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LIMIT CYCLES AND INVARIANT CYLINDERS FOR A CLASS
OF CONTINUOUS AND DISCONTINUOUS VECTOR FIELD IN
DIMENTION 2n

MAURICIO FIRMINO SILVA LIMA! AND JAUME LLIBRE?

ABSTRACT. The subject of this paper concerns with the bifurcation of limit
cycles and invariant cylinders from a global center of a linear differential sys-
tem in dimension 2n perturbed inside a class of continuous and discontinuous
piecewise linear differential systems. Our main results show that at most one
limit cycle and at most one invariant cylinder can bifurcate using the expan-
sion of the displacement function up to first order with respect to a small
parameter. This upper bound is reached. For proving these results we use
the averaging theory in a form where the differentiability of the system is not
needed.

1. INTRODUCTION

In control theory and in the study of electrical circuits appear in a natural way the
continuous and discontinuous piecewise linear differential systems, see for instance
[6], [9] and the references therein. Such differential systems can exhibit complicate
dynamics such as those exhibited by general nonlinear differential systems. The
limit cycles and the invariant sets by the flow are some of the main components in
the qualitative description of the dynamical behavior of a differential system.

In this paper we study the existence of limit cycles and invariant generalized
cylinders for the class of control systems represented by

(1) &= Apx + eF(x)
where

(i) Ag € Moy, (R) with eigenvalues {£ip1/q1,... ipn/qn} where pi and g
are positive integers for k = 1,...n and (pg,qr) = 1, where (.,.) denotes
the greatest common divisor of py and gy.

(i) pr/qr # pi/q for k #1;

(i) € # 0 is a sufficiently small real parameter;
(iv) F: R?>" — R?" given by

@) Fr) = Az + po(KT2)b,
with 4 € M2, (R) and ¢ : R — R is the discontinuous function
_ -1 Yy € (—O0,0),
3) e ={ 3 Ve
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Here the dot denotes derivative with respect to t.

Let @ be the least common multiple of q1,...,g,. Doing a linear change of
variables and a rescaling of the independent variable ¢t we write the matrix Ag in its
real Jordan normal form with eigenvalues {+i, +iao, ..., +ia,}, where ap = ax/q

prQ

with ap = —=, k={2,...,n} and ¢ = ne
q

—— are positive integers. Note that by (ii)
k q1
ar # ap if k #£ 1. This ¢ will be used later on in this paper. So Ay is
0 -1
1 0

0 —a

ag 0

0 —Aanp—1
An—1 0

an 0

where the empty entries of the matrix are zeros.
For our purpose we first study the perturbed problem
(5) i = Aoz +eFy(z),
where I, is the piecewise linear function Fy,(z) = Az+@, (kT x)b where ¢, : R — R
is given by
-1 y € (—o0, _w]v
(6) cu)={ T € (~ww)
1 y € [w,00).
Observe that we have two different limit differential systems. More precisely
(i) For e = 0 system (5) becomes

T1 = —T2,
To = T,
T3 = —G2T4,
(7) T4 = A273,
¢2n71 = —0nT2n,

j;2n = GnT2n—1,
where the origin is a global center.
(ii) Taking w — 0 in (5) we obtain the discontinuous two piecewise linear
differential system (1).
A limit cycle of a differential system is an isolated periodic orbit in the set of all
periodic orbits of the system.
Our main results are the following.

Theorem 1. For every integer n > 2 at most one limit cycle of the piecewise
linear differential system (5) bifurcates from the periodic orbits of system (7), up to
first-order expansion of the displacement function of (5) with respect to the small
parameter . Moreover there are systems (5) having exactly one limit cycle.
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Corollary 2. For every integer n > 2 at most one limit cycle of the discontinuous
piecewise linear differential system (1) bifurcates from the periodic orbits of system
(7), up to first-order expansion of the displacement function of (1) with respect
to the small parameter €. Moreover there are systems (1) having exactly one limit
cycle.

Theorem 3. For every integer n > 2 at most one invariant cylinder homeomorphic
to R x (Sl)n_l of the piecewise linear differential system (5) bifurcates from (7), up
to first-order expansion of the displacement function of (5) with respect to the small
parameter €. Moreover there are systems (5) having exactly one invariant cylinder.
This cylinder is fulfilled of periodic orbits.

