ T

t

f1
n(s, y

n

s
, zns )ds +

∫ T

t

g(s, yn
s
, zns )dBs −

∫ T

t

zns dWs, t ∈ [0, T ],

and

y2t = ξ2 +

∫ T

t

f2(s, y2s , z
2
s )ds +

∫ T

t

g(s, y2s , z
2
s )dBs −

∫ T

t

z2sdWs, t ∈ [0, T ].

By virtue of Lemma 3.2 we obtain yn
t
≤ y2t , for n > C. Theorem 3.3 and Lemma 4.1 yield

y1t ≤ y2t , a.s., for all t ∈ [0, T ].

The proof is complete. �

From now we study an existence theorem and a comparison theorem for solutions of BDSDEs

under the conditions (H5), (H6) and (H9).

From (H9) we know that there exist two BDSDEs: i = 1, 2,

Y i
t = ξ +

∫ T

t

fi(s, Y
i
s , Z

i
s)ds +

∫ T

t

g(s, Y i
s , Z

i
s)dBs −

∫ T

t

Zi
sdWs, t ∈ [0, T ]

such that fi(·, Y
i
· , Z

i
· ) ∈ M2(0, T ;R).

We now construct a sequence of BDSDEs as follows:

ynt = ξ +

∫ T

t

[f(s, yn−1
s , zn−1

s )− C(yns − yn−1
s )− φ(|zns − zn−1

s |)]ds

+

∫ T

t

g(s, yns , z
n
s )dBs −

∫ T

t

zns dWs, t ∈ [0, T ],

(4.1)

where n = 1, 2, · · · , and (y0, z0) = (Y 1, Z1). We have the following lemma:
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Lemma 4.3 Under the assumptions (H5), (H6) and (H9), for all n = 1, 2, · · · , BDSDE (4.1)

has a unique solution (yn, zn) ∈ S2(0, T ;R)×M2(0, T ;Rd), and Y 1
t ≤ ynt ≤ yn+1

t ≤ Y 2
t , a.s., for

all t ∈ [0, T ].

Proof: For n = 1, from (H5), (H6), (H9) and Y 1
t ≤ Y 2

t it follows that

f2(t, Y
2
t , Z

2
t )− f(t, Y 1

t , Z
1
t ) ≥ f(t, Y 2

t , Z
2
t )− f(t, Y 1

t , Z
1
t )

≥ −C(Y 2
t − Y 1

t )− φ(|Z2
t − Z1

t |).

Then, we have

f2(t, Y
2
t , Z

2
t ) + C(Y 2

t − Y 1
t ) + φ(|Z2

t − Z1
t |) ≥ f(t, Y 1

t , Z
1
t ) ≥ f1(t, Y

1
t , Z

1
t ),

and

f2(t, Y
2
t , Z

2
t ) ≥ f(t, Y 1

t , Z
1
t )− C(Y 2

t − Y 1
t )− φ(|Z2

t − Z1
t |).

Thus, due to (H9) and linear growth of φ we have f(·, Y 1
· , Z

1
· ) ∈ M2(0, T ;R), and from Lemma

4.1 it follows that BDSDE (4.1) has a unique solution (y1, z1) ∈ S2(0, T ;R)×M2(0, T ;Rd), and

by virtue of Theorem 4.2 we have Y 1
t ≤ y1t ≤ Y 2

t , a.s., for all t ∈ [0, T ].

For n = 2, by (H5), (H6), (H9) and Y 1
· ≤ y1· ≤ Y 2

· we deduce

f2(t, Y
2
t , Z

2
t )− f(t, y1t , z

1
t ) ≥ f(t, Y 2

t , Z
2
t )− f(t, y1t , z

1
t )

≥ −C(Y 2
t − y1t )− φ(|Z2

t − z1t |),

and

f(t, y1t , z
1
t )− f1(t, Y

1
t , Z

1
t ) ≥ f(t, y1t , z

1
t )− f(t, Y 1

t , Z
1
t )

≥ −C(y1t − Y 1
t )− φ(|z1t − Z1

t |).