Corollary 4. For every integer n > 2 at most one invariant cylinder homeo-
morphic to R x (Sl)nfl of the discontinuous piecewise linear differential system
1 bifurcates from (7), up to first-order expansion of the displacement function of
(1) with respect to the small parameter €. Moreover there are systems (1) having
exactly one invariant cylinder. This cylinder is fulfilled of periodic orbits.

Theorem 1 is an extension first of the main results of [4] where the case oj = 1
for j =1, - ,n with Ay semi-simple is considered, and second of the main results
of [7] where the case 1 : m with integer m > 1 in dimension 4 is studied.

This paper is organized as follows. In section 2 we present the averaging theory
of first order in the form obtained in [1] for detecting limit cycles and invariant
cylinders. The advantage of this result is that the smoothness assumptions for the
vector field of the differential system it is not necessary. In particular, it can be
applied to piecewise linear differential systems, which are not C? (not even C1),
as it was required in its classical version, see for instance, Theorem 11.5 of [10].
This version of averaging theory has been used in some previous papers, see for
instance, [2], [4] and [5]. We note that when the averaged function of first order
is not identically zero (and this will be the case in this paper), it is sufficient for
studying the periodic orbits of the perturbed system. For more details see section
2 and [1].

In section 3 we prove Theorem 1. For this purpose first we prove Lemma 8 where
we reduce the number of parameters by a linear change of coordinates. In the next
step we put the system in the standard form for applying averaging, this is done in
Lemma 14.

In section 4 we prove Theorem 3 which needs Lemma 20 where a change of co-
ordinates is presented for writing the system in the normal form of the averaging
theory. In section 5 we give an illustrative example where a discontinuous piece-
wise linear differential system exhibits a unique limit cycle and a unique invariant
cylinder.

2. FIRST-ORDER AVERAGING THEORY

The aim of this section is to present the first-order averaging theory as obtained
in [1]. In this version differentiability of the vector field is not needed. The specific
conditions for the existence of a simple isolated zero of the averaged function are
given in terms of the Brouwer degree. In fact, the Brouwer degree theory is the key
point in the proof of this theorem. We remind here that continuity of some finite
dimensional function is a sufficient condition for the existence of its Brouwer degree
(see [8] for precise definitions).
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Theorem 5. We consider the following differential system
(8) i =eH(t,x) +*R(t, z,€),

where H :Rx D = R, R:Rx D x (—¢eg,e5) = R™ are continuous functions, T-
periodic in the first variable, and D is an open subset of R™. We define h : D — R™
as

T
(9) h(z) = /0 His, 2)ds,

and assume that:

(i) H and R are locally Lipschitz with respect to x;
(ii) for a € D with h(a) = 0, there exists a neighborhood V of a such that
h(z) # 0 for all z € V\{a} and dg(h,V,a) # 0 (here dg(h,V,a) denotes
the Brouwer degree of h at a).
Then, for |e| > 0 sufficiently small, there exists an isolated T-periodic solution
¥(.,€) of system (8) such that ¥(0,e) — a as € — 0.

Here we will need some facts from the proof of Theorem 5. Hypothesis (i)
assures the existence and uniqueness of the solution of each initial value problem
on the interval [0, T'|. Hence, for each z € D, it is possible to denote by (., z, ) the
solution of (8) with the initial value z(0, z, ) = z. We consider also the displacement
function ¢ : D x (—ef,e5) — R™ defined by

T
(10) ((z,6) = / [eH (t, x(t, 2,€)) + €°R(t, x(t, 2,€), €)]dt.
0
From the proof of Theorem 5 we extract the following facts.

Remark 6. For every z € D the following relation holds
(T, z,e) —x(0, z,¢) = ((z,¢).
The function ¢ can be written in the form
C(z,e) = eh(z) + O(?),

where h is given by (9) and the symbol O(g?) denotes a bounded function on every
compact subset of D x (—e¢,e¢) and of order 2. Moreover, for |e| sufficiently small,
z =1(0,¢) is a isolated zero of ((.,¢€).

Note that from Remark 6 it follows that a zero of the displacement function
((z,¢e) at time T provides initial conditions for a periodic orbit of the system of
period T. We also remark that h(z) is the displacement function up to terms of
order €. Consequently the zeros of h(z), when h(z) is not identically zero, also
provides periodic orbits of period T.

For a given system there is the possibility that the function ¢ is not globally
differentiable, but the function h is C' as we shall see in Section 3 and 4. In fact,
only differentiability in some neighborhood of a fixed isolated zero of A could be
enough. When this is the case, one can use the following remark in order to verify
the hypothesis (ii) of Theorem 5.

Remark 7. Let h: D — R"™ be a Ct function, with h(a) = 0, where D is an open
subset of R™ and a € D. Whenever a is a simple zero of h (i.e. the Jacobian Jy(a)
of h at a is not zero), then there exists a neighborhood V of a such that h(z) # 0
for all z € V\{a} and dg(h,V,a) € {-1,1}.
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The averaging theory provides information on the location of the periodic orbits.
Thus if a is a zero of the averaged function h(z) with dg(f,V,a) # 0, then there is
a limit cycle ¢(t,¢) of system (8) satisfying that ¢(0,¢) — @ when € — 0. So a is
an initial condition for the periodic orbit which bifurcates to the limit cycle ¢(t, €).

The averaging theory for C? differential system also provides in the hyperbolic
case the stability or unstability of the periodic orbits. For discontinuous differential
systems a weaker result on the stability and unstability can be found in [3].

3. PROOF OF THEOREM 1

As before we will assume that Ag is given by its real Jordan normal form (4).
Moreover a set of lemmas will be presented to put the system (5) in a more tractable
way for using the averaging method.

The next lemma writes system (5) to a convenient normal form.

Lemma 8. If the vector k = (k1,ka, ..., kan—1,kon) is such that H?Zl(k;%j_l +
kgj) # 0, then there exists a linear change of coordinates that sending the system
(5) to the system

(11) &= A1z + Az + ey (21)b,
where A € Mo, (R) and b € R®™ are functions of A and b. Moreover
0 -1 ¢ 0
10 0 €
0 —Qa2 €& 0
as 0 0 9
A = )
0 —Qp_1 €
Ap—1 0 0 e
0 —An
an 0

where all the empty entries of Ay are zero.

Proof. To prove the lemma we must find J satisfying
J_leJ = A,

kT =ef.
The proof will be done by induction on n.

If n = 2 the vector field is in a 4-dimensional space and a straightforward calcu-
lation shows that the matrix

(12)

kl _ kQ _ Ekg _ Ekl
k%:kg k£+k§ (k§+k]§)(a2*1) (kfﬂc%]g(%*l) J11 Ji2
2 1 ER1 ER2
J—| B B @)@ D e D | _
4 0 0 eky 5'133
(k3+k3)(az—1) (k3+k3)(a2—1)
0 0 eks cka J271 JQ’Q

(kR (a2—1)  (k3HkD)(az—1)

satisfies system (12), where the matrix J; ; € Ms(R) and Jo 1 = 0. Note that, in
this case, Jy is well defined and invertible because its determinant €2 /[(ag—1)?(k$ +
k3) (k32 + k3)] # 0 and ag # 1.
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Suppose that the result is valid up to n — 1. That is, there exists a (2n —
2)—invertible matrix Jo,_o of the form

Jin i o Jlae Jiaa
L T S LY S S S/
Jop—o = .. ,
Joon Jnoo 0 Jnome Jnona
'];:—1,1 '];:—1,2 T J:;—l,n—Q J:;—l,n—l

with J7; € M2(R) and J;; = 0 if i > j and satisfying system (12).
Now we have to find a matrix Js,, of the form

Jry Jf,nfz ( J£,2n73 J£,27z72 ) ( Ji,2n—1  J1,2n >

J2,2n—3  J2,2n—2 J2,2n—1  J2,2n

. % . .
J* . J* J2n—3,2n—-3 J2n—3,2n—2 J2n—3,2n—1  J2n—3,2n
n—1,1 n—1,n—2 * *

Joan-2,2n-38 J2n—2,2n-2 J2n—2,2n—1  J2n—2,2n

( 0 0 > ( 0 o0 > < 0 0 ) < J2n—1,2n—1  J2n—1,2n >

0 0 0 0 0 0 j2n,2n71 j2n,2n
satisfying system (12) and where the elements with (*) are fixed by the previous
step in the sense that the submatrix with terms (*) satisfies (12) in dimension
2n — 2. Moreover J; ; =0 if ¢ > j.