Then, we obtain

f2(t, Y
2
t , Z

2
t ) +C(Y 2

t − y1t ) + φ(|Z2
t − z1t |)

≥ f(t, y1t , z
1
t ) ≥ f1(t, Y

1
t , Z

1
t )−C(y1t − Y 1

t )− φ(|z1t − Z1
t |),

f2(t, Y
2
t , Z

2
t ) ≥ f(t, y1t , z

1
t )− C(Y 2

t − y1t )− φ(|Z2
t − z1t |),

and

f(t, y1t , z
1
t ) ≥ f(t, Y 1

t , Z
1
t )−C(y1t − Y 1

t )− φ(|z1t − Z1
t |).

Thus, f(·, y1· , z
1
· ) ∈ M2(0, T ;R), and by Lemma 4.1 and Theorem 4.2 we know that BDSDE

(4.1) has a unique solution (y2, z2) ∈ S2(0, T ;R) ×M2(0, T ;Rd), and Y 1
t ≤ y1t ≤ y2t ≤ Y 2

t , a.s.,

for all t ∈ [0, T ].

For n > 2, we suppose that Y 1 ≤ yn−1 ≤ yn ≤ Y 2, and f(·, yn−1
· , zn−1

· ) ∈ M2(0, T ;R). Let

us consider the following BDSDE:

yn+1
t = ξ +

∫ T

t

[

f(s, yns , z
n
s )− C(yn+1

s − yns )− φ(|zn+1
s − zns |)

]

ds

+

∫ T

t

g(s, yn+1
s , zn+1

s )dBs −

∫ T

t

zn+1
s dWs, t ∈ [0, T ].

(4.2)
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Using the similar argument as n = 2 we get

f2(t, Y
2
t , Z

2
t ) + C(Y 2

t − ynt ) + φ(|Z2
t − znt |) ≥ f(t, ynt , z

n
t )

≥ f1(t, Y
1
t , Z

1
t )− C(ynt − Y 1

t )− φ(|znt − Z1
t |),

(4.3)

f2(t, Y
2
t , Z

2
t ) ≥ f(t, ynt , z

n
t )− C(Y 2

t − ynt )− φ(|Z2
t − znt |),

and

f(t, ynt , z
n
t ) ≥ f(t, yn−1

t , zn−1
t )−C(ynt − yn−1

t )− φ(|znt − zn−1
t |).

Consequently, f(·, yn· , z
n
· ) ∈ M2(0, T ;R), and using Lemma 4.1 and Theorem 4.2 again we

obtain that BDSDE (4.2) has a unique solution (yn+1, zn+1) ∈ S2(0, T ;R) ×M2(0, T ;Rd), and

Y 1
t ≤ ynt ≤ yn+1

t ≤ Y 2
t , a.s., for all t ∈ [0, T ]. The proof is complete. �

We now state and prove the main result in this section.

Theorem 4.4 Under the assumptions (H5), (H6) and (H9), BDSDE with data (f, g, T, ξ) has

a solution. Moreover, if f1 satisfies (H4) and (H10), then BDSDE with data (f, g, T, ξ) has

a minimal solution (y, z), in the sense that, for any other solution (y, z) of BDSDE with data

(f, g, T, ξ), we have y ≤ y.

Proof: By Lemma 4.3 we know that {yn}∞n=1 converges to a limit y in S2(0, T ;R) and

sup
n

E[ sup
0≤t≤T

|ynt |
2] ≤ E[ sup

0≤t≤T

|Y 1
t |

2] + E[ sup
0≤t≤T

|Y 2
t |

2] < ∞.

Let

fn(t, ynt , z
n
t )

.
= f(t, yn−1

t , zn−1
t )− C(ynt − yn−1

t )− φ(|znt − zn−1
t |).