Some calculations show that the equation JA; — AgJ = 0 is equivalent to the
following system of equations:

€Jok—12n-3 T Anj2k—1.2n + akjok2n—1 =0, k=1,....n—1
€J3k 2n—3 T OnJ2k,2n — Akj2k—12n—1 = 0, k=1,...,n—1,
(13) EJok—1,2n—2 — Anj2k—1.2n—1 + GkjJ2k2n =0, k=1,....,n—1,
€Jok 2n—2 — OnJ2k,2n—1 — QkjJ2k—1,2n = 0, k=1,...,n—1,
aann—l,Qn + aann,Qn—l - O,
aann,Qn - aann—l,Qn—l =0.
From the first and fourth equations of (13) we obtain
K K
. . €(a7l-72k—1,2n—3 + akhk,zn—z)
J2k—1,2n = 5 3 and
a; —a?
K K
. €(akjog_1.2n—3 T Anlog 2n_2)
J2k,2n—1 = 3 5
Q. — ap
for k=1,...,n—1 and from the second and third of (13) we obtain
(anj3 — akj; )
. _ elanJog 2n—3 — AkJ2k—1,2n—2
J2k,2n = 3 3 and
ap —a?
- -
. e(akJQk:,an?) - a"]2k71,2n72)
J2k—1,2n—-1 = 2 2
ay — an
fork=1,...,n—1.
Moreover as a2 — ai #0, for allk =1,...,n — 1, the solutions found above are

unique.
Now from the last two equations of (13) we have

—Jon—1,2n = J2n2n—1 =B, Jen2n = J2n-12n-1 = Q.
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Considering the equation k7.J = eI’ the previous constants must satisfy

2n—2
kon—1a 4 kopfS = — Z kijion—1,
12:n1—2
konot — kop1f = — Z kijion-
i—1

This system has a single solution if k3,_; + k3, # 0. This completes the proof of
the lemma. 0

The next result will put the system in the standard form for applying the aver-
aging method. This will be done via a convenient change of coordinates.

Lemma 9. Doing the changing of coordinates from (x1, 2,23, 4, ..., Tan—1, T2n)
to (r1,...,7n,01,...,0,) given by

r1 = 11 cosby, T9 = r1sinfq,

Tog—1 = i cos(agdy + O0r), ok =rpsin(ard +0k), k=2,...,n,

and considering 01 as the new time system (11) becornes

d
ﬂ = 5H1(91,r1,. . .,7‘”,92,. . an) + 0(62),
g
(14) d% = eHp (01,71, ... 7,02y ... 0,) + O(E2), k=2,...,n,
1
Dk G (Orrs e o 0+ OED), k=2, n,
do;
where
Hi= 7 COS((CLQ - 1)91 + 92) + cos 01 Fy + sin 01 F5,
Hy = rg1cos((aps1r — ar)bh + (Opr1 — k) + cos(arfy + 0x) For—1
+sin(arbr + O ) For,
H, = cos(anby + 0n)Fon_1 + sin(anb1 + 6,,) Fay,
G = _a_k[r2 sin((ag — 1)6; + 02) + cos 61 Fy — sin 01 F1 ]+
(15) n

1 .
E[rk"’l sin((ag+1 — ar)br + (Or+1 — k) + cos(agby + 0y) Fop—
sin(axrbh + Or) Far—1],

G, = —a—n[rg sin((az — 1)1 + 62) + cos 61 F» — sin 61 F1 |+
T1
1
r—[cos(anﬂl + 0,) Fap, — sin(an b1 + 65,) Fopn—1],

for Hy and Gy, the subindex k wvaries from 2 to n — 1. The expressions of Fy for
l=1,---,2n are given in Appendiz 1.

We take ey sufficiently small, m arbitrarily large, and D,, = (1/m,m)x o

x(1/m,m) x Rx 77 xR. Then the vector field of system (14) is well defined and
continuous on R X Dy, x (—ey,ey¢). Moreover it is 2mqg—periodic with respect to 61
and globally Lipschitz with respect to (r1,...,7n,02,...0,).
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Proof. Considering the variables (01,71, ...,7y,602,...6,) system (11) becomes
91 =1+ i(?"g sin((ag — 1)91 + 92) + cos 61 F5 — sinelFl),
r

1
(16) 71 =eHy (61,71, n,002,...0,),
lfjk:€Hk(917r1,...77‘7“92,...9”), k:2,...,n’
Or =eGr(01,71,...,1n,02,...60,), k=2

Observe that the functions on the right hand of (16) have the form given by
(15). So from the fact that ar = ay/q it is easy to see that they are 2wg—periodic
in the variable 6. )