Then, from (H5), (H6) and (4.3) it follows that

| fn(t, ynt , z
n
t )| ≤ |f(t, yn−1

t , zn−1
t ) | +C|ynt − yn−1

t |+ φ(|znt − zn−1
t |)

≤
2

∑

i=1

[

|fi(t, Y
i
t , Z

i
t)|+ C|Y i

t |+ C|Zi
t |
]

+C
[

|ynt |+ |znt |
]

+ 3C
[

|yn−1
t |+ |zn−1

t |+ 1
]

.

Thanks to (H1) we get

|g(t, ynt , z
n
t )|

2 ≤ (1 +
1− α

2α
)|g(t, ynt , z

n
t )− g(t, 0, 0) |2 +(1 +

2α

1− α
) | g(t, 0, 0) |2

≤
1 + α

2α
C|ynt |

2 +
1 + α

2
|znt |

2 +
1 + α

1− α
| g(t, 0, 0) |2 .

We apply Itô’s formula to | ynt |2 and obtain

E

∫ T

0
|znt |

2dt = E | ξ |2 − | yn0 |2 +2E

∫ T

0
ynt f

n(t, ynt , z
n
t )dt

+E

∫ T

0
| g(t, ynt , z

n
t ) |

2 dt

≤ C1 +
3 + α

4
E

∫ T

0
|znt |

2dt+
1− α

8
E

∫ T

0
|zn−1

t |2dt,
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where

C1
.
= sup

n
E

{

2

∫ T

0

2
∑

i=1

|ynt |
[

|fi(t, Y
i
t , Z

i
t)|+ C|Y i

t |+ C|Zi
t |
]

dt

+
1 + α

1− α
E

∫ T

0
|g(t, 0, 0)|2dt+

(

2C +
1 + α

2α
C +

76C2

1− α

)

∫ T

0
|ynt |

2dt

+6C

∫ T

0
|ynt y

n−1
t |dt+ 6C

∫ T

0
|ynt |dt

}

+ E|ξ|2 < ∞.

Then, we deduce

E

∫ T

0
|znt |

2dt ≤
4C1

1− α
+

1

2
E

∫ T

0
|zn−1

t |2dt.

Therefore, we get

sup
n

E

∫ T

0
|znt |

2dt < ∞

and

sup
n

E

∫ T

0
|fn(t, ynt , z

n
t )|

2dt < ∞.

Let

C2
.
= sup

n
E

∫ T

0
|fn(t, ynt , z

n
t )|

2dt.

Using Itô’s formula to | ynt − ymt |2 we obtain

E

∫ T

0
|znt − zmt |2dt+ | yn0 − ym0 |2

= 2E

∫ T

0
(ynt − ymt )

(

fn(t, ynt , z
n
t )− fm(t, ymt , zmt )

)

dt

+E

∫ T

0
| g(t, ynt , z

n
t )− g(t, ymt , zmt ) |2 dt.

Due to (H1) again it follows that

E

∫ T

0
|znt − zmt |2dt+ | yn0 − ym0 |2

≤ 4C
1

2

2

{

E

∫ T

0
|ynt − ymt |2dt

}
1

2

+αE

∫ T

0
|znt − zmt |2dt+ CE

∫ T

0
|ynt − ymt |2dt.

Then, we have

(1− α)E

∫ T

0
|znt − zmt |2dt

≤ 4C
1

2

2

{

E

∫ T

0
|ynt − ymt |2dt

}
1

2

+ CE

∫ T

0
|ynt − ymt |2dt.
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Therefore, {zn}∞n=1 is a Cauchy sequence in M2(0, T ;Rd), and there exists z ∈ M2(0, T ;Rd)

such that

lim
n→∞

E

∫ T

0
|znt − zt|

2dt = 0.

From (H1), (H2), (H5), (H6), the above equality and {yn}∞n=1 converges to y in S2(0, T ;R) it

follows that

sup
t∈[0,T ]

|

∫ T

t

zns dWs −

∫ T

t

zsdWs|
P

−→ 0, (4.4)

sup
t∈[0,T ]

|

∫ T

t

g(s, yns , z
n
s )dBs −

∫ T

t

g(s, y
s
, zs)dBs|

P
−→ 0, (4.5)

and for almost all ω ∈ Ω, passing to a subsequence if necessary, we have

fn(t, ynt , z
n
t )− f(t, y

t
, zt) → 0, dt− a.e., as n → ∞.