Now for || sufficiently small we have 01 (t) > 0 for each 6; such that (61,71, ..., 7,
02,...0,) € R x D,,. A suitable time-rescaling allows to take 6; as the time and
so (16) can be written as a (2n — 1)—dimensional system. Expanding this system
with respect to ¢ in Taylor series we obtain the desired form (14). Moreover the
periodicity of the O(¢?) functions follows from the fact that these functions are
obtained from the previous ones by this expansion in Taylor series. The remaining
affirmations follow by direct computations. |

In Lemma 9 we have obtained for vector field (5) a form where we are able to
apply the averaging theory.
For this purpose we have to find the corresponding averaging function (9).
We call f: D,, — R*~1 the function f = (h1,...,hn,g2,...,gn) defined by
2mq

hi(r, R, s) = Hyp (61,71, .. ,7n,00,...0,)d0; for k=1,...,n,
0

and
2mq

qi(r,R,s) = Gi(01,71,...,1p,02,...0,)d0; for 1 =2,... n.
0
In order to compute the averaging function we present below some integral that

can be easily calculated

2mq
/ cos 6y sin61df, = 0,
0
2mq 2mq
/ cos?(alfy + O;)db = Tq = / sin?(afy + 0x)db;,
0 0
2mq
/ cos 6y sin(aby + 0x)df, =0, VE=2,...,n and a # 1,
0
2mq
/ cos 61 cos(aby + 0x)dor =0, with k,a # 1,
0
2mq
/ sin 0 sin(afy + 0;)df; = 0, with k,« # 1,
0

2mq
/ sin 0y cos(aby + 0x)dfy =0, VEk=2,...,n and a # 1.
0

Now for each r; > 0 define

2mq
Ii(r1,w) = / ©w (11 cos ) cos B1db,
0
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2mq
Iy(ry,w) = / @uw (1 cos f1) sin 61 db1,
0
2mq
Iop—1(r1,w) = / pw(ricosby)sin(agy)db, k=2,...,n,
0

2mq
Iop(r,w) = / Ow(r1 cosby)cos(apbr)dbr, k=2,...,n,
0

where ¢,, is the real function given in (6).
A direct calculation shows that

Ir(r1,w) =0 and Iog—1(r1,w) =0, Vry>0.

Moreover
Tqr
Tan 0<r <w,
w
HGRDES (7”1 71 r? —w?
2q | —arccsc (—) + — T > w,
w w 1
and
Top (11, w) = 0 0<r <w,
2k, ) = 2Ji(r1,w) 11 > w,
where

1
Ji(r1,w) = (— — 2% ) sin [ak arccos <£>} +
ap ay—1 1
r1sin [arccos | — || cos |ay arccos [ —
1 1

w(ag —1) ’

fork=2,...,n.

Lemma 10. The system obtained for the averaged function f is given by

(17)
hy = wqu(au +a22)+b1[1(r1,w) =0,
hi = mgri(ask—1,26—1 + G2k,2k) + (bak—1 cos O + boy sin 0y ) Iox (11, w) = 0,
gk = 7q(a2k,2k—1 — G2k—1,2k + AKA2,1 — ara12)+

p— [arbori i (r1, w) — 11 (—bay cos Oy + bag—1 sin b)) Lok (r1, w) = 0,

17k

where k =2,-++ ,n and A = (a;;), 1 <i,j <2n and b= (b)), | = 1,...,2n are the
ones given in Lemma 8.

Proof. The proof of this lemma is directly obtained using the expression of Hy, Hy,
and Gy with k = {2,...,n} given in Lemma 9, the previous integrals and the fact
that ay # a; for k # 1. |

Now we can prove Theorem 1.
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Proof of Theorem 1. We have to find the zeroes of system (17). If 0 < r; < w then
system (17) becomes

Tqry
hi = mgri(ain + az2) + b =0,
hip = mqri(agk—126—1 + a2k2k) =0,
akbg
gk = 7Tq| G2k,2k—1 — A2k—1,2k T QK21 — QG122 + w =0,

where k =2,--- ,n.

This system either has no solution, or has a continuum of solutions because the
variables 0, does not appear explicitly in the system. So, in this case, we do not
find any limit cycle.

Now if 7 > w, from the first equation of (17) we have that the function I (r1, w)
satisfies

; 0’1 _ 2 2 /2 2
(i) For each w fixed 8—7"%(r1’ w) = —4dw?q/(r{\/r{ — w?) < 0 and so the graph
of I (.,w) is convex.

1— w?
ol 2 2
(i) For each w fixed — (ry,w) = 24 arcesc (T—l) —2q ~ and we have
o1 or1 w ; w 1 5
}i\r‘rqlua—é(rl,w) = %q and Tlirgo 8_7“1(r1’w) = 0. From the fact that 8_7“1
I
is decreasing (by (i)) we obtain %(rl,w) > 0, so the graph of I1(.,w) is
71
I
strictly increasing. Moreover as % (ri,w) < ikt it follows that the graph of
T1 w

T
I (., w) is below of the straight line —qu. Hence in order that the equation

w
hi = 0 has solutions in ry with 71 > w, we have that b1(ai; + ag2) < 0.

(iil) li_r>n Li(r,w) = 4q, (., w) : (0,00) — (0,4q) and I; is a C*—diffeomorphism.
1 (o]

In the same way we can see that for each w fixed Iog(ri,w), k = 2,...,n are
C!—diffeomorphisms. This implies that the averaging function (17) is C*

From (i)-(iii) we have that there exists in the interval (w,cc) at most one point
of intersection between the graph of I; (., w) and the straight line through the origin
_ mq(a11 + azz)

5 r1. Moreover this intersection point exists if and only if
1

(a11 + a22)
by

Consequently equation hy = 0 has exactly one solution in r; > w if we take a11, a2
and b; satisfying condition (18).

Denote this solution by rj. Substituting it in the others equations of (17) for
k={2,...,n} we obtain

(18) 0<— w < 1 (see Figure 1).

Qp1TE + Qp2ug + agzvg = 0,
(19) Bk + % (—agsug + Oékgvk) =0,

2 2 _
ugy +vp =1,
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4q

mq

0 | 7 \

1

1

—4by
Jw (a11+ag2)™

FIGURE 1. The graph of the function I; (., w) and the straight line

mq(a11 + az2)

t given by equation — r1. We denote by s the straight

by
. mq mq(ain + az)
line —r{y anda= ————w
w by
where
* *
a1 = 7q(a2k—1,2k—1 + G2k,2k);s k2 = bap—1 Do (r],w),  oug = baplok (17, w),

Br = mq(ask,26—1 — A2k—1,2k + QK021 — aka1,2) + apba Iy (r7, w) /17,

and
u = coslly, v =sinby.
Note that
QL2 k3 2 2 * 2
= (b5._1 +b5.) Lok (r], w)~.
—Qps Qo ’ (2k 1 Qk) 2k( 1 )
So system (19) for each & = 2,...,n has a unique solution for suitable election

of the parameters boy 1, bk, a1,2, @21, G2k—1,2k—1, G2k2k, G2k2k—1 and agk_1 2k-
Hence for [[;_,(b3,_; + b2;,) # 0 at most one limit cycle can bifurcate from the
periodic orbits of the linear differential system (7) when this system is perturbed in
the form (5). Moreover there are systems for which a such limit cycle exists. This
proves Theorem 1. O

Proof of Corollary 2. Let >, = {z1 = 0} be a section for the flow of (1) and (5).
Define P, : >, — > and P, : >, — > the first return map associated to (1) and
(5) respectively.

Note that all the maps P, and P, for w > 0 are analytic, P, is a composition
of two analytic functions and P, is the composition of four analytic functions.
Moreover, lim,, o Py, = P,.

Now, from Theorem 1 we have that for each w > 0 P, has at most a unique
fixed point xf, € >, with z # 0.

In the necessary condition for the existence of a such limit cycle (condition (18))
fixed w # 0, there exists a unique 77 ,, > w that satisfies the first equation of (17).
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This point is the point of intersection between the graph of the function I;(.,w)

and the straight line —Mm

1
Now note that for each r1 > w we have

I 2q [ /13 — w? I
(a) oL S Mw—rlarccsc <T—1> with lim ﬁ(rhw) S
ow w? o] w riNw Ow w
.06
and Tllgnoo m (r1,w) =0.
0% 4qrq 1 w
b) =—(r,w) = — (—)—7 < 0 for all 11 > w.
(b) S0 (r1,w) 2 | areese ( — T orallm >w
In fact, taking f(ri,w) = arccsc <T—1> — —— we have
w r{ —w
li{‘n flri,w) = —oc0 and lim f(r,w)=0.
T1 w T1—>00
Moreover 5
——(r,w) = v <0.

So f(r1,w) < 0 for 1 > w. This proves the assertion (b).