Combining the above inequalities with the dominated convergence theorem yield

∫ T

0
fn(s, yns , z

n
s )ds →

∫ T

0
f(s, y

s
, zs)ds, (4.6)

as n → ∞. Consequently, (4.4), (4.5) and (4.6) allow us to pass to the limit on both sides of

BDSDE (4.1), passing to a subsequence if necessary, it follows that

y
t
= ξ +

∫ T

t

f(s, y
s
, zs)ds +

∫ T

t

g(s, y
s
, zs)dBs −

∫ T

t

zsdWs, t ∈ [0, T ].

Consequently, BDSDE with data (f, g, T, ξ) has a solution (y, z).

Let (y, z) be any solution of BDSDE (2.1). From f1(t, y, z) ≤ f(t, y, z), for all (t, y, z) ∈

[0, T ]× R× R
d, and Theorem 4.2 it follows that Y 1

t ≤ yt, a.s., for all t ∈ [0, T ].

For n = 1, we consider the following BDSDE:

y1t = ξ +

∫ T

t

[

f(s, Y 1
s , Z

1
s )− C(y1s − Y 1

s )− φ(|z1s − Z1
s |)

]

ds

+

∫ T

t

g(s, y1s , z
1
s )dBs −

∫ T

t

z1sdWs, t ∈ [0, T ].

From (H5), (H6) and Y 1 ≤ y it follows that

f(t, yt, zt) ≥ f(t, Y 1
t , Z

1
t )−C(yt − Y 1

t )− φ(|zt − Z1
t |).

Thus, by virtue of Theorem 4.2 we have y1t ≤ yt, a.s., for all t ∈ [0, T ].

For n ≥ 2, we assume that yn ≤ y. Let us consider the following BDSDE:

yn+1
t = ξ +

∫ T

t

[

f(s, yns , z
n
s )− C(yn+1

s − yns )− φ(|zn+1
s − zns |)

]

ds

+

∫ T

t

g(s, yn+1
s , zn+1

s )dBs −

∫ T

t

zn+1
s dWs, t ∈ [0, T ].
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By the similar argument as n = 1 we get

f(t, yt, zt) ≥ f(t, ynt , z
n
t )−C(yt − ynt )− φ(|zt − znt |).

Therefore, using Theorem 4.2 again we obtain yn+1
t ≤ yt, a.s., for all t ∈ [0, T ]. Then, by virtue

of the first part of the proof and taking the limit we have y
t
≤ yt a.s., for all t ∈ [0, T ]. The

proof is complete. �

Remark 4.5 The above theorem generalizes the result in Lin [12]. In fact, we can take φ(x) =

Cx, x ≥ 0, where C is a positive constant.

Remark 4.6 Under the assumptions of Theorem 4.4, if f2 satisfies (H4) and (H10), and

BDSDE (4.1) is replaced by the following BDSDE:

ynt = ξ +

∫ T

t

[f(s, yn−1
s , zn−1

s )− C(yns − yn−1
s ) + φ(|zns − zn−1

s |)]ds

+

∫ T

t

g(s, yns , z
n
s )dBs −

∫ T

t

zns dWs, t ∈ [0, T ],

where n = 1, 2, · · · , and (y0, z0) = (Y 2, Z2). Similar to the proof of Lemma 4.3 and Theorem

4.4, we can prove that BDSDE with data (f, g, T, ξ) has the maximal solution.

Remark 4.7 Under assumptions (H5), (H6) and (H9), the solution of BDSDE with data (f, g, T, ξ)

may be non-unique. Let us consider the following BDSDE:

yt =

∫ T

t

[

4sSgn(ys)
√

|ys|+
√

zs1zs≥0

]

ds +

∫ T

t

[

1{ys<0}ys +
1

2
zs

]

dBs −

∫ T

t

zsdWs, t ∈ [0, T ],

where Sgn(x) = 1, x ≥ 0; Sgn(x) = −1, x < 0. We can check that the above equation satisfies

(H5), (H6) and (H9), where

f1(t, y, z) = −2t2 − 2|y|+ z and f2 = 2t2 + 2|y|+ z.