Now from (a) and (b) we obtain ﬁ(7"1,w) < 0. So for r; fixed with 7 > w we

have I (r1,.) decreasing with w (see figure 2). This implies that if w; > ws then

. —4b .
T wy < T1,- Moreover an upper bounded of r{ , for k =1,2 is — 1 This
(a11 + ago)m

implies that lim0 ] = 7] exists and
w— ’

4by
(a11 + ag)m’

The existence of the limits of rj , and6j ,, k = 2,...,3 when w — 0 follow
directly from the fact that these values are solutions of system (19) and they depend
only on the parameters a;;, 1 < 4,5 < 2n, b, | = 1,...,2n (fixed for a given
one parameter family of system parameterized by w) and on 7. So we have

Uljiino(riwvu'7r2,w79;,w7"'79:,w) = (TT,...,T;,Q;,...,QZ) 7é (07»0)

From the above arguments it follows that the fixed point (7] ,,, ..., 75 4, 05 4 -+,
0}, ) of the averaging equation associated to the fixed point z}, of P, have a
non-zero limit when w — 0. This implies that z}, — 2* and z* # 0. Now as
limy, 0 Py (z%) = Py(z*) we obtain Py(z*) = x*. This concludes the proof of the

corollary. 0

O<w<r<-—

Remark 11. We observe that given a discontinuous vector field (11) with w = 0
satisfying the condition (a11 + age)by < 0 the necessary condition (18) for the
existence of limit cycle for the continuous vector field can always be satisfied. In
fact for this we have just to take w sufficiently small.

4. PROOF OF THEOREM 3

Lemma 12. Doing the change of coordinates from (x1, 22, ..., Tan—1,T2,) to (11, ...
Tn,61,...0,) where

Top_1 = T coS O, Top = Tk Sin O, k=1,...,n,

i
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4q

q

T1

0 w; w‘l /‘ T \ Cw

x x
T1,wy T1,wg (a11tasz)n

FIGURE 2. The graph of the function I(.,w) for two different
mg(air + a22)r1

values of w. Here t denotes the straight line — 5
1

and considering 01 as the new time, system (11) can be written as

% :5M1(01,7"1,...,rn,eg,...ﬁn)+O(52) k=1,...,n—1
1
(20) % My (01,71, . 7y 00) + O(2),
1
do,
—del—al-l-O(e) l_27"'7n7
where

My = 7ig1co8(0gt1 — Ok) +cosOpLog—1 +sinbyLop, k=1,...,n—1
M, = cosb,Lay_1 +sinb,Lo,.

The functions Ly forl =1,---2n are given in Appendiz 2.
Proof. The proof is similar to the proof of Lemma 9. |
Observe that if (r1(01),...,7,(01),602(61),...,0,(61)) is a solution of (20), then

we have
01(61) = a1 +67 +0(), 1=2,...,n.

Substituting these expressions in system (20) we obtain

d
T = EMi(B1,7, ., asfy + 05, anbh +65) + O(),
(21) dr
dTTn = eMp (01,71, ... o, a201 + 605, ... anb; +0°) + O(e?),
1
where k=1,...,n—1.
Note that for fixed (09,...,602) any zero of the averaging system associated to
system (21) corresponds to a limit cycle of (20). Moreover if the zero is persistent
for (69,...,0°) € [v21,722] X ... X [Yn1,Yn2] S0 system (11) has an invariant cylinder

homeomorphic to R x (Sl)nf1 fulfilled of periodic orbits because all the a; € Q for
[ =2,---,n. So all the periodic orbits have period 2wqg. Here in order to find this
invariant cylinders we have to study the averaging system associated to system (21).
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In this case the averaging function is given by g(r1,- -+ ,7n,02, - ,0,) = (ug, -+,
uyn) where
2mq
U,k(’f‘l, ey Ty B, Hn) = Mk(ﬂl,rl, ceey o, a0fy + 95, .o.anfl + QZ)dgl,
0

fork=1,---,n.

Lemma 13. The system obtained from (21) by the averaging function g is given

by
(22)

ur = wgri(ain + ag2) + b1l (ri, w) =0,

up = wri(agk—1,26—1 + a2k 2k) + (bak—1c0505 + bag sin 09) Loy (r1, w) = 0,
where k = 2,...,n.

Proof. The proof of this lemma is similar to the proof of Lemma 10 and it will be
omitted. ]

With Lemma 22 we are in position to present the proof of Theorem 3

Proof of Theorem 3. As in the proof of Theorem 1 we will just find isolated solu-
tions for the case 1 > w.