It’s easy to check that, for each c ∈ [0, T ] and t ∈ [0, T ], (yt, zt) = (0, 0) and (yt, zt) =
(

[max{c2−

t2, 0}]2, 0
)

are solutions of the above BDSDE.

Finally, we give a comparison theorem for BDSDEs with discontinuous coefficients.

Theorem 4.8 We suppose that f1 and f2 satisfy (H5), (H6) and (H9), and f1 satisfies (H4)

and (H10). Let the minimal solutions (y1, z1) and (y2, z2) of BDSDEs (2.1) with data (f1, g, T, ξ1)

and (f2, g, T, ξ2), respectively. If ξ1 ≤ ξ2, a.s., and f1(t, y, z) ≤ f2(t, y, z), a.s., then we have

y1
t
≤ y2

t
, a.s., for all t ∈ [0, T ].

Proof: From (H9) we know that there exists the following BDSDE:

Y 1
t = ξ1 +

∫ T

t

f1(s, Y
1
s , Z

1
s )ds+

∫ T

t

g(s, Y 1
s , Z

1
s )dBs −

∫ T

t

Z1
sdWs, t ∈ [0, T ],

such that f1(t, Y
1
t , Z

1
t ) ∈ M2(0, T ;R).
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We consider a sequence of BDSDEs as follows:

ynt = ξ +

∫ T

t

[

f1(s, yn−1
s , zn−1

s )−C(yns − yn−1
s )− φ(|zns − zn−1

s |)
]

ds

+

∫ T

t

g(s, yns , z
n
s )dBs −

∫ T

t

zns dWs, t ∈ [0, T ],

where n = 1, 2, · · · and (y0, z0) = (Y 1, Z1).

From (H9) and f1(t, y, z) ≤ f2(t, y, z), a.s., we know that f1(t, y, z) ≤ f2(t, y, z), a.s. Then,

from Theorem 4.2 it follows that Y 1
t ≤ y2

t
, a.s., for all t ∈ [0, T ].

For n = 1, by virtue of (H5), (H6) and Y 1 ≤ y2 we get

f2(t, y2
t
, z2t )− f1(t, Y 1

t , Z
1
t ) ≥ f1(t, y2

t
, z2t )− f1(t, Y 1

t , Z
1
t ) ≥ −C(y2

t
− Y 1

t )− φ(|z2t − Z1
t |).

Then, we have

f2(t, y2
t
, z2t ) ≥ f1(t, Y 1

t , Z
1
t )− C(y2

t
− Y 1

t )− φ(|z2t − Z1
t |).

Thus, by virtue of Theorem 4.2 we have y1t ≤ y2
t
, a.s., for all t ∈ [0, T ].

For n ≥ 2, we suppose that yn ≤ y2. Then, let us consider the following BDSDE:

yn+1
t = ξ +

∫ T

t

[

f1(s, yns , z
n
s )− C(yn+1

s − yns )− φ(|zn+1
s − zns |)

]

ds

+

∫ T

t

g(s, yn+1
s , zn+1

s )dBs −

∫ T

t

zn+1
s dWs, t ∈ [0, T ].

By virtue of the similar argument as n = 1 we have

f2(t, y2
t
, z2t ) ≥ f1(t, ynt , z

n
t )− C(y2

t
− ynt )− φ(|z2t − znt |).

Then, thanks to Theorem 4.2 we get yn+1
t ≤ y2

t
, a.s., for all t ∈ [0, T ]. From the proof of Theorem

4.4 it follows that y1
t
≤ y2

t
, a.s., for all t ∈ [0, T ]. The proof is complete. �

Remark 4.9 Similar to the proof of Theorem 4.8, we can prove that a comparison theorem for

the maximal solution of BDSDE with data (f, g, T, ξ) by using Remark 4.6.
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