Note that the first equation of system (22) is exactly the first equation of system
(17). So we can find a unique solution for the first equation provided that by (a11 +
as2) < 0. Substituting this solution 77 into the others equations of (22) and solving

then with respect to the variables ri for k = 2,...,n we obtain
(23) = bak—1 cos 8}, + bay, sin 67 Do (% w).
wq(azk—126—1 + A2k 2k)
Now note that these expressions provide positive solutions if agy—1,25—1+a2k,2k #
0, b2, +b3 #0for k=2,...,n and for 69 chosen in a convenient way.
Moreover, for each k = 2,...,n, given 07 satisfying equation (23), it is possible

to vary the angle 67 in an interval in such a way that the solution obtained is
locally persistent. This implies the existence of an invariant cylinder for system
(11) homeomorphic to R x (Sl)n_l . O

Proof of Corollary 4. The proof is similar to the proof of Corollary 2. |

5. EXAMPLE

Consider the following differential system in R*

i1 = —xo+e(@ + 23 — @ol(x1)),
Lo = X1+ x4,
(24) T3 = —2x4 + ex3,

T4 = 2x3+ E(po(.’tl).

For this particular system the matrix A = (a;;) and the vector b = (b;)T of
Lemma 8 have a;; = 1 = asz and all the other entries zero, and by = —1, by =
b3 = 0, by = 1. Moreover the entry as of the Jordan matrix A; of Lemma 8 is
az = 2 and the integer ¢ here is ¢ = 1. So considering w < 0.1 we obtain

(@11 + ass)

0<— b

w=w<01<1,
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and the equation h; = 0 of (17) has a unique solution 7§ > 0.1. In fact we can see
that r] ~ 1.27193. Moreover substituting this solution in the other two equations
of (17) we obtain

mry + [jve =0, —Ijus =0,

where I} = 2J5(rf, w) & —8.4 < 0, ug = cosfy and vy = sin 5.

r
From this system we obtain v; = — 1*2 and ug = 0. This implies 05 = 7/2, and
4
I*
from the fact that u2 + v3 = 1 we obtain 75 = —=%. So the averaging function f
T

given by (17) has (rf, —If/m,m/2) as a unique zero. Moreover the eigenvalues of
Df(ry,—I;/m,m/2) are all positive real numbers. This implies that system (24)
has a unique limit cycle up to first order in the displacement function.

In the same way we can show that system (24) admits an invariant cylinder
homeomorphic to Rx S!.

6. APPENDIX 1

Here we provide the explicit expressions of the functions F; for [ =1, ---,2n:

Fy = ajjricost + 2?22 ai,2j—17j cos(a;60 + 0;) + ay or1 sin 6y
+ 2?22 41,27 Sin(ajel + 9]) + bl@w(rl CoSs Hl)a

Fy = airicosth + Z?:Q as,9j—17j cos(a;fy + 0;) + asory sin by
+ 30 a2,2575 sin(a;fy + 0;) + bapu (r1 cos 01),

n .
For_1 = a2k—1,17T1 COS 01 + Zj:Q a2k—1,2j—17; cos(ajel + GJ) + agk—1,271 SIn 01
n .
+ 2 g G2k-1,2j7 8I0(a;01 4 0;) + bak 100 (11 cos br),

Fo, = Q2,171 COS 01 + Z;‘L:Q Q2k,25—175 COS((Ljel + GJ) + asgk,2T1 sin 01
+ 2?22 a2k,257; sin(aﬁl + GJ) + bgkgow (7"1 coSs 91),

n .
Fopo1 = agn-1,17m100801 + 305 asn—1,2j-17j cos(az01 + 6;) + azn—1,27r1 sin 6y
n ;
+ 2 j—2 G2n—1,2;75 Sin(a;01 + 0;) + ban 10w (r1 cos b1),

n .
Fy, = Q2n,171 COS 01 + Zj:2 2n,2j—17T5 cos(ajﬂl + 9]) + a2n,271 SIN 01
n .
+ 20 Q2n,2;7j sin(a;b1 + 0;) + banipw (1 cosby),

where k =2,--+ ;n—1.

7. APPENDIX 2

Here we provide the explicit expressions of the functions L; for [ =1,--- ,2n:

n . n
Lop—1 = 3 5_1 Qok—1,2j7j8in0; + 320 ask—1,2j-17; €086 + bap—190w(r1 cos 1),

n . n
Loy = ijl Aok,2;7; in 0; + ijl A2k,25—17;5 €08 65 + bagpw (11 cos b).
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